[en] For decades, self-blown polyurethane foams─found in an impressive range of materials─are produced by the toxic isocyanate chemistry and are difficult to recycle. Producing them in existing production plants by a rapid isocyanate-free self-blowing process from room temperature (RT) formulations is a long-lasting challenge. The recent water-induced self-blowing of nonisocyanate polyurethane (NIPU) formulations composed of a CO2-based tricyclic carbonate, diamine, water, and a catalyst successfully addressed the isocyanate issue, however failed to provide foams at RT. Herein, we elaborate a practical solution to empower the NIPU foam formation in record timeframes from RT formulations. We generate cascade exotherms by the addition of a highly reactive triamine and an epoxide to the formulation of the water-induced self-foaming process. These exotherms, combined to a fast cross-linking imparted by the triamine and epoxide, rapidly raise the temperature to the foaming threshold and deliver hybrid NIPU foams in 5 min with KOH as a catalyst. Careful selection of the monomers enables producing foams with a wide range of properties, as well as with an unprecedented high biobased content up to 90 wt %. Moreover, foams can be upcycled into polymer films by hot pressing, offering them a facile reuse scenario. This robust cheap process opens huge perspectives for greener foams of high biobased contents, expectedly responding to the sustainability demands of the foam sector. It is potentially compatible to the retrofitting of industrial foaming infrastructures, which is of paramount importance to accommodate existing foam production plants and address the huge foam market demands.
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège CERM - Center for Education and Research on Macromolecules - ULiège FRITCO2T - Federation of Researchers in Innovative Technologies for CO2
Disciplines :
Materials science & engineering Chemistry
Author, co-author :
Bourguignon, Maxime ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium
Grignard, Bruno ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Federation of Researchers in Innovative Technologies for CO2 [FRITCO2T] - Center for Education and Research on Macromolecules [CERM] - Belgium
Detrembleur, Christophe ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium
Language :
English
Title :
Cascade Exotherms for Rapidly Producing Hybrid Nonisocyanate Polyurethane Foams from Room Temperature Formulations.
Publication date :
2024
Journal title :
Journal of the American Chemical Society
ISSN :
0002-7863
eISSN :
1520-5126
Publisher :
American Chemical Society (ACS), United States
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
The Walloon region [BE] in the frame of the WIN2WAL program and the "ECOFOAM" project The Walloon region [BE] in the frame of the FRFS-WEL-T program and the "CHEMISTRY” - WEL-T-CR-2023 A − 02" project
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique Walloon region
Funding text :
The authors thank the Region Wallonne for funding the Win2Wal project “ECOFOAM” (convention 2010130). They also thank the company NMC sa (Belgium) for their support in this research. The authors are very grateful to Grégory Cartigny for technical assistance in the preparation of the formulations and the foams. C.D. is the FNRS Research Director and thanks the “Fonds de la Recherche Scientifique (F.R.S.-FNRS)” for funding. Part of this work was realized to provide preliminary data supporting the feasibility of the WEL- T Advanced Grant proposal submitted by C.D. C.D. is particularly grateful to the Region Wallonne for having recently granted this project (FRFS-WEL-T; project “CHEMISTRY”, convention WEL-T-CR-2023 A − 02). The authors have patented the technology (WO 2023/104362A1). A preprint of this article appeared on ChemRxiv at DOI: 10.26434/ chemrxiv-2023-t48bf;
Commentary :
The authors have patented the technology [WO 2023/104362A]). A preprint of this article appeared on ChemRxiv at DOI: 10.26434/ chemrxiv-2023-t48bf.
MarketandMarkets . Polyurethane Foam Market by Type (Rigid Foam, Flexible Foam, Spray Foam), End-Use Industry (Building & Construction, Bedding & Furniture, Automotive, Electronics, Footwear, Packaging), and Region - Global Forecast to 2028; MarketandMarkets, September 2023, https://www.marketsandmarkets.com/Market-Reports/polyurethane-foams-market-1251.html.
Akindoyo, J. O.; Beg, M. D. H.; Ghazali, S.; Islam, M. R.; Jeyaratnam, N.; Yuvaraj, A. R. Polyurethane Types, Synthesis and Applications-a Review. RSC Adv. 2016, 6 ( 115), 114453- 114482, 10.1039/C6RA14525F
Engels, H.-W.; Pirkl, H.-G.; Albers, R.; Albach, R. W.; Krause, J.; Hoffmann, A.; Casselmann, H.; Dormish, J. Polyurethanes: Versatile Materials and Sustainable Problem Solvers for Today’s Challenges. Angew. Chem., Int. Ed. 2013, 52 ( 36), 9422- 9441, 10.1002/anie.201302766
IMARC group . Polyurethane (PU) Foam Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2023-2028; IMARC group, 2022, https://www.imarcgroup.com/polyurethane-foam-market.
