From soil to host: Discovering the tripartite interactions between entomopathogenic nematodes, symbiotic bacteria and insect pests and related challenges
[en] Entomopathogenic nematodes (EPNs) are emerging as key agents in ecological networks, exhibiting a wide range of interactions with other biotic components, in particular their symbiotic relationships with the bacteria Xenorhabdus and Photorhabdus. This comprehensive study reveals their global distribution and local benefits and highlights their historical background and taxonomic grouping. The importance of the secreted compounds of EPNs in pest management is highlighted by an in-depth exploration of their potential as biocontrol agents. The complex interactions between nematodes and endosymbiotic bacteria are dissected to understand their mutualistic relationships and subsequent effects on host organisms. The strategies used by EPNs to locate, recognize, and invade hosts will be carefully analyzed to understand their pathogenic phase and the resulting immune responses elicited in insect hosts. Infection strategies employed by the EPN-bacteria complex will be examined to assess their efficacy and real-world challenges. The challenges associated with the effective use of EPNs, including environmental constraints and the need for improved efficacy, will be thoroughly investigated to propose viable solutions. This study paves the way for harnessing the biocontrol potential of EPNs and provides a robust framework for future research to improve the efficacy of EPNs in sustainable agriculture and pest management while addressing the challenges identified.
Disciplines :
Agriculture & agronomy
Author, co-author :
Kallali, Najwa Seddiqi
Ouijja, Abderrahman
Goura, Khadija
Laasli, Salah-Eddine
Kenfaoui, Jihane
Benseddik, Youssef
Blenzar, Abdelali
Joutei, Abdelmalek Boutaleb
El Jarroudi, Moussa ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement (Arlon Campus Environnement) > Eau, Environnement, Développement
Mokrini, Fouad
Lahlali, Rachid
Language :
English
Title :
From soil to host: Discovering the tripartite interactions between entomopathogenic nematodes, symbiotic bacteria and insect pests and related challenges
Abate, B.A., Slippers, B., Wingfield, M.J., Malan, A.P., Hurley, B.P., Diversity of entomopathogenic nematodes and their symbiotic bacteria in south African plantations and indigenous forests. Nematology 20:4 (2018), 355–371, 10.1163/15685411-00003144.
Abdel Gawad, M., Ruan, W., Hammam, M., Entomopathogenic nematodes: integrated pest management and new vistas. Egypt. J. Agronematol., 22(1), 2023, 10.21608/ejaj.2023.280551.
Abd-elgawad, M.M.M. (2021). Photorhabdus spp.: An Overview of the Beneficial Aspects of Mutualistic Bacteria of Insecticidal Nematodes.
Abd-Elgawad, M.M.M., Xenorhabdus spp.: an overview of the useful facets of mutualistic bacteria of entomopathogenic nematodes. Life, 12(9), 2022, 10.3390/life12091360.
Addis, T., Teshome, A., Strauch, O., Ehlers, R.U., Life history trait analysis of the entomopathogenic nematode Steinernema feltiae provides the basis for prediction of dauer juvenile yields in monoxenic liquid culture. Appl. Microbiol. Biotechnol., 100(10), 2016, 10.1007/s00253-015-7220-y.
Fodor, A., Hevesi, M., Máthé-Fodor, A., R, J., H, J.A., Novel anti-microbial peptides of Xenorhabdus origin against multidrug resistant plant pathogens. A Search Antibact. Agents, 2012, 10.5772/1085.
Ahn, J., Lee, J., Yang, E., Lee, Y., Koo, K., Song, K., Lee, K., Journal of Asia-Pacific entomology mosquitocidal activity of anthraquinones isolated from symbiotic bacteria Photorhabdus of entomopathogenic nematode. J. Asia-Pac. Entomol. 16:3 (2013), 317–320, 10.1016/j.aspen.2013.04.005.
Ahuja, A., Kushwah, J., Mathur, C., Chauhan, K., Dutta, T.K., Somvanshi, V.S., Identification of Galtox, a new protein toxin from Photorhabdus bacterial symbionts of Heterorhabditis nematodes. Toxicon 194:October 2020 (2021), 53–62, 10.1016/j.toxicon.2021.02.011.
Akhurst, R.J., Biochemical and Physiological Characterization of Colony Form Variants, 1988, 751–761.
Akhurst, R.J., Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families heterorhabditidae and steinernematidae. J. Gen. Microbiol. 128:12 (1982), 3061–3065, 10.1099/00221287-128-12-3061.
Akhurst, R.J., Taxonomic study of Xenorhabdus, a genus of bacteria symbiotically associated with insect pathogenic nematodes. Int. J. Syst. Bacteriol. 33:1 (1983), 38–45, 10.1099/00207713-33-1-38.
Akhurst, R.J., Boemare, N.E., A numerical taxonomic study of the genus Xenorhabdus (enterobacteriacea) and proposed elevation of the subspecies of X. nematophilus to species. J. Gen. Microbiol. 134:7 (1988), 1835–1845, 10.1099/00221287-134-7-1835.
Akhurst, R.J., Mourant, R.G., Baud, L., Boemare, N.E., Phenotypic and DNA relatedness between nematode symbionts and clinical strains of the genus Photorhabdus (Enterobacteriaceae). Int. J. Syst. Bacteriol., 46(4), 1996, 10.1099/00207713-46-4-1034.
Alotaibi, S.S., Darwish, H., Alharthi, S., Alghamdi, A., Noureldeen, A., Fallatah, A.M., Al-barty, A., Albogami, B., Baazeem, A., Control Potentials of Three Entomopathogenic Bacterial Isolates for the Carob Moth, Ectomyelois ceratoniae (Lepidoptera: Pyralidae) in Pomegranates, 2021.
Amparyup, P., Charoensapsri, W., Tassanakajon, A., Prophenoloxidase system and its role in shrimp immune responses against major pathogens. Fish. Shellfish Immunol., 34(4), 2013, 10.1016/j.fsi.2012.08.019.
An, R., Grewal, P.S., Comparative analysis of Xenorhabdus koppenhoeferi gene expression during symbiotic persistence in the host nematode. PLoS ONE 11:1 (2016), 1–26, 10.1371/journal.pone.0145739.
Ardpairin, J., Muangpat, P., Sonpom, S., Dumidae, A., Subkrasae, C., Tandhavanant, S., Thanwisai, A., Vitta, A., A survey of entomopathogenic nematodes and their symbiotic bacteria in agricultural areas of northern Thailand. J. Helminthol., 2020, 10.1017/S0022149×20000735.
Askary, T.H., Abd-Elgawad, M.M.M., Opportunities and challenges of entomopathogenic nematodes as biocontrol agents in their tripartite interactions. Egypt. J. Biol. Pest Control, 31(1), 2021, 10.1186/s41938-021-00391-9.
Askary, T.H., Ahmad, M.J., Efficacy of entomopathogenic nematodes against the cabbage butterfly (Pieris brassicae (L.) (Lepidoptera: Pieridae) infesting cabbage under field conditions. Egypt. J. Biol. Pest Control, 30(1), 2020, 10.1186/s41938-020-00243-y.
Askary, T.H., Jamal Ahmad, M., Wani, A.R., Mohiddin, S., Sofi, M.A., Behavioural Ecology of Entomopathogenic Nematodes, Steinernema and Heterorhabditis for Insect Biocontrol, 2018, 10.1007/978-3-319-94232-2_8.
Atwa, A.A., Hegazi, E.M., Comparative susceptibilities of different life stages of the red palm weevil (coleoptera: Curculionidae) treated by entomopathogenic nematodes. J. Econ. Entomol., 107(4), 2014, 10.1603/EC13438.
Aumann, J., Ehlers, R.U., Physico-chemical properties and mode of action of a signal from the symbiotic bacterium Photorhabdus luminescens inducing dauer juvenile recovery in the entomopathogenic nematode Heterorhabditis bacteriophora. Nematology, 3(8), 2001, 10.1163/156854101753625344.
Banerjee, S., Gill, S.S., Gawade, B.H., Jain, P.K., Subramaniam, K., Sirohi, A., Host delivered RNAi of two cuticle collagen genes, Mi-col-1 and Lemmi-5 hampers structure and fecundity in Meloidogyne incognita. Front. Plant Sci., 8, 2018, 10.3389/fpls.2017.02266.
Basyoni, M.M.A., Rizk, E.M.A., Nematodes ultrastructure: complex systems and processes. J. Parasit. Dis., 40(4), 2016, 10.1007/s12639-015-0707-8.
Batalla-Carrera, L., Morton, A., Shapiro-Ilan, D., Strand, M.R., García-del-Pino, F., Infectivity of Steinernema carpocapsae and S. feltiae to larvae and adults of the hazelnut weevil, curculio nucum: Differential virulence and entry routes. J. Nematol., 46(3), 2014.
Benseddik, Y., Boutaleb Joutei, A., Blenzar, A., Amiri, S., Asfers, A., Mokrini, F., Lahlali, R., Biological control potential of Moroccan entomopathogenic nematodes for managing the flatheaded root-borer, Capnodis tenebrionis (Linné) (Coleoptera: Buprestidae). Crop Prot., 158, 2022, 105991, 10.1016/J.CROPRO.2022.105991.
