[en] Scaling of the structural order parameter, polarization, and electrical properties was investigated in model ultrathin epitaxial SrRuO3/PbZr0.2Ti0.8O3/SrRuO3/SrTiO3 heterostructures. High-resolution transmission electron microscopy images revealed the interfaces to be sharp and fully coherent. Synchrotron x-ray studies show that a high tetragonality (c/a similar to 1.058) is maintained down to 50 angstrom thick films, suggesting indirectly that ferroelectricity is fully preserved at such small thicknesses. However, measurement of the switchable polarization (Delta P) using a pulsed probe setup and the out-of-plane piezoelectric response (d(33)) revealed a systematic drop from similar to 140 mu C/cm(2) and 60 pm/V for a 150 angstrom thick film to 11 mu C/cm(2) and 7 pm/V for a 50 angstrom thick film. This apparent contradiction between the structural measurements and the measured switchable polarization is explained by an increasing presence of a strong depolarization field, which creates a pinned 180 degrees polydomain state for the thinnest films. Existence of a polydomain state is demonstrated by piezoresponse force microscopy images of the ultrathin films. These results suggest that the limit for a ferroelectric memory device may be much larger than the fundamental limit for ferroelectricity. (c) 2006 American Institute of Physics.
Disciplines :
Physics
Author, co-author :
Nagarajan, V.
Junquera, J.
He, J. Q.
Jia, C. L.
Waser, R.
Lee, K.
Kim, Y. K.
Baik, S.
Zhao, T.
Ramesh, R.
Ghosez, Philippe ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Rabe, K. M.
Language :
English
Title :
Scaling of structure and electrical properties in ultrathin epitaxial ferroelectric heterostructures
Publication date :
01 September 2006
Journal title :
Journal of Applied Physics
ISSN :
0021-8979
eISSN :
1089-7550
Publisher :
Amer Inst Physics, Melville, United States - New York
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
J. F. Scott and C. A. P. de Araujo, Science 246, 1400 (1989).
R. Waser, Nanoelectronics and Information Technology (Wiley-VCH, Weinheim, 2003).
T. M. Shaw, S.-T. McKinstry, and P. C. McIntyne, Annu. Rev. Mater. Sci. 30, 263 (2000).
C. H. Ahn, K. M. Rabe, and J.-M. Triscone, Science 303, 488 (2004).
Ph. Ghosez and J. Junquera, in Handbook for Theoretical and Computational Nanotechnology, edited by M. Reith and W. Schommers (American Scientific Publishers, Oswego, NY, 2006).
A. V. Bune, V. M. Fridkin, S. Ducharme, L. M. Blinov, S. P. Palto, A. V. Sorokin, S. G. Yudin, and A. Zlatkin, Nature (London) 391, 874 (1998).
Th. Tybell, C. H. Ahn, and J.-M. Triscone, Appl. Phys. Lett. 75, 856 (1999).
N. Yanase, K. Abe, N. Fukushima, and T. Kawakubo, Jpn. J. Appl. Phys., Part 1 38, 5305 (1999).
S. K. Streiffer et al., Phys. Rev. Lett. 89, 067601 (2002).
M.-W. Chu, I. Szafraniak, R. Scholz, C. Harnagea, D. Hesse, M. Alexe, and U. Gösele, Nat. Mater. 3, 87 (2004).
D. D. Fong, G. B. Stephenson, S. K. Streiffer, J. A. Eastman, O. Auciello, P. H. Fuoss, and C. Thompson, Science 304, 1651 (2004).
H. Ishiwara, M. Okuyama, and Y. Arimoto, Ferroelectric Random Access Memories: Fundamentals and Applications (Springer-Verlag, 2004), Vol. 93.
V. Nagarajan et al., Appl. Phys. Lett. 84, 5225 (2004).
Y. S. Kim et al., Appl. Phys. Lett. 86, 102907 (2005).
R. Kretschmer and K. Binder, Phys. Rev. B 20, 1065 (1979).
Ph. Ghosez and K. M. Rabe, Appl. Phys. Lett. 76, 2767 (2000).
A. G. Zembilgotov, N. A. Pertsev, H. Kohlstedt, and R. Waser, J. Appl. Phys. 91, 2247 (2002).
J. Junquera and Ph. Ghosez, Nature (London) 422, 506 (2003).
M. D. Glinchuk, E. A. Eliseev, and V. A. Stephanovich, Physica B 322, 356 (2002).
I. P. Bafra, P. Wurfel, and B. D. Silverman, J. Vac. Sci. Technol. 10, 687 (1973).
Z. Q. Wu, N. D. Huang, Z. R. Liu, J. Wu, W. H. Duan, B. L. Gu, and X. W. Zhang, Phys. Rev. B 70, 104108 (2004).
M. Dawber, P. Chandra, P. B. Littlewood, and J. F. Scott, J. Phys.: Condens. Matter 15, L393 (2003).
C. Lichtensteiger, J.-M. Triscone, J. Junquera, and Ph. Ghosez, Phys. Rev. Lett. 94, 047603 (2005).
J. R. Contreras, H. Kohlstedt, U. Poppe, C. Buchal, N. A. Pertsev, and R. Waser, Appl. Phys. Lett. 83, 495 (2003).
H. Qu, W. Yao, T. Garcia, J. Zhang, A. V. Sorokin, S. Ducharme, P. A. Dowben, and V. M. Fridkin, Appl. Phys. Lett. 82, 4322 (2003).
