Astrophysics - Earth and Planetary Astrophysics; Astrophysics - Solar; and Stellar Astrophysics
Abstract :
[en] Carbon is an essential element for life but how much can be delivered to young planets is still an open question. The chemical characterization of planet-forming disks is a crucial step in our understanding of the diversity and habitability of exoplanets. Very low-mass stars (less than 0.2 M<SUB>⊙</SUB>) are interesting targets because they host a rich population of terrestrial planets. Here we present the James Webb Space Telescope detection of abundant hydrocarbons in the disk of a very low-mass star obtained as part of the Mid-InfraRed Instrument mid-INfrared Disk Survey (MINDS). In addition to very strong and broad emission from C<SUB>2</SUB>H<SUB>2</SUB> and its <SUP>13</SUP>C<SUP>12</SUP>CH<SUB>2</SUB> isotopologue, C<SUB>4</SUB>H<SUB>2</SUB>, benzene and possibly CH<SUB>4</SUB> are identified, but water, polycyclic aromatic hydrocarbons and silicate features are weak or absent. The lack of small silicate grains indicates that we can look deep down into this disk. These detections testify to an active warm hydrocarbon chemistry with a high C/O ratio larger than unity in the inner 0.1 astronomical units (AU) of this disk, perhaps due to destruction of carbonaceous grains. The exceptionally high C<SUB>2</SUB>H<SUB>2</SUB>/CO<SUB>2</SUB> and C<SUB>2</SUB>H<SUB>2</SUB>/H<SUB>2</SUB>O column density ratios indicate that oxygen is locked up in icy pebbles and planetesimals outside the water iceline. This, in turn, will have important consequences for the composition of forming exoplanets.
Bettoni, G.; Leiden Observatory, Max-Planck-Institute for Extraterrestrial Physics, Garching
van Dishoeck, E. F.; Leiden Observatory, Max-Planck-Institute for Extraterrestrial Physics, Garching
Arabhavi, A. M.; University of Groningen, Kapteyn Astronomical Institute
Grant, S.; Max-Planck-Institute for Extraterrestrial Physics, Garching
Gasman, D.; Katholieke University of Leuven, Astronomical Institute
Henning, Th.; Max-Planck-Institute for Astronomy, Heidelberg
Kamp, I.; University of Groningen, Kapteyn Astronomical Institute
Güdel, M.; Max-Planck-Institute for Astronomy, Heidelberg, ETH Zurich, Department of Physics, University of Vienna, Department of Astronomy
Lagage, P. O.; CEA Saclay, Service d'Astrophysique
Ray, T.; Dublin Institute for Advanced Studies, Ireland
Vandenbussche, B.; Katholieke University of Leuven, Astronomical Institute
Abergel, A.; Institut d'Astrophysique Spatiale
Absil, Olivier ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Argyriou, I.; Katholieke University of Leuven, Astronomical Institute
Barrado, D.; Centre for Astrobiology (CAB), CSIC-INTA, Madrid, Spain
Boccaletti, A.; Observatoire de Paris, Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique
Bouwman, J.; Max-Planck-Institute for Astronomy, Heidelberg
Caratti o Garatti, A.; Dublin Institute for Advanced Studies, Ireland, -
Geers, V.; Royal Observatory Edinburgh
Glauser, A. M.; ETH Zurich, Department of Physics
Justannont, K.; Chalmers University, Department of Earth and Space Sciences
Lahuis, F.; Netherlands Institute for Space Research
Mueller, M.; University of Groningen, Kapteyn Astronomical Institute
Nehmé, C.; CEA Saclay, Service d'Astrophysique
Olofsson, G.; AlbaNova University Center
Pantin, E.; CEA Saclay, Service d'Astrophysique
Scheithauer, S.; Max-Planck-Institute for Astronomy, Heidelberg
Waelkens, C.; Katholieke University of Leuven, Astronomical Institute