Benseddik, Y., Boutaleb Joutei, A., Blenzar, A., Ezrari, S., Molina, C.M., Radouane, N., Mokrini, F., Tahiri, A., Lahlali, R., Dababat, A.A., Occurrence and distribution of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) in Morocco. Biocontrol Sci. Technol. 30:10 (2020), 1060–1072, 10.1080/09583157.2020.1787344.
Benseddik, Y., Joutei, A.B., Laghfiri, M., Blenzar, A., Amiri, S., Ezrari, S., Saleh, A., Mokrini, F., Tahiri, A., Dababat, A.A., Lahlali, R., Efficacy assessment of entomopathogenic nematodes native to Morocco against the white grubs Rhizotrogus obesus Lucas and Geotrogus olcesii Fairmaire (Coleoptera: Scarabaeidae). Crop Prot., 143, 2021, 10.1016/j.cropro.2021.105534.
Bhat, A.H., Chaubey, A.K., Askary, T.H., Global distribution of entomopathogenic nematodes, Steinernema and Heterorhabditis. Egypt. J. Biol. Pest Control, 30(1), 2020, 10.1186/s41938-020-0212-y.
Bhat, A.H., Istkhar, Chaubey, A.K., Puza, V., San-Blas, E., First report and comparative study of Steinernema surkhetense (Rhabditida: Steinernematidae) and its symbiont bacteria from Subcontinental India. J. Nematol., 49(1), 2017, 10.21307/jofnem-2017-049.
Bhat, A.H., Istkhar, Chaubey, A.K., Puza, V., San-Blas, E., First report and comparative study of Steinernema surkhetense (Rhabditida: Steinernematidae) and its symbiont bacteria from Subcontinental India. J. Nematol. 49:1 (2017), 92–102, 10.21307/jofnem-2017-049.
Bhat, A., Machado, R., Abolafia, J., Ruiz-Cuenca, A., Askary, T., Ameen, F., Dass, W., Taxonomic and molecular characterization of a new entomopathogenic nematode species, Heterorhabditis casmirica n. sp., and whole genome sequencing of its associated bacterial symbiont. Parasites Vectors, 16(1), 2023, 10.1186/s13071-023-05990-z.
Binda-Rossetti, S., Mastore, M., Protasoni, M., Brivio, M.F., Effects of an entomopathogen nematode on the immune response of the insect pest red palm weevil: Focus on the host antimicrobial response. J. Invertebr. Pathol., 133, 2016, 10.1016/j.jip.2015.11.001.
Blackburn, D., Wood, P.L., Burk, T.J., Crawford, B., Wright, S.M., Adams, B.J., Evolution of virulence in Photorhabdus spp., entomopathogenic nematode symbionts. Syst. Appl. Microbiol. 39:3 (2016), 173–179, 10.1016/j.syapm.2016.02.003.
Bode, H.B., Entomopathogenic bacteria as a source of secondary metabolites. Curr. Opin. Chem. Biol. 13:2 (2009), 224–230, 10.1016/j.cbpa.2009.02.037.
Boemare, N., Interactions between the partners of the entomopathogenic bacterium nematode complexes, Steinernema-Xenorhabdus and Heterorhabditis-Photorhabdus. Nematology, 4(5), 2002, 10.1163/15685410260438863.
Boemare, E., Akhurst, R.J., Mourant, R.G., DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. Int. J. Syst. Bacteriol. 43:2 (1993), 249–255.
Boemare, N., Givaudan, A., Brehelin, M., Laumond, C., Symbiosis and pathogenicity of nematode-bacterium complexes. Symbiosis, 22(1–2), 1997.
Boraschi, D., Alijagic, A., Auguste, M., Barbero, F., Ferrari, E., Hernadi, S., Mayall, C., Michelini, S., Navarro Pacheco, N.I., Prinelli, A., Swart, E., Swartzwelter, B.J., Bastús, N.G., Canesi, L., Drobne, D., Duschl, A., Ewart, M.A., Horejs-Hoeck, J., Italiani, P., Pinsino, A., Addressing nanomaterial immunosafety by evaluating innate immunity across living species. Small, 16(21), 2020, 10.1002/smll.202000598.
Brivio, M.F., Mastore, M., Nematobacterial complexes and insect hosts: different weapons for the same war. Insects, 9(3), 2018, 10.3390/insects9030117.
Brivio, M.F., Pagani, M., Restelli, S., Immune suppression of Galleria mellonella (Insecta, Lepidoptera) humoral defenses induced by Steinernema feltiae (Nematoda, Rhabditida): Involvement of the parasite cuticle. Exp. Parasitol., 101(2–3), 2002, 10.1016/S0014-4894(02)00111-X.
Brown, I.M., Gaugler, R., Temperature and humidity influence emergence and survival of entomopathogenic nematodes. Nematologica, 43(5), 1997, 10.1163/005025997×00102.
Burnell, A.M., Stock, S.P., Heterorhabditis, Steinernema and their bacterial symbionts - Lethal pathogens of insects. Nematology, 2(1), 2000, 10.1163/156854100508872.
Cai, X., Nowak, S., Wesche, F., Bischoff, I., Kaiser, M., Fürst, R., Bode, H.B., Entomopathogenic bacteria use multiple mechanisms for bioactive peptide library design. Nat. Chem., 9(4), 2017, 10.1038/nchem.2671.
Callewaert, L., Michiels, C.W., Lysozymes in the animal kingdom. J. Biosci., 35(1), 2010, 10.1007/s12038-010-0015-5.
Campbell, J.F., Gaugler, R., Nictation behaviour and its ecological implications in the host search strategies of entomopathogenic nematodes (Heterorhabditidae and Steinernematidae). Behaviour, 126(3–4), 1993, 10.1163/156853993×00092.
Campbell, J.F., Kaya, H.K., Influence of insect associated cues on the jumping behavior of entomopathogenic nematodes (Steinernema spp.). Behaviour, 137(5), 2000, 10.1163/156853900502231.
Campbell, J.F., Kaya, H.K., Variation in entomopathogenic nematode (Steinernematidae and Heterorhabditidae) infective-stage jumping behaviour. Nematology, 4(4), 2002, 10.1163/156854102760290455.
Carton, Y., Nappi, A.J., Immunogenetic aspects of the cellular immune response of drosophila against parasitoids. Immunogenetics, Vol. 52(Issues 3–4), 2001, 10.1007/s002510000272.
Castillo, J.C., Reynolds, S.E., Eleftherianos, I., Insect immune responses to nematode parasites. Trends Parasitol., 27(12), 2011, 10.1016/j.pt.2011.09.001.
Castillo, J.C., Shokal, U., Eleftherianos, I., A novel method for infecting Drosophila adult flies with insect pathogenic nematodes. Virulence, 3(3), 2012, 10.4161/viru.20244.
Chalabaev, S., Turlin, E., Bay, S., Ganneau, C., Brito-Fravallo, E., Charles, J.F., Danchin, A., Biville, F., Cinnamic acid, an autoinducer of its own biosynthesis, is processed via Hca enzymes in Photorhabdus luminescens. Appl. Environ. Microbiol. 74:6 (2008), 1717–1725, 10.1128/AEM.02589-07.
Chaston, J.M., Suen, G., Tucker, S.L., Andersen, A.W., Bhasin, A., Bode, E., et al. The entomopathogenic bacterial endosymbionts Xenorhabdus and Photorhabdus: Convergent Lifestyles from Divergent Genomes. PLoS One, 6(11), 2011, 10.1371/journal.pone.0027909.
Chelkha, M., Blanco-Pérez, R., Bueno-Pallero, F.Á., Amghar, S., El Harti, A., Campos-Herrera, R., Cutaneous excreta of the earthworm Eisenia fetida (Haplotaxida: Lumbricidae) might hinder the biological control performance of entomopathogenic nematodes. Soil Biol. Biochem., 141, 2020, 10.1016/j.soilbio.2019.107691.
Ciche, T.A., Darby, C., Ehlers, R.U., Forst, S., Goodrich-Blair, H., Dangerous liaisons: the symbiosis of entomopathogenic nematodes and bacteria. Biol. Control, 38(1), 2006, 10.1016/j.biocontrol.2005.11.016.
Çimen, H., Lee, M.M., Hatting, J., Hazir, S., Stock, S.P., Steinernema tophus sp. n. (Nematoda: Steinernematidae), a new entomopathogenic nematode from South Africa. Zootaxa, 3821(3), 2014, 10.11646/zootaxa.3821.3.3.
Cimen, Harun, et al. (n.d.). "Steinernema beitlechemi n. sp., a new entomopathogenic nematode (Nematoda: Steinernematidae) from South Africa". Nematology 18.4, 439–453.
Mirella, Clausi, et al. Steinernema vulcanicum n. sp.(Rhabditida: Steinernematidae), a new entomopathogenic nematode species from Sicily (Italy). Nematology 13.4 (2011), 409–423.
Cluxton, C.D., Caffrey, B.E., Kinsella, G.K., Moynagh, P.N., Fares, M.A., Fallon, P.G., Functional conservation of an ancestral Pellino protein in helminth species. Sci. Rep., 5, 2015, 10.1038/srep11687.
Cooper, D., Eleftherianos, I., Parasitic nematode immunomodulatory strategies: Recent advances and perspectives. Pathogens, 5(3), 2016, 10.3390/pathogens5030058.
Cooper, D., Wuebbolt, C., Heryanto, C., Eleftherianos, I., The prophenoloxidase system in Drosophila participates in the anti-nematode immune response. Mol. Immunol., 109, 2019, 10.1016/j.molimm.2019.03.008.
