[en] The hydrolysis of imidazolinium chlorides takes place readily in a basic water/dichloromethane biphasic mixture at room temperature. Experimental parameters were optimized to afford full conversions and high yields of γ-aminoformamides starting from twelve symmetrical substrates with alkyl or aryl substituents on their nitrogen atoms, and five unsymmetrical 1-alkyl-3-arylimidazolinium chlorides. NMR and XRD analyses showed that the cleavage of unsymmetrical salts led to γ-alkylamino-N-arylformamides with a high regioselectivity and that bulky alkyl or aryl groups on the formamide moiety led to the isolation of the (E)-isomer in high stereoisomeric purity (>95 %), whereas smaller and more flexible alkyl substituents afforded mixtures of (E)- and (Z)-rotamers. Control experiments showed that the hydrolysis of 1,3-dimesitylimidazolinium chloride (SIMes ⋅ HCl) did not occur readily in pure or acidic water and that the presence of bulky aromatic substituents on the nitrogen atoms of 1,3-bis(2,6-diisopropylphenyl)imidazolinium chloride (SIDip ⋅ HCl) efficiently slowed down its hydrolysis under basic aqueous conditions. Most strikingly, this work highlighted the critical influence of the counteranion on the reactivity of imidazolinium cations. Indeed, the chloride salts underwent a facile hydrolysis in the presence of water and Na2 CO3 , whereas various other NHC ⋅ HX derivatives reacted much slower or remained essentially inert under these conditions.
Disciplines :
Chemistry
Author, co-author :
Touj, Nedra; Laboratory of Catalysis, MolSys Research Unit, Université de Liège, Institut de Chimie Organique (B6a), Allée du six Août 13, 4000, Liège, Belgium
Taping, Jerwin Jay; Laboratory of Catalysis, MolSys Research Unit, Université de Liège, Institut de Chimie Organique (B6a), Allée du six Août 13, 4000, Liège, Belgium
Tumanov, Nikolay; Department of Chemistry, Namur Institute of Structured Matter (NISM), Université de Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
Wouters, Johan; Department of Chemistry, Namur Institute of Structured Matter (NISM), Université de Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
Delaude, Lionel ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie organométallique et catalyse homogène
Language :
English
Title :
The Facile Hydrolysis of Imidazolinium Chlorides (N-Heterocyclic Carbene Precursors) Under Basic Aqueous Conditions.
Publication date :
01 December 2023
Journal title :
Chemistry
ISSN :
0947-6539
eISSN :
1521-3765
Publisher :
John Wiley and Sons Inc, Germany
Volume :
29
Issue :
67
Pages :
e202302402
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
ULiège - Université de Liège
Funding text :
The financial support from the IPD‐STEMA 2019 program is gratefully acknowledged (post‐doctoral fellowship to N. T.). The authors would like to thank Mr. Dimitri Lehert and Mr. Dimitri Bertrand for their technical assistance, Dr Johann Far for the HR‐MS analyses, and the PC technological platform at the university of Namur for access to a single‐crystal X‐ray diffractometer. 2
S. P. Nolan, in N-Heterocyclic Carbenes: Effective Tools for Organometallic Synthesis, Wiley-VCH, Weinheim, 2014;
S. Díez-González, in N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools, RSC Catalysis Series, Vol. 27, Royal Society of Chemistry, Cambridge, 2017;
S. P. Nolan, C. S. J. Cazin, in N-Heterocyclic Carbenes in Catalytic Organic Synthesis, Science of Synthesis, Thieme, Stuttgart, 2017;