Peyrton, J.; Avérous, L. Structure-Properties Relationships of Cellular Materials from Biobased Polyurethane Foams. Mater. Sci. Eng. R: Rep. 2021, 145, 100608, 10.1016/j.mser.2021.100608
Karol, M. H.; Kramarik, J. A. Phenyl Isocyanate Is a Potent Chemical Sensitizer. Toxicol. Lett. 1996, 89 ( 2), 139- 146, 10.1016/S0378-4274(96)03798-8
Bello, D.; Herrick, C. A.; Smith, T. J.; Woskie, S. R.; Streicher, R. P.; Cullen, M. R.; Liu, Y.; Redlich, C. A. Skin Exposure to Isocyanates: Reasons for Concern. Environ. Health Perspect. 2007, 115 ( 3), 328- 335, 10.1289/ehp.9557
Merenyi, S. . REACH: Regulation (EC) No 1907/2006: Consolidated Version (June 2012) with an Introduction and Future Prospects Regarding the Area of Chemicals Legislation (Vol. 2); GRIN Verlag, 2012.
European Commisson . Communication from the Commission to the European Parliament and the Council, Sustainable Carbon Cycles; European Commisson: Brussels, 2021. https://climate.ec.europa.eu/system/files/2021-12/com_2021_800_en_0.pdf (accessed September 28, 2023).
Kathalewar, M. S.; Joshi, P. B.; Sabnis, A. S.; Malshe, V. C. Non-Isocyanate Polyurethanes: From Chemistry to Applications. RSC Adv. 2013, 3 ( 13), 4110, 10.1039/c2ra21938g
Cornille, A.; Auvergne, R.; Figovsky, O.; Boutevin, B.; Caillol, S. A Perspective Approach to Sustainable Routes for Non-Isocyanate Polyurethanes. Eur. Polym. J. 2017, 87, 535- 552, 10.1016/j.eurpolymj.2016.11.027
Maisonneuve, L.; Lamarzelle, O.; Rix, E.; Grau, E.; Cramail, H. Isocyanate-Free Routes to Polyurethanes and Poly(Hydroxy Urethane)s. Chem. Rev. 2015, 115 ( 22), 12407- 12439, 10.1021/acs.chemrev.5b00355
Blattmann, H.; Lauth, M.; Mülhaupt, R. Flexible and Bio-Based Nonisocyanate Polyurethane (NIPU) Foams. Macromol. Mater. Eng. 2016, 301 ( 8), 944- 952, 10.1002/mame.201600141
Grignard, B.; Thomassin, J.-M.; Gennen, S.; Poussard, L.; Bonnaud, L.; Raquez, J.-M.; Dubois, P.; Tran, M.-P.; Park, C. B.; Jerome, C.; Detrembleur, C. CO2-Blown Microcellular Non-Isocyanate Polyurethane (NIPU) Foams: From Bio- and CO2-Sourced Monomers to Potentially Thermal Insulating Materials. Green Chem. 2016, 18 ( 7), 2206- 2215, 10.1039/C5GC02723C
Dong, T.; Dheressa, E.; Wiatrowski, M.; Pereira, A. P.; Zeller, A.; Laurens, L. M. L.; Pienkos, P. T. Assessment of Plant and Microalgal Oil-Derived Nonisocyanate Polyurethane Products for Potential Commercialization. ACS Sustain. Chem. Eng. 2021, 9 ( 38), 12858- 12869, 10.1021/acssuschemeng.1c03653
Amezúa-Arranz, C.; Santiago-Calvo, M.; Rodríguez-Pérez, M.-Á. A New Synthesis Route to Produce Isocyanate-Free Polyurethane Foams. Eur. Polym. J. 2023, 197, 112366, 10.1016/j.eurpolymj.2023.112366
Cornille, A.; Dworakowska, S.; Bogdal, D.; Boutevin, B.; Caillol, S. A New Way of Creating Cellular Polyurethane Materials: NIPU Foams. Eur. Polym. J. 2015, 66, 129- 138, 10.1016/j.eurpolymj.2015.01.034