Advances in comparative immunology. Cooper, E.L., (eds.) Advances in Comparative Immunology, 2018, 10.1007/978-3-319-76768-0.
Cowles, K.N., Cowles, C.E., Richards, G.R., Martens, E.C., Goodrich-blair, H., The global regulator Lrp contributes to mutualism, pathogenesis and phenotypic variation in the bacterium Xenorhabdus nematophila. Cell. Microbiol. 9:5 (2007), 1311–1323, 10.1111/j.1462-5822.2006.00873.x.
Cusick, M.F., Libbey, J.E., Fujinami, R.S., Molecular mimicry as a mechanism of autoimmune disease. Clin. Rev. Allergy Immunol., 42(1), 2012, 10.1007/s12016-011-8294-7.
Da Silva, W.J., Pilz-Júnior, H.L., Heermann, R., Da Silva, O.S., The great potential of entomopathogenic bacteria Xenorhabdus and Photorhabdus for mosquito control: a review. Parasites Vectors 13:1 (2020), 1–14, 10.1186/s13071-020-04236-6.
Debban, C.L., Dyer, K.A., No evidence for behavioural adaptations to nematode parasitism by the fly Drosophila putrida. J. Evolut. Biol., 26(8), 2013, 10.1111/jeb.12158.
Deka, B., Baruah, C., Babu, A., Entomopathogenic microorganisms: their role in insect pest management. Egypt. J. Biol. Pest Control, 31(Issue 1), 2021, 10.1186/s41938-021-00466-7.
Devi, G., Mass production of entomopathogenic nematodes- a review. Int. J. Environ. Agric. Biotechnol., 3(3), 2018, 10.22161/ijeab/3.3.41.
Digennaro, P., Genome announcement of Steinernema khuongi and its associated symbiont from Florida, 11(February), 2021, 10.1093/g3journal/jkab053.
Dillman, A.R., Chaston, J.M., Adams, B.J., Ciche, T.A., Goodrich-Blair, H., Stock, S.P., Sternberg, P.W., An entomopathogenic nematode by any other name. PLoS Pathog., 8(3), 2012, 10.1371/journal.ppat.1002527.
Dillman, A.R., Guillermin, M.L., Lee, J.H., Kim, B., Sternberg, P.W., Hallem, E.A., Olfaction shapes host-parasite interactions in parasitic nematodes. Proc. Natl. Acad. Sci. U. S. A., 109(35), 2012, 10.1073/pnas.1211436109.
Dong, L., Xu, J., Chen, S., Li, X., Zuo, Y., Mi-flp-18 and Mi-mpk-1 Genes are Potential Targets for Meloidogyne incognita Control. J. Parasitol., 102(2), 2016, 10.1645/15-768.
Dreyer, J., Dicks, L.M.T., Malan, A.P. (2018). Characterization of Novel Xenorhabdus-Steinernema Associations and Identification of Novel Antimicrobial Compounds Produced by Xenorhabdus khoisanae. March.
Dubey, J., Tiwary, B.N., Ganguly, S., Biological control of insect pests using entomopathogenic nematodes. Adv. Biotechnol.: A Pract. Approach, 2013.
Dubovskiy, I.M., Grizanova, E. v, Whitten, M.M.A., Mukherjee, K., Greig, C., Alikina, T., Kabilov, M., Vilcinskas, A., Glupov, V. v, Butt, T.M., Immuno-physiological adaptations confer wax moth Galleria mellonella resistance to Bacillus thuringiensis. Virulence, 7(8), 2016, 10.1080/21505594.2016.1164367.
Ebrahimi, L., Niknam, G., Dunphy, G.B., Hemocyte responses of the Colorado potato beetle, Leptinotarsa decemlineata, and the greater wax moth, Galleria mellonella, to the entomopathogenic nematodes, Steinernema feltiae and Heterorhabditis bacteriophora. J. Insect Sci., 11, 2011, 10.1673/031.011.7501.
Ehlers, R., Wulff, A., Peters, A., Pathogenicity of Axenic Steinernema feltiae, Xenorhabdus bovienii, and the Bacto – Helminthic Complex to Larvae of Tipula oleracea ( Diptera) and Galleria mellonella ( Lepidoptera) 217:69 (2011), 212–217.
Ehlers, R.-U., Entomopathogenic nematodes: systematics, phylogeny and bacterial symbionts. Nematology Monographs and Perspectives, Volume 5. (Series Editors: David J. Hunt and Roland N. Perry). Nematology, 10(3), 2008, 10.1163/156854108783900230.
Eidt, D.C., Thurston, G.S., Physical Deterrents to Infection by Entomopathogenic Nematodes in Wireworms (Coleoptera: Elateridae) and Other Soil Insects. Can. Èntomol., 127(3), 1995, 10.4039/Ent127423-3.
El Aalaoui, M., Mokrini, F., Dababat, A.A., Lahlali, R., Sbaghi, M., Moroccan entomopathogenic nematodes as potential biocontrol agents against Dactylopius opuntiae (Hemiptera: Dactylopiidae). Sci. Rep., 12(1), 2022, 10.1038/s41598-022-11709-4.
El Aimani, A., Mokrini, F., Houari, A., Laasli, S.E., Sbaghi, M., Mentag, R., Iraqi, D., Udupa, S.M., Dababat, A.A., Lahlali, R., Potential of indigenous entomopathogenic nematodes for controlling tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) under laboratory and field conditions in Morocco. Physiol. Mol. Plant Pathol., 116, 2021, 10.1016/j.pmpp.2021.101710.
Eleftherianos, I., Gökçen, F., Felföldi, G., Millichap, P.J., Trenczek, T.E., Ffrench-constant, R.H., Reynolds, S.E., The immunoglobulin family protein Hemolin mediates cellular immune responses to bacteria in the insect Manduca sexta. Cell. Microbiol., 9(5), 2007, 10.1111/j.1462-5822.2006.00855.x.
Eleftherianos, I., Heryanto, C., Molecular regulators of entomopathogenic nematode–bacterial symbiosis. Results Probl. Cell Differ., 69, 2020, 10.1007/978-3-030-51849-3_17.
Eleftherianos, I., Yadav, S., Kenney, E., Cooper, D., Ozakman, Y., Patrnogic, J., Role of Endosymbionts in Insect–Parasitic Nematode Interactions. Trends Parasitol., Vol. 34(Issue 5), 2018, 10.1016/j.pt.2017.10.004.
Eom, S., Park, Y., Kim, Y., Sequential immunosuppressive activities of bacterial secondary metabolites from the entomopahogenic bacterium Xenorhabdus nematophila. J. Microbiol. 52:2 (2014), 161–168, 10.1007/s12275-014-3251-9.
Ercan, D., Demirci, A., Recent advances for the production and recovery methods of lysozyme. Crit. Rev. Biotechnol., 36(6), 2016, 10.3109/07388551.2015.1084263.
Farmer, J.J., Jorgensen, J.H., Grimont, P.A.D., Akhurst, R.J., Poinar, G.O., Ageron, E., Pierce, G.V., Smith, J.A., Carter, G.P., Wilson, K.L., Hickman-Brenner, F.W., Xenorhabdus luminescens (DNA hybridization group 5) from human clinical specimens. J. Clin. Microbiol., 27(7), 1989, 10.1128/jcm.27.7.1594-1600.1989.
Ferreira, T., van Reenen, C.A., Endo, A., Spröer, C., Malan, A.P., Dicks, L.M.T., Description of Xenorhabdus khoisanae sp. nov., the symbiont of the entomopathogenic nematode Steinernema khoisanae. Int. J. Syst. Evolut. Microbiol. 63:PART9 (2013), 3220–3224, 10.1099/ijs.0.049049-0.
French-Constant, R.H., Dowling, A., Waterfield, N.R., Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon, 49(4), 2007, 10.1016/j.toxicon.2006.11.019.
Fischer-Le Saux, M., Arteaga-Hernández, E., Mrácek, Z., Boemare, N.E., The bacterial symbiont Xenorhabdus poinarii (enterobacteriaceae) is harbored by two phylogenetic related host nematodes, the entomopathogenic species Steinernema cubanum and Steinernema glaseri (nematoda: Steinernematidae). FEMS Microbiol. Ecol., 29(2), 1999, 10.1016/S0168-6496(99)00007-0.
Flores, P., Alvarado, A., Lankin, G., Lax, P., Prodan, S., Aballay, E., Morphological, molecular and ecological characterization of a native isolate of Steinernema feltiae (Rhabditida: Steinernematidae) from southern Chile. Parasites Vectors, 14(1), 2021, 10.1186/s13071-020-04548-7.
Fodor, A., Gualtieri, M., Zeller, M., Tarasco, E., Klein, M.G., Fodor, A.M., Haynes, L., Lengyel, K., Forst, S.A., Furgani, G.M., Karaffa, L., Vellai, T., Type strains of entomopathogenic nematode-symbiotic bacterium species, Xenorhabdus szentirmaii (EMC) and X. budapestensis (EMA), are exceptional sources of non-ribosomal templated, large-target-spectral, thermotolerant-antimicrobial peptides (by Both), an. Pathogens, 11(3), 2022, 10.3390/pathogens11030342.