Waters, L. B. F. M.; Radboud University Nijmegen, Department of Astronomy and Physics, Netherlands Institute for Space Research
Black, J. H.; Chalmers University, Department of Earth and Space Sciences
Christiaens, Valentin ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Guadarrama, R.; University of Vienna, Department of Astronomy
Morales-Calderón, M.; Centre for Astrobiology (CAB), CSIC-INTA, Madrid, Spain
Jang, H.; Radboud University Nijmegen, Department of Astronomy and Physics
Kanwar, J.; University of Groningen, Kapteyn Astronomical Institute, Austrian Institute of Space Science Research
Pawellek, N.; University of Vienna, Department of Astronomy, Konkoly Observatory
Perotti, G.; Max-Planck-Institute for Astronomy, Heidelberg
Perrin, A.; Laboratoire de Meteorologie Dynamique, Paris
Rodgers-Lee, D.; Dublin Institute for Advanced Studies, Ireland
Samland, M.; Max-Planck-Institute for Astronomy, Heidelberg
Schreiber, J.; Max-Planck-Institute for Astronomy, Heidelberg
Schwarz, K.; Max-Planck-Institute for Astronomy, Heidelberg
Colina, L.; Centre for Astrobiology (CAB, CSIC-INTA), Carretera de Ajalvir, Madrid, Spain
Dressing, C. D. & Charbonneau, D. The occurrence of potentially habitable planets orbiting M dwarfs estimated from the full Kepler dataset and an empirical measurement of the detection sensitivity. Astrophys. J. 807, 45 (2015).
Sabotta, S. et al. The CARMENES search for exoplanets around M dwarfs. Planet occurrence rates from a subsample of 71 stars. Astron. Astrophys. 653, A114 (2021).
Gaia Collaboration et al. Gaia Data Release 3: summary of the content and survey properties. Preprint at arXiv 10.48550/arXiv.2208.00211 (2022).
Miret-Roig, N. et al. The star formation history of Upper Scorpius and Ophiuchus. A 7D picture: positions, kinematics, and dynamical traceback ages. Astron. Astrophys. 667, A163 (2022).
Carpenter, J. M., Ricci, L. & Isella, A. An ALMA continuum survey of circumstellar disks in the upper Scorpius OB association. Astrophys. J. 787, 42 (2014).
Luhman, K. L., Herrmann, K. A., Mamajek, E. E., Esplin, T. L. & Pecaut, M. J. New young stars and brown dwarfs in the upper Scorpius association. Astron. J. 156, 76 (2018).
Pascucci, I., Herczeg, G., Carr, J. S. & Bruderer, S. The atomic and molecular content of disks around very low-mass stars and brown dwarfs. Astrophys. J. 779, 178 (2013).
Barenfeld, S. A., Carpenter, J. M., Ricci, L. & Isella, A. ALMA observations of circumstellar disks in the upper Scorpius OB association. Astrophys. J. 827, 142 (2016).
Wright, G. S. et al. The Mid-Infrared Instrument for the James Webb Space Telescope, II: design and build. Publ. Astron. Soc. Pac. 127, 595 (2015).
Kessler-Silacci, J. et al. c2d Spitzer IRS spectra of disks around T tauri stars. I. Silicate emission and grain growth. Astrophys. J. 639, 275–291 (2006).
Furlan, E. et al. A survey and analysis of spitzer infrared spectrograph spectra of T tauri stars in taurus. Astrophys. J. Suppl. Ser. 165, 568–605 (2006).
Dahm, S. E. & Carpenter, J. M. Spitzer spectroscopy of circumstellar disks in the 5 Myr old upper Scorpius OB association. Astron. J. 137, 4024–4045 (2009).
Pascucci, I. et al. The different evolution of gas and dust in disks around sun-like and cool stars. Astrophys. J. 696, 143–159 (2009).
Carr, J. S. & Najita, J. R. Organic molecules and water in the inner disks of T tauri stars. Astrophys. J. 733, 102 (2011).
Salyk, C., Pontoppidan, K. M., Blake, G. A., Najita, J. R. & Carr, J. S. A Spitzer survey of mid-infrared molecular emission from protoplanetary disks. II. Correlations and local thermal equilibrium models. Astrophys. J. 731, 130 (2011).
