[en] The dynamical, dielectric, and elastic properties of GeTe, a ferroelectric material in its low-temperature rhombohedral phase, have been investigated using first-principles density functional theory. We report the electronic energy bands, phonon-dispersion curves, electronic and low-frequency dielectric tensors, infrared reflectivity, Born effective charges, and elastic and piezoelectric tensors and compare them with the existing theoretical and experimental results, as well as with similar quantities available for other ferroelectric materials, when appropriate.
Disciplines :
Physics
Author, co-author :
Shaltaf, R.
Durgun, Engin ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Raty, Jean-Yves ; Université de Liège - ULiège > Département de physique > Physique de la matière condensée
Ghosez, Philippe ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Gonze, X.
Language :
English
Title :
Dynamical, dielectric, and elastic properties of GeTe investigated with first-principles density functional theory
Publication date :
2008
Journal title :
Physical Review. B, Condensed Matter and Materials Physics
ISSN :
1098-0121
eISSN :
1550-235X
Publisher :
American Physical Society, Woodbury, United States - New York
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
S. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968). 10.1103/PhysRevLett.21. 1450
M. Libera and M. Chen, J. Appl. Phys. 73, 2272 (1993). 10.1063/1.353132
N. Yamada, MRS Bull. 21, 48 (1996).
E. F. Steigmeier and G. Harbeke, Solid State Commun. 8, 1275 (1970). 10.1016/0038-1098(70)90619-8
K. Andrikopoulos, S. Yannopoulos, G. Voyiatzis, A. Kolobov, M. Ribes, and J. Tominaga, J. Phys.: Condens. Matter 18, 965 (2006). 10.1088/0953-8984/18/3/ 014
J. Y. Raty, V. V. Godlevsky, J. P. Gaspard, C. Bichara, M. Bionducci, R. Bellissent, R. Céolin, J. R. Chelikowsky, and P. Ghosez, Phys. Rev. B 65, 115205 (2002). 10.1103/PhysRevB.65.115205
K. M. Rabe and J. D. Joannopoulos, Phys. Rev. B 36, 6631 (1987). 10.1103/PhysRevB.36.6631
N. E. Zein, V. I. Zinenko, and A. S. Fedorov, Phys. Lett. A 164, 115 (1992). 10.1016/0375-9601(92)90916-A
P. B. Littlewood, J. Phys. C 13, 4875 (1980). 10.1088/0022-3719/13/26/010
T. Chattopadhyay, J. X. Boucherle, and H. G. von Schnering, J. Phys. C 20, 1431 (1987). 10.1088/0022-3719/20/10/012
A. I. Lebedev, I. A. Sluchinskaya, V. N. Demin, and I. H. Munro, Phys. Rev. B 55, 14770 (1997). 10.1103/PhysRevB.55.14770
A. Onodera, I. Sakamoto, Y. Fujii, N. Môri, and S. Sugai, Phys. Rev. B 56, 7935 (1997). 10.1103/PhysRevB.56.7935
A. Ciucivara, B. R. Sahu, and L. Kleinman, Phys. Rev. B 73, 214105 (2006). 10.1103/PhysRevB.73.214105
K. M. Rabe and J. D. Joannopoulos, Phys. Rev. Lett. 59, 570 (1987). 10.1103/PhysRevLett.59.570
U. V. Waghmare, N. A. Spaldin, H. C. Kandpal, and Ram Seshadri, Phys. Rev. B 67, 125111 (2003). 10.1103/PhysRevB.67.125111
Ph. Ghosez, X. Gonze, Ph. Lambin, and J.-P. Michenaud, Phys. Rev. B 51, 6765 (1995). 10.1103/PhysRevB.51.6765
Xuhui Sun, Bin Yu, Garrick Ng, and M. Meyyappan, J. Phys. Chem. C 111, 2421 (2007). 10.1021/jp0658804