Forschler, B.T., Gardner, W.A., Parasitism of Phyllophaga hirticula (Coleoptera: Scarabaeidae) by Heterorhabditis heliothidis and Steinernema carpocapsae. J. Invertebr. Pathol., 58(3), 1991, 10.1016/0022-2011(91)90186-T.
Forst, S., Clarke, D., Bacteria-nematode symbiosis. Entomopathog. Nematol., 2002, 10.1079/9780851995670.0057.
Fuenmayor, Y., Portillo, E., Bastidas, B., Guerra, M., San-Blas, E., Infection parameters of Heterorhabditis amazonensis (Nematoda: Heterorhabditidae) in different stages of Hibiscus pink mealybug. J. Nematol., 52, 2021, 10.21307/jofnem-2020-077.
Garrouste, R., Hugel, S., Jacquelin, L., Rostan, P., Steyer, J.S., Desutter-Grandcolas, L., Nel, A., Insect mimicry of plants dates back to the Permian. Nat. Commun., 7, 2016, 10.1038/ncomms13735.
Dunphy, Gary B., Webster, John M., Interaction of xenorhabdus nematophilus SUBSP. Nematophilus with the haemolymph of galleria mellonella. 1984 Printed in Great Britain. All Rights Reserved, 8938(I), 335–349 J. Insecf Ph. Vsio/ 30:II (1984), 883–889, 10.1007/978-3-319-15201-1_22.
Gaugler, R., Feeding behavior department of entomology, Rutgers University, New Brunswick, NJ 08901–8524, USA. January 2004 Encycl. Insects, 2004, 357–362, 10.1016/B978-0-12-374144-8.00107-7.
Gaugler, R., Molloy, D., Instar Susceptibility of Simulium vittatum (Diptera: Simuliidae) to the Entomogenous Nematode Neoaplectana carpocapsae ∼. J. Nematol., 12(1), 1981.
Geldenhuys, J., Malan, A.P., Dicks, L.M.T., First Report of the Isolation of the Symbiotic Bacterium Photorhabdus luminescens subsp. laumondii Associated with Heterorhabditis safricana from South Africa. Curr. Microbiol. 73:6 (2016), 790–795, 10.1007/s00284-016-1116-7.
Georgis, R., Hague, N.G.M., A Neoaplectanid nematode in the larch sawfly Cephalcia lariciphila (Hymenoptera: Pamphiliidae). Ann. Appl. Biol., 99(2), 1981, 10.1111/j.1744-7348.1981.tb05144.x.
Golden, J.W., Riddle, D.L., The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature. Dev. Biol., 102(2), 1984, 10.1016/0012-1606(84)90201-X.
Goodrich-Blair, H., Clarke, D.J., Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Mol. Microbiol., 64(2), 2007, 10.1111/j.1365-2958.2007.05671.x.
Griffin, C.T., Chaerani, R., Fallon, D., Reid, A.P., Downes, M.J., Occurrence and distribution of the entomopathogenic nematodes Steinernema spp. and Heterorhabditis indica in Indonesia. J. Helminthol., 74(2), 2000, 10.1017/S0022149×00000196.
Gualtieri, M., Aumelas, A., Thaler, J.O., Identification of a new antimicrobial lysine-rich cyclolipopeptide family from Xenorhabdus nematophila. J. Antibiot. 62:6 (2009), 295–302, 10.1038/ja.2009.31.
Gümüşsoy, A., Yüksel, E., Özer, G., İmren, M., Canhilal, R., Amer, M., Dababat, A.A., Identification and biocontrol potential of entomopathogenic nematodes and their endosymbiotic bacteria in apple orchards against the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Insects, 13(12), 2022, 10.3390/insects13121085.
Han, R., Ehlers, R., Pathogenicity, Development, and Reproduction of Heterorhabditis bacteriophora and Steinernema carpocapsae under Axenic in Vivo Conditions 58:2000 (2011), 55–58.
Harvey, C. (2010). Ecological impact of entomopathogenic nematodes used to control the large pine weevil, Hylobius abietis (Coleoptera: Curculionidae). PhD Thesis.
Harvey, C.D., Williams, C.D., Dillon, A.B., Griffin, C.T., Inundative pest control: How risky is it? A case study using entomopathogenic nematodes in a forest ecosystem. For. Ecol. Manag., 380, 2016, 10.1016/j.foreco.2016.08.018.
Hazir, S., Kaya, H.K., Stock, S.P., Keskin, N., Entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) for biological control of soil pests. Biol., Turk. J., 27(2003), 2004.
Hazir, S., Keskin, N., Stock, S.P., Kaya, H.K., Özcan, S., Diversity and distribution of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) in Turkey. Biodivers. Conserv., 12(2), 2003, 10.1023/A:1021915903822.
Helms, A.M., Ray, S., Matulis, N.L., Kuzemchak, M.C., Grisales, W., Tooker, J.F., Ali, J.G., Chemical cues linked to risk: cues from below-ground natural enemies enhance plant defences and influence herbivore behaviour and performance. Funct. Ecol., 33(5), 2019, 10.1111/1365-2435.13297.
Hinchliffe, S.J., Insecticidal toxins from the Photorhabdus and Xenorhabdus Bacteria. Open Toxinol. J., 3(1), 2013, 10.2174/1875414701003010101.
Hussa, E.A., Casanova-Torres, Á.M., Goodrich-Blair, H., The global transcription factor Lrp controls virulence modulation in Xenorhabdus nematophila. J. Bacteriol. 197:18 (2015), 3015–3025, 10.1128/JB.00272-15.
Irazoki, O., Hernandez, S.B., Cava, F., Peptidoglycan muropeptides: release, perception, and functions as signaling molecules. Front. Microbiol., 10(March), 2019, 10.3389/fmicb.2019.00500.
Ivezić, A., Role of entomopathogenic nematodes in insect pests management. Biljn. Lek., 48(1), 2020, 10.5937/biljlek2001025i.
Ji, D., Yi, Y., Kang, G.H., Choi, Y.H., Kim, P., Baek, N.I., Kim, Y., Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol. Lett. 239:2 (2004), 241–248, 10.1016/j.femsle.2004.08.041.
Jung, S., Kim, Y., Synergistic effect of entomopathogenic bacteria (Xenorhabdus sp. and Photorhabdus temperata ssp. temperata) on the pathogenicity of Bacillus thuringiensis ssp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 35:6 (2006), 1584–1589, 10.1603/0046-225X(2006)35[1584:SEOEBX]2.0.CO;2.
Kang, S., Han, S., Kim, Y., Identification and pathogenic characteristics of two Korean Isolates of Heterorhabditis megidis. J. Asia-Pac. Entomol. 8:4 (2005), 411–418, 10.1016/S1226-8615(08)60264-2.
Karthik Raja, R., Arun, A., Touray, M., Hazal Gulsen, S., Cimen, H., Gulcu, B., Hazir, C., Aiswarya, D., Ulug, D., Cakmak, I., Kaya, H.K., Hazir, S., Antagonists and defense mechanisms of entomopathogenic nematodes and their mutualistic bacteria. Biol. Control, 152, 2021, 10.1016/j.biocontrol.2020.104452.
Kenney, E., Eleftherianos, I., Entomopathogenic and plant pathogenic nematodes as opposing forces in agriculture. Int. J. Parasitol., 46(1), 2016, 10.1016/j.ijpara.2015.09.005.
Khathwayo, Z., Ramakuwela, T., Hatting, J., Shapiro-Ilan, D.I., Cochrane, N., Quantification of pH tolerance levels among entomopathogenic nematodes. J. Nematol., 53, 2021, 10.21307/JOFNEM-2021-062.
Kim, I.H., Aryal, S.K., Aghai, D.T., Casanova-Torres, Á.M., Hillman, K., Kozuch, M.P., Mans, E.J., Mauer, T.J., Ogier, J.C., Ensign, J.C., Gaudriault, S., Goodman, W.G., Goodrich-Blair, H., Dillman, A.R., The insect pathogenic bacterium Xenorhabdus innexi has attenuated virulence in multiple insect model hosts yet encodes a potent mosquitocidal toxin. BMC Genom. 18:1 (2017), 1–25, 10.1186/s12864-017-4311-4.
King, J.G., Hillyer, J.F., Infection-Induced interaction between the mosquito circulatory and immune systems. PLoS Pathog., 8(11), 2012, 10.1371/journal.ppat.1003058.
Kohli, D., Sirohi, A., Srinivasan, R., Bharadvaja, N., Jain, P.K., Isolation, cloning and characterization of cuticle collagen genes, Mi-dpy-10 and Mi-dpy-31, in Meloidogyne incognita. Indian J. Nematol., 48(1), 2018.
Koppenhöfer, A.M., Fuzy, E.M., Effect of soil type on infectivity and persistence of the entomopathogenic nematodes Steinernema scarabaei, Steinernema glaseri, Heterorhabditis zealandica, and Heterorhabditis bacteriophora. J. Invertebr. Pathol., 92(1), 2006, 10.1016/j.jip.2006.02.003.
Koppenhöfer, A.M., Shapiro-Ilan, D.I., Hiltpold, I., Entomopathogenic nematodes in sustainable food production. Front. Sustain. Food Syst., Vol. 4, 2020, 10.3389/fsufs.2020.00125.