Woods, P. M. & Willacy, K. Carbon isotope fractionation in protoplanetary disks. Astrophys. J. 693, 1360–1378 (2009).
Gibb, E. L. & Horne, D. Detection of CH4 in the GV Tau N protoplanetary disk. Astrophys. J. Lett. 776, L28 (2013).
Carr, J. S. & Najita, J. R. Organic molecules and water in the planet formation region of young circumstellar disks. Science 319, 1504 (2008).
Cernicharo, J. et al. Infrared Space Observatory’s discovery of C4H2, C6H2, and benzene in CRL 618. Astrophys. J. Lett. 546, L123–L126 (2001).
Coustenis, A. et al. The composition of Titan’s stratosphere from Cassini/CIRS mid-infrared spectra. Icarus 189, 35–62 (2007).
Schuhmann, M. et al. Aliphatic and aromatic hydrocarbons in comet 67P/Churyumov-Gerasimenko seen by ROSINA. Astron. Astrophys. 630, A31 (2019).
Woitke, P. et al. Modelling mid-infrared molecular emission lines from T Tauri stars. Astron. Astrophys. 618, A57 (2018).
Kress, M. E., Tielens, A. G. G. M. & Frenklach, M. The ‘soot line’: destruction of presolar polycyclic aromatic hydrocarbons in the terrestrial planet-forming region of disks. Adv. Space Res. 46, 44–49 (2010).
Anderson, D. E. et al. Destruction of refractory carbon in protoplanetary disks. Astrophys. J. 845, 13 (2017).
Li, J., Bergin, E. A., Blake, G. A., Ciesla, F. J. & Hirschmann, M. M. Earth’s carbon deficit caused by early loss through irreversible sublimation. Sci. Adv. 7, eabd3632 (2021).
Gail, H.-P. & Trieloff, M. Spatial distribution of carbon dust in the early solar nebula and the carbon content of planetesimals. Astron. Astrophys. 606, A16 (2017).
Walsh, C., Nomura, H. & van Dishoeck, E. The molecular composition of the planet-forming regions of protoplanetary disks across the luminosity regime. Astron. Astrophys. 582, A88 (2015).
Woods, P. M. & Willacy, K. Benzene formation in the inner regions of protostellar disks. Astrophys. J. Lett. 655, L49–L52 (2007).
Frenklach, M. & Feigelson, E. D. Formation of polycyclic aromatic hydrocarbons in circumstellar envelopes. Astrophys. J. 341, 372 (1989).
Morgan, J. W. A., Feigelson, E. D., Wang, H. & Frenklach, M. A new mechanism for the formation of meteoritic kerogen-like material. Meteoritics 26, 374 (1991).
Geers, V. C. et al. C2D Spitzer-IRS spectra of disks around T Tauri stars. II. PAH emission features. Astron. Astrophys. 459, 545–556 (2006).
Najita, J. R., Ádámkovics, M. & Glassgold, A. E. Formation of organic molecules and water in warm disk atmospheres. Astrophys. J. 743, 147 (2011).
Najita, J. R. et al. The HCN-water ratio in the planet formation region of disks. Astrophys. J. 766, 134 (2013).
van Dishoeck, E. F. et al. Water in star-forming regions: physics and chemistry from clouds to disks as probed by Herschel spectroscopy. Astron. Astrophys. 648, A24 (2021).
Anderson, D. E. et al. Observing carbon and oxygen carriers in protoplanetary disks at mid-infrared wavelengths. Astrophys. J. 909, 55 (2021).
Mulders, G. D., Ciesla, F. J., Min, M. & Pascucci, I. The snow line in viscous disks around low-mass stars: implications for water delivery to terrestrial planets in the habitable zone. Astrophys. J. 807, 9 (2015).
Bosman, A. D. et al. Molecules with ALMA at planet-forming scales (MAPS). VII. Substellar O/H and C/H and superstellar C/O in planet-feeding gas. Astrophys. J. Suppl. Ser. 257, 7 (2021).
Pinilla, P. et al. Explaining millimeter-sized particles in brown dwarf disks. Astron. Astrophys. 554, A95 (2013).