P. Bellotti, M. Koy, M. N. Hopkinson, F. Glorius, Nat. Chem. Rev. 2021, 5, 711–725.
M. Fèvre, J. Pinaud, Y. Gnanou, J. Vignolle, D. Taton, Chem. Soc. Rev. 2013, 42, 2142–2172;
D. M. Flanigan, F. Romanov-Michailidis, N. A. White, T. Rovis, Chem. Rev. 2015, 115, 9307–9387;
A. T. Biju, in N-Heterocyclic Carbenes in Organocatalysis, Wiley-VCH, Weinheim, 2019.
F. E. Hahn, M. C. Jahnke, Angew. Chem. Int. Ed. 2008, 47, 3122–3172;
J. C. Y. Lin, R. T. W. Huang, C. S. Lee, A. Bhattacharyya, W. S. Hwang, I. J. B. Lin, Chem. Rev. 2009, 109, 3561–3598;
S. J. Hock, L.-A. Schaper, W. A. Herrmann, F. E. Kühn, Chem. Soc. Rev. 2013, 42, 5073–5089;
S. Bellemin-Laponnaz, S. Dagorne, Chem. Rev. 2014, 114, 8747–8774.
For a few recent examples, see:
K. Aggarwal, S. Li, E. Ivry, D. R. Dekel, C. E. Diesendruck, Organometallics 2022, 41, 1419–1425;
W. Kośnik, D. Lichosyt, M. Śnieżek, A. Janaszkiewicz, K. Woźniak, M. Malińska, B. Trzaskowski, A. Kajetanowicz, K. Grela, Angew. Chem. Int. Ed. 2022, 61, e202201472;
M. Bołt, L. Delaude, P. Żak, Dalton Trans. 2022, 51, 4429–4434;
G. Horrer, I. Krummenacher, S. Mann, H. Braunschweig, U. Radius, Dalton Trans. 2022, 51, 11054–11071.
For a few recent examples, see:
F. Tufano, F. Santulli, F. Grisi, M. Lamberti, ChemCatChem 2022, 14, e202200962;
F. Mazars, G. Zaragoza, L. Delaude, J. Organomet. Chem. 2022, 978, 122489;
I. Ibni Hashim, N. V. Tzouras, X. Ma, L. Bourda, K. Van Hecke, S. P. Nolan, C. S. J. Cazin, Dalton Trans. 2022, 51, 13246–13254;
J. Thongpaen, R. Manguin, T. Kittikool, A. Camy, T. Roisnel, V. Dorcet, S. Yotphan, Y. Canac, M. Mauduit, O. Baslé, Chem. Commun. 2022, 58, 12082–12085;
C. L. Gutiérrez-Peña, M. Poyatos, E. Peris, Chem. Commun. 2022, 58, 10564–10567.
H. Jacobsen, A. Correa, A. Poater, C. Costabile, L. Cavallo, Coord. Chem. Rev. 2009, 253, 687–703.
C. M. Crudden, D. P. Allen, Coord. Chem. Rev. 2004, 248, 2247–2273;
V. M. Chernyshev, E. A. Denisova, D. B. Eremin, V. P. Ananikov, Chem. Sci. 2020, 11, 6957–6977;
T. P. Nicholls, J. R. Williams, C. E. Willans, in Adv. Organomet. Chem., Vol. 75 (Ed.: P. J. Pérez), Academic Press, 2021, pp. 245–329.
For a few selected examples, see:
D. C. Graham, K. J. Cavell, B. F. Yates, Dalton Trans. 2006, 1768–1775;
U. Scheele, S. Dechert, F. Meyer, Chem. Eur. J. 2008, 14, 5112–5115;
A. Normand, M. Nechaev, K. Cavell, Chem. Eur. J. 2009, 15, 7063–7073;
T. J. Williams, J. T. W. Bray, B. R. M. Lake, C. E. Willans, N. A. Rajabi, A. Ariafard, C. Manzini, F. Bellina, A. C. Whitwood, I. J. S. Fairlamb, Organometallics 2015, 34, 3497–3507;