Koppenhöfer, H.S., Gaugler, R., Entomopathogenic nematode and bacteria mutualism. Defensive Mutual. Microb. Symbiosis, 2009, 10.1201/9781420069327-15.
Kotsinis, V., Dritsoulas, A., Ntinokas, D., Giannakou, I.O., Nematicidal effects of four terpenes differ among entomopathogenic nematode species. Agriculture, 13(6), 2023, 10.3390/agriculture13061143.
Kulkarni, R.A., Prabhuraj, A., Ashoka, J., Hanchinal, S.G., Hiregoudar, S., Generation and evaluation of nanoparticles of supernatant of Photorhabdus luminescens (Thomas and Poinar) against mite and aphid pests of cotton for enhanced efficacy. Curr. Sci. 112:11 (2017), 2312–2316, 10.18520/cs/v112/i11/2312-2316.
Kumari, P., Mahapatro, G.K., Banerjee, N., Sarin, N.B., Ectopic expression of GroEL from Xenorhabdus nematophila in tomato enhances resistance against Helicoverpa armigera and salt and thermal stress. Transgenic Res. 24:5 (2015), 859–873, 10.1007/s11248-015-9881-9.
Kung, S.P., Gaugler, R., Kaya, H.K., Effects of soil temperature, moisture, and relative humidity on entomopathogenic nematode persistence. J. Invertebr. Pathol., 57(2), 1991, 10.1016/0022-2011(91)90123-8.
Kuwata, R., Qiu, L.H., Wang, W., Harada, Y., Yoshida, M., Kondo, E., Yoshiga, T., Xenorhabdus ishibashii sp. nov., isolated from the entomopathogenic nematode Steinernema aciari. Int. J. Syst. Evolut. Microbiol. 63:PART 5 (2013), 1690–1695, 10.1099/ijs.0.041145-0.
Kwadha, C.A., Ong'Amo, G.O., Ndegwa, P.N., Raina, S.K., Fombong, A.T., The biology and control of the greater wax moth, Galleria mellonella. Insects, 8(2), 2017, 10.3390/insects8020061.
Labaude, S., Griffin, C.T., Transmission success of entomopathogenic nematodes used in pest control. Insects, 9(2), 2018, 10.3390/insects9020072.
Lacey, L.A., Georgis, R., Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J. Nematol., 44(2), 2012.
Lacey, L.A., Grzywacz, D., Shapiro-Ilan, D.I., Frutos, R., Brownbridge, M., Goettel, M.S., Insect pathogens as biological control agents: Back to the future. J. Invertebr. Pathol. 132 (2015), 1–41, 10.1016/j.jip.2015.07.009.
Lazarova, S., Coyne, D., Rodríguez, M.G., Peteira, B., Ciancio, A., Functional diversity of soil nematodes in relation to the impact of agriculture—a review. Diversity, 13(2), 2021, 10.3390/d13020064.
Leclerc, V., Reichhart, J.M., The immune response of Drosophila melanogaster. Immunol. Rev., 198, 2004, 10.1111/j.0105-2896.2004.0130.x.
Lemaitre, B., Hoffmann, J., The host defense of Drosophila melanogaster. Annu. Rev. Immunol., 25, 2007, 10.1146/annurev.immunol.25.022106.141615.
Lengyel, K., Lang, E., Fodor, A., Szállás, E., Schumann, P., Stackebrandt, E., Description of four novel species of Xenorhabdus, family Enterobacteriaceae: Xenorhabdus budapestensis sp. nov., Xenorhabdus ehlersii sp. nov., Xenorhabdus innexi sp. nov., and Xenorhabdus szentirmaii sp. nov. Syst. Appl. Microbiol. 28:2 (2005), 115–122, 10.1016/j.syapm.2004.10.004.
Lewis, E.E., Campbell, J., Griffin, C., Kaya, H., Peters, A., Behavioral ecology of entomopathogenic nematodes. Biol. Control, 38(1), 2006, 10.1016/j.biocontrol.2005.11.007.
Lewis, E.E., Gaugler, R., Harrison, R., Response of cruiser and ambusher entomopathogenic nematodes (Steinernematidae) to host volatile cues. Can. J. Zool., 71(4), 1993, 10.1139/z93-101.
Li, X.Y., Cowles, R.S., Cowles, E.A., Gaugler, R., Cox-Foster, D.L., Relationship between the successful infection by entomopathogenic nematodes and the host immune response. Int. J. Parasitol., 37(3–4), 2007, 10.1016/j.ijpara.2006.08.009.
Lie, J.K., Heyneman, D., Jeong, K.H., Studies on resistance in snails. 4. Induction of ventricular capsules and changes in the amebocyte-producing organ during sensitization of Biomphalaria glabrata snails. J. Parasitol., 62(2), 1976, 10.2307/3279288.
Liesch, P.J., Williamson, R.C., Evaluation of chemical controls and entomopathogenic nematodes for control of Phyllophaga white grubs in a fraser fir production field. J. Econ. Entomol., 103(6), 2010, 10.1603/EC10176.
Lortkipanidze, M.A., Gorgadze, O.A., Kajaia, G.Sh, Gratiashvili, N.G., Kuchava, M.A., Foraging behavior and virulence of some entomopathogenic nematodes. Ann. Agrar. Sci., 14(2), 2016, 10.1016/j.aasci.2016.05.009.
Loulou, A., Mastore, M., Caramella, S., Bhat, A.H., Brivio, M.F., Machado, R.A.R., Kallel, S., Entomopathogenic potential of bacteria associated with soil-borne nematodes and insect immune responses to their infection. PloS One, 18(1), 2023, 10.1371/journal.pone.0280675.
Machado, R.A.R., Wüthrich, D., Kuhnert, P., Arce, C.C.M., Thönen, L., Ruiz, C., Zhang, X., Robert, C.A.M., Karimi, J., Kamali, S., Ma, J., Bruggmann, R., Erb, M., Whole-genome-based revisit of Photorhabdus phylogeny:Proposal for the elevation of most Photorhabdus subspecies to the species level and description of one novel species Photorhabdus bodei sp. nov., and one novel subspecies Photorhabdus laumondii subsp. clarkei subsp. nov. Int. J. Syst. Evolut. Microbiol. 68:8 (2018), 2664–2681, 10.1099/ijsem.0.002820.
Mahar, A.N., Munir, M., Elawad, S., Gowen, S.R., Hague, N.G.M., Pathogenicity of bacterium, Xenorhabdus nematophila isolated from entomopathogenic nematode (Steinernema carpocapsae) and its secretion against Galleria mellonella larvae. J. Zhejiang Univ.: Sci., 6 B(6), 2005, 10.1631/jzus.2005.B0457.
Malan, A.P., Knoetze, R., Tiedt, L., Heterorhabditis noenieputensis n. sp. (Rhabditida: Heterorhabditidae), a new entomopathogenic nematode from South Africa. J. Helminthol., 88(2), 2014, 10.1017/S0022149×12000806.
Malan, A., Tokwe, N.F.S., Alan, A.P.M., Guyen, K.B.N. (2011). Steinernema citrae n. sp. ( Rhabditida: Steinernematidae), a new entomopathogenic nematode from South. a new entomopathogenic nematode from South Africa. January 2017. 〈https://doi.org/10.1163/138855410×535714〉.
Marannino, P., Tarasco, E., Hostos, E., Biological notes on larval hatching in Capnodis tenebrionis (L.) (Coleoptera Buprestidae) and evaluation of entomopathogenic nematodes in controlling neonate larvae. Redia, 86(2004), 2003.
Martens, E.C., Goodrich-Blair, H., The Steinernema carpocapsae intestinal vesicle contains a subcellular structure with which Xenorhabdus nematophila associates during colonization initiation. Cell. Microbiol., 7(12), 2005, 10.1111/j.1462-5822.2005.00585.x.
McInerney, B.V., Taylor, W.C., Lacey, M.J., Akhurst, R.J., Gregson, R.P., Biologically active metabolites from Xenorhabdus spp., part 2. Benzopyran-1-one derivatives with gastroprotective activity. J. Nat. Prod. 54:3 (1991), 785–795.
Medzhitov, R., Janeway, C.A., Decoding the patterns of self and nonself by the innate immune system. Science, 296(5566), 2002, 10.1126/science.1068883.
Merkling, S.H., Lambrechts, L., Taking insect immunity to the single-cell level. Trends Immunol., 41(3), 2020, 10.1016/j.it.2020.01.002.
Mokrini, F., Laasli, S.E., Benseddik, Y., Joutei, A.B., Blenzar, A., Lakhal, H., Sbaghi, M., Imren, M., Özer, G., Paulitz, T., Lahlali, R., Dababat, A.A., Potential of Moroccan entomopathogenic nematodes for the control of the Mediterranean fruit fly Ceratitis capitata Wiedemann (Diptera: Tephritidae). Sci. Rep., 10(1), 2020, 10.1038/s41598-020-76170-7.
Molyneux, A.S., The biology and ecology of the entomopathogenic nematodes heterorhabditis spp. (heterorhabditidae) and steinernema spp. (steinernematidae). Aust. J. Entomol., 24(2), 1985, 10.1111/j.1440-6055.1985.tb00192.x.
Morgan, J.A.W., Kuntzelmann, V., Tavernor, S., Ousley, M.A., Winstanley, C., Survival of Xenorhabdus nematophilus and Photorhabdus luminescens in water and soil. J. Appl. Microbiol. 83:6 (1997), 665–670, 10.1046/j.1365-2672.1997.00281.x.