Kurtovic, N. T. et al. Size and structures of disks around very low mass stars in the taurus star-forming region. Astron. Astrophys. 645, A139 (2021).
Morbidelli, A., Lunine, J. I., O’Brien, D. P., Raymond, S. N. & Walsh, K. J. Building terrestrial planets. Ann. Rev. Earth Planetary Sci. 40, 251–275 (2012).
Ormel, C. W., Liu, B. & Schoonenberg, D. Formation of TRAPPIST-1 and other compact systems. Astron. Astrophys. 604, A1 (2017).
Lee, J.-E., Bergin, E. A. & Nomura, H. The solar nebula on fire: a solution to the carbon deficit in the inner Solar System. Astrophys. J. Lett. 710, L21–L25 (2010).
Greene, T. P. et al. Thermal emission from the Earth-sized exoplanet TRAPPIST-1 b using JWST. Nature 10.1038/s41586-023-05951-7 (2023).
Rieke, G. H. et al. The Mid-Infrared Instrument for the James Webb Space Telescope, I: introduction. Publ. Astron. Soc. Pac. 127, 584 (2015).
Labiano, A. et al. Wavelength calibration and resolving power of the JWST MIRI Medium Resolution Spectrometer. Astron. Astrophys. 656, A57 (2021).
Wells, M. et al. The Mid-Infrared Instrument for the James Webb Space Telescope, VI: the Medium Resolution Spectrometer. Publ. Astron. Soc. Pac. 127, 646 (2015).
Bushouse, H. et al. JWST Calibration Pipeline. Zenodo. 10.5281/zenodo.7325378 (2022).
Salyk, C. slabspec: Python code for producing LTE slab model molecular spectra. Zenodo. 10.5281/zenodo.4037306 (2020).
Gordon, I. et al. The HITRAN2020 molecular spectroscopic database. J. Quantit. Spectrosc. Radiative Trans. 277, 107949 (2022).
Delahaye, T. et al. The 2020 edition of the GEISA spectroscopic database. J. Mol. Spectrosc. 380, 111510 (2021).
Meijerink, R., Pontoppidan, K. M., Blake, G. A., Poelman, D. R. & Dullemond, C. P. Radiative transfer models of mid-infrared H2O lines in the planet-forming region of circumstellar disks. Astrophys. J. 704, 1471–1481 (2009).
Bruderer, S., Harsono, D. & van Dishoeck, E. F. Ro-vibrational excitation of an organic molecule (HCN) in protoplanetary disks. Astron. Astrophys. 575, A94 (2015).
Avni, Y. Energy spectra of X-ray clusters of galaxies. Astrophys. J. 210, 642–646 (1976).
Šimečková, M., Jacquemart, D., Rothman, L. S., Gamache, R. R. & Goldman, A. Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database. J. Quant. Spectrosc. Radiat. Transf. 98, 130–155 (2006).
Dang-Nhu, M. & Plíva, J. Intensities in the ν 4, ν 12, ν 13, and ν 14 bands of benzene. J. Mol. Spectrosc. 138, 423–429 (1989).
Sung, K., Toon, G. C. & Crawford, T. J. N2- and (H2+He)-broadened cross sections of benzene (C6H6) in the 7-15 μm region for the Titan and Jovian atmospheres. Icarus 271, 438–452 (2016).
Bruderer, S. Survival of molecular gas in cavities of transition disks. I. CO. Astron. Astrophys. 559, A46 (2013).
Lebouteiller, V. et al. CASSIS: the Cornell Atlas of Spitzer/infrared spectrograph sources. Astrophys. J. Suppl. Ser. 196, 8 (2011).
Banzatti, A. et al. The kinematics and excitation of infrared water vapor emission from planet-forming disks: results from spectrally resolved surveys and guidelines for JWST spectra. Astron. J. 165, 72 (2023).
Banzatti, A. et al. Hints for icy pebble migration feeding an oxygen-rich chemistry in the inner planet-forming region of disks. Astrophys. J. 903, 124 (2020).