Cornille, A.; Guillet, C.; Benyahya, S.; Negrell, C.; Boutevin, B.; Caillol, S. Room Temperature Flexible Isocyanate-Free Polyurethane Foams. Eur. Polym. J. 2016, 84, 873- 888, 10.1016/j.eurpolymj.2016.05.032
Coste, G.; Berne, D.; Ladmiral, V.; Negrell, C.; Caillol, S. Non-Isocyanate Polyurethane Foams Based on Six-Membered Cyclic Carbonates. Eur. Polym. J. 2022, 176, 111392, 10.1016/j.eurpolymj.2022.111392
Coste, G.; Denis, M.; Sonnier, R.; Caillol, S.; Negrell, C. Synthesis of Reactive Phosphorus-Based Carbonate for Flame Retardant Polyhydroxyurethane Foams. Polym. Degrad. Stab. 2022, 202, 110031, 10.1016/j.polymdegradstab.2022.110031
Choong, P. S.; Hui, Y. L. E.; Lim, C. C. CO2-Blown Nonisocyanate Polyurethane Foams. ACS Macro Lett. 2023, 12 ( 8), 1094- 1099, 10.1021/acsmacrolett.3c00334
Clark, J. H.; Farmer, T. J.; Ingram, I. D. V; Lie, Y.; North, M. Renewable Self-Blowing Non-Isocyanate Polyurethane Foams from Lysine and Sorbitol. Eur. J. Org. Chem. 2018, 2018 ( 31), 4265- 4271, 10.1002/ejoc.201800665
Monie, F.; Grignard, B.; Thomassin, J.-M.; Mereau, R.; Tassaing, T.; Jerome, C.; Detrembleur, C. Chemo- and Regioselective Additions of Nucleophiles to Cyclic Carbonates for the Preparation of Self-Blowing Non-Isocyanate Polyurethane Foams. Angew. Chem., Int. Ed. Engl. 2020, 59 ( 39), 17033- 17041, 10.1002/anie.202006267
Monie, F.; Grignard, B.; Detrembleur, C. Divergent Aminolysis Approach for Constructing Recyclable Self-Blown Nonisocyanate Polyurethane Foams. ACS Macro Lett. 2022, 11 ( 2), 236- 242, 10.1021/acsmacrolett.1c00793
Coste, G.; Negrell, C.; Caillol, S. Cascade (Dithio)Carbonate Ring Opening Reactions for Self-Blowing Polyhydroxythiourethane Foams. Macromol. Rapid Commun. 2022, 43 ( 13), e2100833 10.1002/marc.202100833
Purwanto, N. S.; Chen, Y.; Wang, T.; Torkelson, J. M. Rapidly Synthesized, Self-Blowing, Non-Isocyanate Polyurethane Network Foams with Reprocessing to Bulk Networks via Hydroxyurethane Dynamic Chemistry. Polymer 2023, 272, 125858, 10.1016/j.polymer.2023.125858
Capar, Ö.; Tabatabai, M.; Klee, J. E.; Worm, M.; Hartmann, L.; Ritter, H. Fast Curing of Polyhydroxyurethanes via Ring Opening Polyaddition of Low Viscosity Cyclic Carbonates and Amines. Polym. Chem. 2020, 11 ( 43), 6964- 6970, 10.1039/D0PY01172J
Diakoumakos, C. D.; Kotzev, D. L. Non-Isocyanate-Based Polyurethanes Derived upon the Reaction of Amines with Cyclocarbonate Resins. Macromol. Symp. 2004, 216, 37- 46, 10.1002/masy.200451205
Hernández, A.; Houck, H. A.; Elizalde, F.; Guerre, M.; Sardon, H.; Du Prez, F. E. Internal Catalysis on the Opposite Side of the Fence in Non-Isocyanate Polyurethane Covalent Adaptable Networks. Eur. Polym. J. 2022, 168, 111100, 10.1016/j.eurpolymj.2022.111100
Rothbarth, F.; Stockhausen, T.; Mann, C.; Grubaugh, K. Covestro and Genomatica produce important chemical raw material using biotechnology, Covestro Press. https://www.covestro.com/press/covestro-and-genomatica-produce-important-chemical-raw-material-using-biotechnology/ (accessed January 19 2022).