Moth, G., Tortricidae, L., Vicente-d, I., Chelkha, M., Puelles, M., Pou, A., Campos-herrera, R., Exploring the Use of Entomopathogenic Nematodes and the Natural Products Derived from Their Symbiotic Bacteria to 12:11 (2021), 2–14.
Muangpat, P., Suwannaroj, M., Yimthin, T., Fukruksa, C., Sitthisak, S., Chantratita, N., Vitta, A., Thanwisai, A., Antibacterial activity of Xenorhabdus and Photorhabdus isolated from entomopathogenic nematodes against antibiotic-resistant bacteria. PLoS One 15:6 (2020), 1–16, 10.1371/journal.pone.0234129.
Murfin, K.E., Dillman, A.R., Foster, J.M., Bulgheresi, S., Slatko, B.E., Sternberg, P.W., Goodrich-Blair, H., Nematode-bacterium symbioses-cooperation and conflict revealed in the “omics” age. Biol. Bull., 223(1), 2012, 10.1086/BBLv223n1p85.
NanGong, Z., Chen, W., Zhang, A., Gu, W., Song, P., Wang, Q., Potential of different entomopathogenic nematode strains in controlling Atrijuglans hetaohei Yang (Lepidoptera: Heliodinidae). Egypt. J. Biol. Pest Control, 32(1), 2022, 10.1186/s41938-022-00591-x.
Navaneethan, T., Strauch, O., Besse, S., Bonhomme, A., Ehlers, R.U., Influence of humidity and a surfactant-polymer-formulation on the control potential of the entomopathogenic nematode Steinernema feltiae against diapausing codling moth larvae (Cydia pomonella L.) (Lepidoptera: Tortricidae). BioControl, 55(6), 2010, 10.1007/s10526-010-9299-5.
Nguyen, K., Hunt, D., Entomopathogenic nematodes: systematics, phylogeny and bacterial symbionts. Entomopathog. Nematode.: Syst., Phylogeny Bact. Symbionts, 2010, 10.1163/ej.9789004152939.i-816.
Nishimura, Y., Hagiwara, A., Suzuki, T., Yamanaka, S., with the nematode Steinernema kushidai. World J. Microbiol. Biotechnol. 10 (1994), 207–210.
Noujeim, E., Sakr, J., Fanelli, E., Troccoli, A., Pages, S., Tarasco, E., De Luca, F., Phylogenetic relationships of entomopathogenic nematodes and their bacterial symbionts from coastal areas in Lebanon. Redia, 99, 2016, 10.19263/REDIA-99.16.16.
Nurashikin-Khairuddin, W., Abdul-Hamid, S.N.A., Mansor, M.S., Bharudin, I., Othman, Z., Jalinas, J., A review of entomopathogenic nematodes as a biological control agent for red palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Insects, 13(3), 2022, 10.3390/insects13030245.
Gorgadze, Oleg, Lortkhipanidze, Manana, Ogier, Jean-Claude, Tailliez, Patrick, Burjanadze, Medea, Steinernema tbilisiensis sp. n. (Nematoda: Steinernematidae)—a new species of entomopathogenic nematode from Georgia. J. Agric. Sci. Technol. A, 5(4), 2015, 10.17265/2161-6256/2015.04.005.
Orozco, R.A., Hill, T., Stock, S.P., Characterization and phylogenetic relationships of Photorhabdus luminescens subsp. sonorensis (γ-proteobacteria: Enterobacteriaceae), the bacterial symbiont of the entomopathogenic nematode Heterorhabditis sonorensis (nematoda: Heterorhabditidae). Curr. Microbiol. 66:1 (2013), 30–39, 10.1007/s00284-012-0220-6.
Ozakman, Y., Eleftherianos, I., Nematode infection and antinematode immunity in Drosophila. Trends Parasitol., 37(11), 2021, 10.1016/j.pt.2021.06.001.
Özdemir, E., Bayram, Ş., Susurluk, A., First record of the entomopathogenic nematode Steinernema litorale (Filipjev) (rhabditida: Steinernematidae) and its symbiotic bacterium from turkey, and its efficacy capability. Insects, 11(3), 2020, 10.3390/insects11030144.
Panawong, C., Tasarin, S., Saejueng, P., Budsombat, S., Composite proton conducting membranes from crosslinked poly(vinyl alcohol)/chitosan and silica particles containing poly(2-acrylamido-2-methyl-1-propansulfonic acid). J. Appl. Polym. Sci., 139(16), 2022, 10.1002/app.51989.
Park, Y., Kim, Y., Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophilus, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46:11 (2000), 1469–1476, 10.1016/S0022-1910(00)00071-8.
Park, Y., Nor Aliza, A.R., Stanley, D., A secretory PLA2 associated with tobacco hornworm hemocyte membrane preparations acts in cellular immune reactions. Arch. Insect Biochem. Physiol. 60:3 (2005), 105–115, 10.1002/arch.20086.
Paul, V.J., Frautschy, S., Fenical, W., Nealson, K.H., Antibiotics in microbial ecology - Isolation and structure assignment of several new antibacterial compounds from the insect-symbiotic bacteria Xenorhabdus spp. J. Chem. Ecol. 7:3 (1981), 589–597, 10.1007/BF00987707.
Péan, C.B., Dionne, M.S., Intracellular infections in Drosophila melanogaster: host defense and mechanisms of pathogenesis. Dev. Comp. Immunol., 42(1), 2014, 10.1016/j.dci.2013.04.013.
Peña, J.M., Carrillo, M.A., Hallem, E.A., Variation in the susceptibility of Drosophila to different entomopathogenic nematodes. Infect. Immun., 83(3), 2015, 10.1128/IAI.02740-14.
Pervez, R., Lone, S.A., Pattnaik, S., Characterization of symbiotic and associated bacteria from entomopathogenic nematode Heterorhabditis sp. (nematode: Heterorhabditidae) isolated from India. Egypt. J. Biol. Pest Control, 30(1), 2020, 10.1186/s41938-020-00343-9.
Peters, A., Ehlers, R.U., Susceptibility of Leatherjackets (Tipula paludosa and Tipula oleracea; Tipulidae; Nematocera) to the entomopathogenic nematode Steinernema feltiae. J. Invertebr. Pathol., 63(2), 1994, 10.1006/jipa.1994.1031.
Pila, E.A., Gordy, M.A., Phillips, V.K., Kabore, A.L., Rudko, S.P., Hanington, P.C., Endogenous growth factor stimulation of hemocyte proliferation induces resistance to Schistosoma mansoni challenge in the snail host. Proc. Natl. Acad. Sci. USA, 113(19), 2016, 10.1073/pnas.1521239113.
Platt, T., Stokwe, N.F., Malan, A.P., Grapevine leaf application of Steinernema yirgalemense to control Planococcus ficus in semi-field conditions. South Afr. J. Enol. Vitic., 40(1), 2019, 10.21548/40-1-3141.
Platt, T., Stokwe, N.F., Malan, A.P., A review of the potential use of entomopathogenic nematodes to control above-ground insect pests in South Africa. South Afr. J. Enol. Vitic., 41(1), 2020, 10.21548/41-1-2424.
Poinar, G.O., Thomas, G.M., A new bacterium, Achromobacter nematophilus sp. nov. (Achromobacteriaceae: Eubacteriales) associated with a nematode. Int. Bull. Bacteriol. Nomencl. Taxon. 15:4 (1965), 1–23, 10.1099/00207713-15-4-249.
Ponnusamy, S., Belur, P.D., Studies on the life cycle of Heterorhabditis indica - an entomopathogenic nematode. Int. J. Curr. Eng. Scentific Res. (IJCESR), 2(5), 2015.
Pratissoli, D., DAMASCENA, A.P., Fragoso, D.M.F., De Carvalho, J.R., Túler, A.C., Faria, L.V., De Araujo Junior, L.M., Performance of entomopathogenic nematodes on neoleucinodes elegantalis (Guenée) (Lepidoptera: Crambidae). Rev. Acta Ambient. Catarin., 18(1), 2021, 10.24021/raac.v18i1.5575.
Půža, V., Campos-Herrera, R., Blanco-Pérez, R., Jakubíková, H., Vicente-Díez, I., Nermuť, J., Steinernema riojaense n. sp., a new entomopathogenic nematode (Nematoda: Steinernematidae) from Spain. Nematology, 22(7), 2020, 10.1163/15685411-00003343.
Rahoo, A.M., Mukhtar, T., Bughio, B.A., Rahoo, R.K., Relationship between the size of Galleria mellonella larvae and the production of Steinernema feltiae and Heterorhabditis bacteriophora. Pak. J. Zool., 51(1), 2019, 10.17582/journal.pjz/2019.51.1.79.84.
Ramakrishnan, J., Salame, L., Mani, K.A., Feldbaum, R., Karavani, E., Mechrez, G., Glazer, I., Ment, D., Increasing the survival and efficacy of entomopathogenic nematodes on exposed surfaces by Pickering emulsion formulations offers new venue for foliar pest management. J. Invertebr. Pathol., 199, 2023, 10.1016/j.jip.2023.107938.
Ramakrishnan, J., Salame, L., Nasser, A., Glazer, I., Ment, D., Survival and efficacy of entomopathogenic nematodes on exposed surfaces. Sci. Rep., 12(1), 2022, 10.1038/s41598-022-08605-2.