A. C. Albéniz, Eur. J. Inorg. Chem. 2018, 3693–3705.
C.-Y. Liao, K.-T. Chan, C.-Y. Tu, Y.-W. Chang, C.-H. Hu, H. M. Lee, Chem. Eur. J. 2009, 15, 405–417;
M. Emin Günay, N. Özdemir, M. Ulusoy, M. Uçak, M. Dinçer, B. Çetinkaya, J. Organomet. Chem. 2009, 694, 2179–2184;
E. A. B. Kantchev, J. Y. Ying, Organometallics 2009, 28, 289–299;
E. L. Kolychev, V. V. Shuntikov, V. N. Khrustalev, A. A. Bush, M. S. Nechaev, Dalton Trans. 2011, 40, 3074–3076;
M. I. Ikhile, M. D. Bala, Acta Crystallogr., Sect. E: Struct. Rep. Online 2012, 68, o3263;
M. I. Ikhile, M. D. Bala, J. Chem. Crystallogr. 2013, 43, 76–81;
K.-A. Green, P. T. Maragh, K. Abdur-Rashid, A. J. Lough, T. P. Dasgupta, Tetrahedron Lett. 2014, 55, 5085–5087;
H. Wu, J. M. Garcia, F. Haeffner, S. Radomkit, A. R. Zhugralin, A. H. Hoveyda, J. Am. Chem. Soc. 2015, 137, 10585–10602.
M. K. Denk, J. M. Rodezno, S. Gupta, A. J. Lough, J. Organomet. Chem. 2001, 617–618, 242–253;
O. Hollóczki, P. Terleczky, D. Szieberth, G. Mourgas, D. Gudat, L. Nyulászi, J. Am. Chem. Soc. 2011, 133, 780–789;
B. J. van Lierop, A. M. Reckling, J. A. M. Lummiss, D. E. Fogg, ChemCatChem 2012, 4, 2020–2025;
D. Li, T. Ollevier, J. Organomet. Chem. 2020, 906, 121025.
F. Mazars, M. Hrubaru, N. Tumanov, J. Wouters, L. Delaude, Eur. J. Org. Chem. 2021, 2025–2033.
J. Tornatzky, A. Kannenberg, S. Blechert, Dalton Trans. 2012, 41, 8215–8225;
V. Paradiso, C. Costabile, F. Grisi, Beilstein J. Org. Chem. 2018, 14, 3122–3149;
L. Monsigny, A. Kajetanowicz, K. Grela, Chem. Rec. 2021, 21, 3648–3661.
For a few selected examples, see:
A. W. Waltman, R. H. Grubbs, Organometallics 2004, 23, 3105–3107;
K. Vehlow, S. Maechling, S. Blechert, Organometallics 2006, 25, 25–28;
P. Małecki, K. Gajda, O. Ablialimov, M. Malińska, R. Gajda, K. Woźniak, A. Kajetanowicz, K. Grela, Organometallics 2017, 36, 2153–2166.
A. Paczal, A. C. Bényei, A. Kotschy, J. Org. Chem. 2006, 71, 5969–5979.
W. Chen, X.-Y. Lu, B.-H. Xu, W.-g. Yu, Z.-n. Zhou, Y. Hu, Synthesis 2018, 50, 1499–1510.
M. Hans, J. Lorkowski, A. Demonceau, L. Delaude, Beilstein J. Org. Chem. 2015, 11, 2318–2325.
P. Zaby, J. Blasius, A. K. Müller, S. P. Nolan, O. Hollóczki, Chem. Eur. J. 2023, 29, e202203636.
L. Delaude, M. Szypa, A. Demonceau, A. F. Noels, Adv. Synth. Catal. 2002, 344, 749–756.
A. Aidouni, S. Bendahou, A. Demonceau, L. Delaude, J. Comb. Chem. 2008, 10, 886–892.
J. Tang, X. J. Gao, H. Tang, X. Zeng, Chem. Commun. 2019, 55, 1584–1587.
CrysAlisPro Software system, version 1.171.40.16b, Rigaku Corporation: Wroclaw (Poland), 2020;
O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339–341;
C. B. Hubschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 2011, 44, 1281–1284;
G. Sheldrick, Acta Crystallogr. Sect. A 2015, 71, 3–8;
G. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3–8;
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 Rev. C.01, Wallingford, CT, 2016.