Se-Ho Lee, Dong-Kyun Ko, Yeonwoong Jung, and Ritesh Agarwal, Appl. Phys. Lett. 89, 223116 (2006). 10.1063/1.2397558
S. Prosandeev, I. Ponomareva, I. Kornev, I. Naumov, and L. Bellaiche, Phys. Rev. Lett. 96, 237601 (2006). 10.1103/PhysRevLett.96.237601
I. Naumov, L. Bellaiche, and H. Fu, Nature (London) 432, 737 (2004). 10.1038/nature03107
X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, and D. C. Allan, Comput. Mater. Sci. 25, 478 (2002). 10.1016/S0927-0256(02)00325-7
X. Gonze, G.-M. Rignanese, M. Verstraete, J.-M. Beuken, Y. Pouillon, R. Caracas, F. Jollet, M. Torrent, G. Zerah, M. Mikami, P. Ghosez, M. Veithen, J. Y. Raty, V. Olevano, F. Bruneval, L. Reining, R. Godby, G. Onida, D. R. Hamann, and D. C. Allan, Z. Kristallogr. 220, 558 (2005). 10.1524/zkri.220.5.558.65066
For a review, S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001). 10.1103/RevModPhys.73.515
X. Gonze, Phys. Rev. B 55, 10337 (1997). 10.1103/PhysRevB.55.10337
X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997). 10.1103/PhysRevB.55. 10355
Xifan Wu, D. Vanderbilt, and D. R. Hamann, Phys. Rev. B 72, 035105 (2005). 10.1103/PhysRevB.72.035105
C. Hartwigsen, S. Goedecker, and J. Hutter, Phys. Rev. B 58, 3641 (1998). 10.1103/PhysRevB.58.3641
S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B 54, 1703 (1996). 10.1103/PhysRevB.54.1703
X. Gonze, P. Ghosez, and R. W. Godby, Phys. Rev. Lett. 74, 4035 (1995). 10.1103/PhysRevLett.74.4035
X. Gonze, P. Ghosez, and R. W. Godby, Phys. Rev. Lett. 78, 294 (1997). 10.1103/PhysRevLett.78.294
Y. W. Tung and M. L. Cohen, Phys. Rev. 180, 823 (1969). 10.1103/PhysRev.180.823
H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976). 10.1103/PhysRevB.13.5188
J. C. S. Goldak, D. I. Barrett, and W. Youdelis, J. Chem. Phys. 44, 3323 (1966). 10.1063/1.1727231
L. L. Chang, P. J. Stiles, and L. Esaki, IBM J. Res. Dev. 10, 484 (1966).
D. Vanderbilt and R. D. King-Smith, Phys. Rev. B 48, 4442 (1993). 10.1103/PhysRevB.48.4442
The nominal ionic value of Ge in tetrahedral covalent crystals is +4. However in binary compounds as IV-VI, it is considered +2 which is the negative of the nominal ionic value of Te.
Ph. Ghosez, J.-P. Michenaud, and X. Gonze, Phys. Rev. B 58, 6224 (1998). 10.1103/PhysRevB.58.6224
R. Tsu, W. Howard, and L. Esaki, Phys. Rev. 172, 779 (1968). 10.1103/PhysRev.172.779
L. E. Diaz-Sanchez, A. H. Romero, and X. Gonze, Phys. Rev. B 76, 104302 (2007). 10.1103/PhysRevB.76.104302
S. Bahl and K. Chopra, J. Appl. Phys. 41, 2196 (1970). 10.1063/1.1659189
In practice, the screening of the depolarizing field associated with the A1(LO) mode will reduce its frequency to that of A1(TO) mode.
M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, London, 1954).
J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, New York, 1985).
F. Wang, L. Luo, D. Zhou, X. Zhao, and Haosu Luo, Appl. Phys. Lett. 90, 212903 (2007). 10.1063/1.2743393
Hu Cao, V. Hugo Schmidt, Rui Zhang, Wenwu Cao, and Haosu Luo, J. Appl. Phys. 96, 549 (2004). 10.1063/1.1712020
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.