Campos-Herrera, Raquel, Půža, V., Jaffuel, G., Blanco-Pérez, R., Čepulyte-Rakauskiene, R., Turlings, T.C.J., Unraveling the intraguild competition between Oscheius spp. nematodes and entomopathogenic nematodes: implications for their natural distribution in Swiss agricultural soils. J. Invertebr. Pathol., 132, 2015, 10.1016/j.jip.2015.10.007.
Raymond, B., Five rules for resistance management in the antibiotic apocalypse, a road map for integrated microbial management. Evolut. Appl., 12(6), 2019, 10.1111/eva.12808.
Rehman, G., Mamoon-ur-Rashid, M., Evaluation of Entomopathogenic Nematodes against Red Palm Weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). Insects, 13(8), 2022, 10.3390/insects13080733.
Renkema, J.M., Cuthbertson, A.G.S., Impact of multiple natural enemies on immature Drosophila suzukii in strawberries and blueberries. BioControl, 63(5), 2018, 10.1007/s10526-018-9874-8.
Rojas, M., Restrepo-Jiménez, P., Monsalve, D.M., Pacheco, Y., Acosta-Ampudia, Y., Ramírez-Santana, C., Leung, P.S.C., Ansari, A.A., Gershwin, M.E., Anaya, J.M., Molecular mimicry and autoimmunity. J. Autoimmun., 95, 2018, 10.1016/j.jaut.2018.10.012.
Rosales, C., Phagocytosis, a cellular immune response in insects. Invertebr. Surviv. J., 8(1), 2011.
Ruiu, L., Marche, M.G., Mura, M.E., Tarasco, E., Involvement of a novel Pseudomonas protegens strain associated with entomopathogenic nematode infective juveniles in insect pathogenesis. Pest Manag. Sci., 78(12), 2022, 10.1002/ps.7166.
Rumbos, C.I., Athanassiou, C.G., The use of entomopathogenic nematodes in the control of stored-product insects. J. Pest Sci., 90(1), 2017, 10.1007/s10340-016-0795-y.
Sabbahi, R., Hock, V., Azzaoui, K., Saoiabi, S., Hammouti, B., A global perspective of entomopathogens as microbial biocontrol agents of insect pests. J. Agric. Food Res., 10, 2022, 100376, 10.1016/j.jafr.2022.100376.
Sajnaga, E., Kazimierczak, W., Evolution and taxonomy of nematode-associated entomopathogenic bacteria of the genera Xenorhabdus and Photorhabdus: an overview. Symbiosis 80:1 (2020), 1–13, 10.1007/s13199-019-00660-0.
Sajnaga, E., Kazimierczak, W., Skowronek, M., Lis, M., Skrzypek, T., Waśko, A., Steinernema poinari (Nematoda: Steinernematidae): a new symbiotic host of entomopathogenic bacteria xenorhabdus bovienii. Arch. Microbiol. 200:9 (2018), 1307–1316, 10.1007/s00203-018-1544-9.
Samish, M., Glazer, I., Infectivity of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) to female ticks of Boophilus annulatus (Arachnida: Ixodidae). J. Med. Entomol., 29(4), 1992, 10.1093/jmedent/29.4.614.
San-Blas, E., Campos-Herrera, R., Dolinski, C., Monteiro, C., Andaló, V., Leite, L.G., Stock, S.P., Entomopathogenic nematology in Latin America: a brief history, current research and future prospects. J. Invertebr. Pathol. 165 (2019), 22–45, 10.1016/j.jip.2019.03.010.
Schmid-Hempel, P., Parasite immune evasion: a momentous molecular war. Trends Ecol. Evol., 23(6), 2008, 10.1016/j.tree.2008.02.011.
Schmid-Hempel, P., Immune defence, parasite evasion strategies and their relevance for “macroscopic phenomena” such as virulence. Philos. Trans. R. Soc. B: Biol. Sci., 364(1513), 2009, 10.1098/rstb.2008.0157.
Sergeant, M., Baxter, L., Jarrett, P., Shaw, E., Ousley, M., Winstanley, C., Morgan, J.A.W., Identification, typing, and insecticidal activity of Xenorhabdus isolates from entomopathogenic nematodes in United Kingdom soil and characterization of the xpt toxin loci. Appl. Environ. Microbiol. 72:9 (2006), 5895–5907, 10.1128/AEM.00217-06.
Shapiro-Ilan, D.I., Reilly, C.C., Hotchkiss, M.W., Suppressive effects of metabolites from Photorhabdus and Xenorhabdus spp. on phytopathogens of peach and pecan. Arch. Phytopathol. Plant Prot. 42:8 (2009), 715–728, 10.1080/03235400701390539.
Shapiro-Ilan, David, Hazir, Selcuk, Glazer, I., “Advances in use of entomopathogenic nematodes in integrated pest management” Integrated management of insect pests: Current and future developments. Burleigh Dodds Sci., 2019, 649–678.
Shrestha, S., Park, J.H., Lee, D.Y., Cho, J.G., Cho, S., Yang, H.J., Yong, H.I., Yoon, M.S., Han, D.S., Baek, N.I., Rhus parviflora and its biflavonoid constituent, rhusflavone, induce sleep through the positive allosteric modulation of GABA A-benzodiazepine receptors. J. Ethnopharmacol. 142:1 (2012), 213–220, 10.1016/j.jep.2012.04.047.
Sicard, M., Le Brun, N., Pages, S., Godelle, B., Boemare, N., Moulia, C., Effect of native Xenorhabdus on the fitness of their Steinernema hosts: Contrasting types of interaction. Parasitol. Res. 91:6 (2003), 520–524, 10.1007/s00436-003-0998-z.
Sideri, M., Tsakas, S., Markoutsa, E., Lampropoulou, M., Marmaras, V.J., Innate immunity in insects: Surface-associated dopa decarboxylase-dependent pathways regulate phagocytosis, nodulation and melanization in medfly haemocytes. Immunology, 123(4), 2008, 10.1111/j.1365-2567.2007.02722.x.
Simard, L., Bélair, G., Stock, S.P., Mauléon, H., Dionne, J., Natural occurrence of entomopathogenic nematodes (Rhabditida: Steinernematidae) on golf courses in eastern Canada. Nematology 9:3 (2007), 325–332.
Singh, S., Reese, J.M., Casanova-Torres, Á.M., Goodrich-Blair, H., Forst, S., Microbial population dynamics in the hemolymph of Manduca sexta infected with Xenorhabdus nematophila and the entomopathogenic nematode Steinernema carpocapsae. Appl. Environ. Microbiol., 80(14), 2014, 10.1128/AEM.00768-14.
Spescha, A., Zwyssig, M., Hess Hermida, M., Moix, A., Bruno, P., Enkerli, J., Campos-Herrera, R., Grabenweger, G., Maurhofer, M., When Competitors Join Forces: Consortia of Entomopathogenic Microorganisms Increase Killing Speed and Mortality in Leaf- and Root-Feeding Insect Hosts. Microb. Ecol., 2023, 10.1007/s00248-023-02191-0.
Stock, S.P., Blair, H.G., Entomopathogenic nematodes and their bacterial symbionts: the inside out of a mutualistic association. Symbiosis, 46(2), 2008.
Stock, S.P., Goodrich-Blair, H., Nematode parasites, pathogens and associates of insects and invertebrates of economic importance. Man. Tech. Invertebr. Pathol., 2012, 10.1016/B978-0-12-386899-2.00012-9.
Stuart, L.M., Ezekowitz, R.A., Phagocytosis and comparative innate immunity: Learning on the fly. Nat. Rev. Immunol., 8(2), 2008, 10.1038/nri2240.
Sudhaus, W., An update of the catalogue of paraphyletic “Rhabditidae” (Nematoda) after eleven years. Soil-Org., 2023, 10.25674/so95iss1id312.
Sukumaran, A., Coish, J.M., Yeung, J., Muselius, B., Gadjeva, M., MacNeil, A.J., Geddes-McAlister, J., Decoding communication patterns of the innate immune system by quantitative proteomics. J. Leukoc. Biol., 106(6), 2019, 10.1002/JLB.2RI0919-302R.
Susurluk, A., Tarasco, E., Ehlers, R., Triggiani, O., Molecular characterisation of entomopathogenic nematodes isolated in Italy by PCR-RFLP analysis of the ITS region of the ribosomal DNA repeat unit. Nematol. Mediterr., 35(1), 2007.
Suwannaroj, M., Yimthin, T., Fukruksa, C., Muangpat, P., Yooyangket, T., Tandhavanant, S., Thanwisai, A., Vitta, A., Survey of entomopathogenic nematodes and associate bacteria in Thailand and their potential to control Aedes aegypti. J. Appl. Entomol., 144(3), 2020, 10.1111/jen.12726.
Tailliez, P., Laroui, C., Ginibre, N., Paule, A., Pagès, S., Boemare, N., Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P. l. Int. J. Syst. Evol. Microbiol. 60:8 (2010), 1921–1937, 10.1099/ijs.0.014308-0.
Tailliez, P., Pagès, S., Edgington, S., Tymo, L.M., Buddie, A.G., Description of Xenorhabdus magdalenensis sp. nov., the symbiotic bacterium associated with Steinernema australe. Int. J. Syst. Evolut. Microbiol., 62(8), 2012, 10.1099/ijs.0.034322-0.