Van Gheluwe, P.; Leroux, J. Sequential Nature of the Exothermic Reactions Leading to the Formation of Flexible Polyurethane Foams. J. Appl. Polym. Sci. 1983, 28 ( 6), 2053- 2067, 10.1002/app.1983.070280618
Xin, H.; Zhang, P.; Zhang, B.; Zhu, Y.; Wu, J.; Lin, Y.; Qi, X.; Liu, C.; Wang, H.; Wang, D.; Lin, Z. Polyurethane Exothermic Polymerization and Phase Change Material Thermal Delay Matching: An Approach to Reducing Fire Risks in Mining Polymer Materials. ACS Appl. Polym. Mater. 2023, 5, 7887- 7898, 10.1021/acsapm.3c01125
Ran, Z.; Liu, X.; Jiang, X.; Wu, Y.; Liao, H. Study on Curing Kinetics of Epoxy-Amine to Reduce Temperature Caused by the Exothermic Reaction. Thermochim. Acta 2020, 692, 178735, 10.1016/j.tca.2020.178735
Marsella, J. A.; Starner, W. E. Acceleration of Amine/Epoxy Reactions with N-Methyl Secondary Amines. J. Polym. Sci. A Polym. Chem. 2000, 38 ( 5), 921- 930, 10.1002/(SICI)1099-0518(20000301)38:5<921:AID-POLA17>3.0.CO;2-P
Figovsky, O.; Shapovalov, L.; Birukova, O.; Leykin, A. Modification of Epoxy Adhesives by Hydroxyurethane Components on the Basis of Renewable Raw Materials. Polym. Sci., Ser. C 2013, 6 ( 4), 271- 274, 10.1134/S1995421213040047
Lambeth, R. H.; Rizvi, A. Mechanical and Adhesive Properties of Hybrid Epoxy-Polyhydroxyurethane Network Polymers. Polymer 2019, 183, 121881, 10.1016/j.polymer.2019.121881
Anitha, S.; Vijayalakshmi, K. P.; Unnikrishnan, G.; Santhosh Kumar, K. S. CO2 Derived Hydrogen Bonding Spacer: Enhanced Toughness{,} Transparency{,} Elongation and Non-Covalent Interactions in Epoxy-Hydroxyurethane Networks. J. Mater. Chem. A 2017, 5 ( 46), 24299- 24313, 10.1039/C7TA08243F
Helbling, P.; Hermant, F.; Petit, M.; Tassaing, T.; Vidil, T.; Cramail, H. Unveiling the Reactivity of Epoxides in Carbonated Epoxidized Soybean Oil and Application in the Stepwise Synthesis of Hybrid Poly(Hydroxyurethane) Thermosets. Polym. Chem. 2023, 14 ( 4), 500- 513, 10.1039/D2PY01318E
Ecochard, Y.; Caillol, S. Hybrid Polyhydroxyurethanes: How to Overcome Limitations and Reach Cutting Edge Properties?. Eur. Polym. J. 2020, 137, 109915, 10.1016/j.eurpolymj.2020.109915
Bossion, A.; Aguirresarobe, R. H.; Irusta, L.; Taton, D.; Cramail, H.; Grau, E.; Mecerreyes, D.; Su, C.; Liu, G.; Müller, A. J.; Sardon, H. Unexpected Synthesis of Segmented Poly(Hydroxyurea-Urethane)s from Dicyclic Carbonates and Diamines by Organocatalysis. Macromolecules 2018, 51 ( 15), 5556- 5566, 10.1021/acs.macromol.8b00731
Spiesschaert, Y.; Guerre, M.; De Baere, I.; Van Paepegem, W.; Winne, J. M.; Du Prez, F. E. Dynamic Curing Agents for Amine-Hardened Epoxy Vitrimers with Short (Re)Processing Times. Macromolecules 2020, 53 ( 7), 2485- 2495, 10.1021/acs.macromol.9b02526
Fortman, D. J.; Brutman, J. P.; Cramer, C. J.; Hillmyer, M. A.; Dichtel, W. R. Mechanically Activated, Catalyst-Free Polyhydroxyurethane Vitrimers. J. Am. Chem. Soc. 2015, 137 ( 44), 14019- 14022, 10.1021/jacs.5b08084
Chen, X.; Li, L.; Jin, K.; Torkelson, J. M. Reprocessable Polyhydroxyurethane Networks Exhibiting Full Property Recovery and Concurrent Associative and Dissociative Dynamic Chemistry: Via Transcarbamoylation and Reversible Cyclic Carbonate Aminolysis. Polym. Chem. 2017, 8 ( 41), 6349- 6355, 10.1039/C7PY01160A
Purwanto, N. S.; Chen, Y.; Torkelson, J. M. Reprocessable, Bio-Based, Self-Blowing Non-Isocyanate Polyurethane Network Foams from Cashew Nutshell Liquid. ACS Appl. Polym. Mater. 2023, 5 ( 8), 6651- 6661, 10.1021/acsapm.3c01196
Sheppard, D. T.; Jin, K.; Hamachi, L. S.; Dean, W.; Fortman, D. J.; Ellison, C. J.; Dichtel, W. R. Reprocessing Postconsumer Polyurethane Foam Using Carbamate Exchange Catalysis and Twin-Screw Extrusion. ACS Cent. Sci. 2020, 6 ( 6), 921- 927, 10.1021/acscentsci.0c00083
Kim, S.; Li, K.; Alsbaiee, A.; Brutman, J. P.; Dichtel, W. R. Circular Reprocessing of Thermoset Polyurethane Foams. Adv. Mater. 2023, 35 ( 41), e2305387 10.1002/adma.202305387