M. Y. Zhuravlev, R. F. Sabirianov, S. S. Jaswal, and E. Y. Tsymbal, Phys. Rev. Lett. 94, 246802 (2005).
K. M. Indlekofer and H. Kohlstedt, Europhys. Lett. 72, 282 (2005).
B. S. Simpkins, E. T. Yu, P. Waltereit, and J. S. Speck, J. Appl. Phys. 94, 1448 (2003).
M. Porti, M. Nafria, X. Aymerich, A. Olbrich, and B. Ebersberger, Micro-electron. Eng. 9, 265 (2001).
D. M. Schaadt, E. T. Yu, V. Vaithyanathan, and D. G. Schlom, J. Vac. Sci. Technol. B 22, 2030 (2004).
S. V. Kalinin and D. A. Bonnell, Nano Lett. 4, 555 (2004).
S. Prasertchoung, V. Nagarajan, Z. Ma, R. Ramesh, J. S. Cross, and M. Tsukada, Appl. Phys. Lett. 84, 3130 (2004).
J. A. Christman, J. R. R. Woolcott, A. I. Kingon, and R. J. Nemanich, Appl. Phys. Lett. 73, 3851 (1998).
V. Nagarajan et al., Nat. Mater. 2, 43 (2003).
A. T. J. van Helvoort, O. Dahl, B. G. Soleim, R. Holmestad, and Th. Tybell, Appl. Phys. Lett. 86, 092907 (2005).
S. Stemmer, S. K. Streiffer, F. Ernst, and M. Ruhle, Philos. Mag. A 71, 713 (1995).
R. E. Cohen, Nature (London) 358, 136 (1992).
J. Junquera (unpublished).
M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, Oxford, 1977).
W. L. Zhong, B. D. Qu, P. L. Zhang, and Y. G. Wang, Phys. Rev. B 50, 12375 (1994).
A. K. Tagantsev, V. O. Sherman, K. F. Astafiev, J. Venkatech, and N. Setter, J. Electroceram. 11, 5 (2003).
A. K. Tagantsev, M. Landivar, E. Colla, and N. Setter, J. Appl. Phys. 78, 2623 (1995).
V. Nagarajan, S. Zhong, and S. P. Alpay (unpublished).
First-principles density-functional calculations on bulk Pb(Zr 0.2Ti 0.8)O 3 confirm that the polarization along the c axis steadily grows with the increasing of the tetragonal order parameter over a wide range of c/a; U. V. Waghmare (private communication).
U. V. Waghmare and K. M. Rabe, Phys. Rev. B 55, 6161 (1997).
We point out that the absence of the stray energy spoils the applicability of our model to thickness below the domain width (Refs. 47 and 48) (in our simulations half of a supercell, that is, around 24 Å). A more detailed model is needed for the thinnest films.
A. M. Bratkovsky and A. P. Levanyuk. Phys. Rev. Lett. 84, 3177 (2000).
A. M. Bratkovsky and A. P. Levanyuk, Phys. Rev. B 63, 132103 (2001).
M. G. Stachiotti, Appl. Phys. Lett. 84. 251 (2004).
I. Kornev, H. Fu, and L. Bellaiche, Phys. Rev. Lett. 93, 196104 (2004).
N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, Phys. Rev. Lett. 80, 1988 (1998).
K. J. Choi et al., Science 306, 1005 (2004).
O. Diéguez, S. Tinte, A. Antons, C. Bungaro, J. B. Neaton, K. M. Rabe, and D. Vanderbilt, Phys. Rev. B 69, 212101 (2004).
W. L. Warren, G. E. Pike, K. Vanheusden, D. Dimos, B. A. Tuttle, and J. Robertson, J. Appl. Phys. 79, 9250 (1996).
W. L. Warren, D. Dimos, B. A. Tuttle, G. E. Pike, R. W. Schwartz, P. J. Clews, and D. C. McIntyre, J. Appl. Phys. 77, 6695 (1995).
W. L. Warren, D. Dimos, B. A. Tuttle, R. D. Nasby, and G. E. Pike, Appl. Phys. Lett. 65, 1018 (1994).
G. Catalan, M. H. Corbett, R. M. Bowman, and J. M. Gregg, Appl. Phys. Lett. 74, 3035 (1999).
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.