Tailliez, P., Pagès, S., Ginibre, N., Boemare, N., New insight into diversity in the genus Xenorhabdus, including the description of ten novel species. Int. J. Syst. Evolut. Microbiol. 56:12 (2006), 2805–2818, 10.1099/ijs.0.64287-0.
Tamiru, Tewodros, et al. (n.d.). Tamiru, Tewodros, et al. “Steinernema ethiopiense sp. n.(Rhabditida: Steinernematidae), a new entomopathogenic nematode from Ethiopia.” Nematology 14.6, 741–757.
Tarasco, E., Alvarez, C.S., Triggiani, O., Moraga, E.Q., Laboratory studies on the competition for insect haemocoel between Beauveria bassiana and Steinernema ichnusae recovered in the same ecological niche. Biocontrol Sci. Technol. 21:6 (2011), 693–704, 10.1080/09583157.2011.570428.
Tarasco, E., Clausi, M., Rappazzo, G., Panzavolta, T., Curto, G., Sorino, R., Oreste, M., Longo, A., Leone, D., Tiberi, R., Vinciguerra, M.T., Triggiani, O., Biodiversity of entomopathogenic nematodes in Italy. J. Helminthol., Vol. 89(Issue 3), 2015, 10.1017/S0022149×14000194.
Tarasco, E., Fanelli, E., Salvemini, C., El-Khoury, Y., Troccoli, A., Vovlas, A., De Luca, F., Entomopathogenic nematodes and their symbiotic bacteria: from genes to field uses. Frontiers in Insect Science, vol. 3, 2023, Frontiers Media SA, 10.3389/finsc.2023.1195254.
Thomas, G.M., Poinar, G.O., Xenorhabdus gen. nov., a genus of entomopathogenic, nematophilic bacteria of the family Enterobacteriacease. Int. J. Syst. Bacteriol. 29:4 (1979), 352–360, 10.1099/00207713-29-4-352.
Tidbury, H.J., Best, A., Boots, M., The epidemiological consequences of immune priming. Proc. R. Soc. B: Biol. Sci., 279(1746), 2012, 10.1098/rspb.2012.1841.
Tobias, N.J., Wolff, H., Djahanschiri, B., Grundmann, F., Kronenwerth, M., Shi, Y.M., Simonyi, S., Grün, P., Shapiro-Ilan, D., Pidot, S.J., Stinear, T.P., Ebersberger, I., Bode, H.B., Natural product diversity associated with the nematode symbionts Photorhabdus and Xenorhabdus. Nat. Microbiol. 2:12 (2017), 1676–1685, 10.1038/s41564-017-0039-9.
Tomar, P., Thakur, N., Yadav, A.N., Endosymbiotic microbes from entomopathogenic nematode (EPNs) and their applications as biocontrol agents for agro-environmental sustainability. Egypt. J. Biol. Pest Control, 32(1), 2022, 10.1186/s41938-022-00579-7.
Topalović, O., Vestergård, M., Can microorganisms assist the survival and parasitism of plant-parasitic nematodes?. Trends Parasitol., 37(11), 2021, 10.1016/j.pt.2021.05.007.
Triggiani, O., Tarasco, E., Evaluation of the effects of autochthonous and commercial isolates of steinernematidae and heterorhabditidae on Rhynchophorus ferrugineus. Bull. Insect, 64(2), 2011.
Tsai, M.H., Tang, L.C., Hou, R.F., The bacterium associated with the entomopathogenic nematode Steinernema abbasi (Nematoda: Steinernematidae) isolated from Taiwan. J. Invertebr. Pathol., 99(2), 2008, 10.1016/j.jip.2008.04.002.
Tu, P.W., Chiu, J.S., Lin, C., Chien, C.C., Hsieh, F.C., Shih, M.C., Yang, Y.L., Evaluation of the antifungal activities of Photorhabdus akhurstii and its secondary metabolites against phytopathogenic colletotrichum gloeosporioides. J. Fungi, 8(4), 2022, 10.3390/jof8040403.
Ulvila, J., Vanha-aho, L.-M., Kleino, A., Vaha-Makila, M., Vuoksio, M., Eskelinen, S., Hultmark, D., Kocks, C., Hallman, M., Parikka, M., Ramet, M., Cofilin regulator 14-3-3 is an evolutionarily conserved protein required for phagocytosis and microbial resistance. J. Leukoc. Biol., 89(5), 2011, 10.1189/jlb.0410195.
Van Tol, R.W.H.M., Van Der Sommen, A.T.C., Boff, M.I.C., Van Bezooijen, J., Sabelis, M.W., Smits, P.H., Plants protect their roots by alerting the enemies of grubs. Ecol. Lett., 4(4), 2001, 10.1046/j.1461-0248.2001.00227.x.
Vicente-Díez, I., Blanco-Pérez, R., González-Trujillo, M.D.M., Pou, A., Campos-Herrera, R., Insecticidal effect of entomopathogenic nematodes and the cell-free supernatant from their symbiotic bacteria against Philaenus spumarius (Hemiptera: Aphrophoridae) nymphs. Insects, 12(5), 2021, 10.3390/insects12050448.
Vidya, M.K., Kumar, V.G., Sejian, V., Bagath, M., Krishnan, G., Bhatta, R., Toll-like receptors: significance, ligands, signaling pathways, and functions in mammals. Int. Rev. Immunol., 37(1), 2018, 10.1080/08830185.2017.1380200.
Wallace, H.R., Croll, N.A., The behaviour of nematodes, their activity, senses and responses. J. Appl. Ecol., 8(3), 1971, 10.2307/2402696.
Wang, Y., Campbell, J.F., Gaugler, R., Infection of entomopathogenic nematodes Steinernema glaseri and Heterorhabditis bacteriophora against Popillia japonica (Coleoptera: Scarabaeidae) larvae. J. Invertebr. Pathol., 66(2), 1995, 10.1006/jipa.1995.1081.
Wang, Y.P., Lai, R., Insect antimicrobial peptides: structures, properties and gene regulation. Dong wu xue yan jiu = Zool. Res. / “Dong wu xue yan jiu” bian ji we yuan hui bian ji, 31(1), 2010, 10.3724/SP.J.1141.2010.01027.
Wee, K.E., Yonan, C.R., Chang, F.N., A new broad-spectrum protease inhibitor from the entomopathogenic bacterium Photorhabdus luminescens. Microbiology, 146(12), 2000, 10.1099/00221287-146-12-3141.
Williams, J.S., Thomas, M., Clarke, D.J., The gene stlA encodes a phenylalanine ammonia-lyase that is involved in the production of a stilbene antibiotic in Photorhabdus luminescens TT01. Microbiology 151:8 (2005), 2543–2550, 10.1099/mic.0.28136-0.
Wilson-Rich, N., Stuart, R.J., Rosengaus, R.B., Susceptibility and behavioral responses of the dampwood termite Zootermopsis angusticollis to the entomopathogenic nematode Steinernema carpocapsae. J. Invertebr. Pathol., 95(1), 2007, 10.1016/j.jip.2006.11.004.
Xiao, Y., Wu, K., Recent progress on the interaction between insects and Bacillus thuringiensis crops. Philos. Trans. R. Soc. B: Biol. Sci., 374(1767), 2019, 10.1098/rstb.2018.0316.
Yang, J. (2019). An insecticidal protein from Xenorhabdus budapestensis that results in prophenoloxidase activation in the wax moth, Galleria mellonella. February 2012. 〈https://doi.org/10.1016/j.jip.2012.02.006〉.
Yang, J., Zeng, H.M., Lin, H.F., Yang, X.F., Liu, Z., Guo, L.H., Yuan, J.J., Qiu, D.W., An insecticidal protein from Xenorhabdus budapestensis that results in prophenoloxidase activation in the wax moth, Galleria mellonella. J. Invertebr. Pathol., 110(1), 2012, 10.1016/j.jip.2012.02.006.
Yeung, A.T.Y., Gellatly, S.L., Hancock, R.E.W., Multifunctional cationic host defence peptides and their clinical applications. Cell. Mol. Life Sci., Vol. 68(Issue 13), 2011, 10.1007/s00018-011-0710-x.
Yooyangket, T., Muangpat, P., Polseela, R., Tandhavanant, S., Thanwisai, A., Vitta, A., Identification of entomopathogenic nematodes and symbiotic bacteria from Nam Nao National Park in Thailand and larvicidal activity of symbiotic bacteria against Aedes aegypti and Aedes albopictus. PLoS ONE, 13(4), 2018, 10.1371/journal.pone.0195681.
Yu, X.Q., Kanost, M.R., Immulectin-2, a pattern recognition receptor that stimulates hemocyte encapsulation and melanization in the tobacco hornworm, Manduca sexta. Dev. Comp. Immunol., 28(9), 2004, 10.1016/j.dci.2004.02.005.
Zamora-Lagos, M.A., Eckstein, S., Langer, A., Gazanis, A., Pfeiffer, F., Habermann, B., Heermann, R., Phenotypic and genomic comparison of Photorhabdus luminescens subsp. laumondii TT01 and a widely used rifampicin-resistant Photorhabdus luminescens laboratory strain 06 Biological Sciences 0604 Genetics. BMC Genom. 19:1 (2018), 1–17, 10.1186/s12864-018-5121-z.