The antihyperlipidemic effect of a combined supplement of standardized dry extracts of amla (Emblica officinalis), walnut (Juglans regia), olive (Olea europaea) and red yeast rice (Monascus purpureus) powder: Reduction in circulatory low-density lipoprotein-cholesterol (LDL-C) and remnant cholesterol (RC) levels in patients with hypercholesterolemia
Hermans, Michel P.; Dierckxsens, Yvan; Janssens, Isabelleet al.
[en] Background: Hyperlipidemia is associated with a higher rate of cardiovascular, cerebrovascular, and peripheral vascular disease. Conventional drugs such as statins are effective in controlling hyperlipidemia; however, they are associated with various side effects, especially myalgia. Nutraceutical lipid-lowering interventions are becoming increasingly popular, particularly among patients who are intolerant or refractory to statins. Substantial preclinical and clinical evidence suggests that extracts of amla, walnut, and olive, and red yeast rice (RYR) powder possess significant antihyperlipidemic effects.Aims: This study aimed to evaluate the efficacy, safety, and patient satisfaction of a combined supplementation of standardized dry extracts of amla fruit (500 mg), walnut leaves (50 mg), olive fruit (25 mg), and RYR powder (33.6 mg) (Cholesfytol NG®) in hypercholesterolemic patients.Methods: This was a real-life setting, retrospective, observational, single-arm, non-randomized study in hypercholesterolemic patients (total cholesterol (TC) ≥ 200 mg/dL or low-density lipoprotein-cholesterol (LDL-C) ≥ 130 mg/dL), enrolled at 57 general practitioner (GP) surgeries in Belgium from March 2020 to January 2022. These patients received a GP-prescribed daily single dosage of two oral tablets of Cholesfytol NG® supplementation for 2 months to overcome their hypercholesterolemia in the absence of a conventional lipid-lowering drug (n = 208) or with a lipid-lowering drug (n = 13). At 2-month follow-up, the lipid profile was re-evaluated, alongside a patient’s questionnaire on treatment general satisfaction and willingness to pursue supplementation.Results: After supplementation, TC decreased by 15%, LDL-C by 19%, non-high-density lipoprotein-cholesterol (non-HDL-C) by 20% (all p < 0.0001), triglycerides (TG) by 9% (p = 0.0028) (−18.4%, p = 0.0042, in patients with baseline TG > 180 mg/dL, n = 58), and remnant cholesterol (RC) by 12% (p = 0.0001). These changes were unaffected by statin intolerance status in patients who received Cholesfytol NG® alongside statin. The supplement was well tolerated by all patients, and no serious adverse events or supplement-emergent effects were reported. Most patients were satisfied with the supplementation and wanted to pursue the nutraceutical.Conclusion: According to the results of this study, a combined supplementation of amla, walnut, and olive extracts, and RYR powder exerts a significant antihyperlipidemic effect, leading to a decrease in circulatory LDL-C and RC levels in patients with hypercholesterolemia. The supplementation bears excellent safety and tolerability, and is rated as satisfactory and pursuable, even among patients with statin intolerance.Clinical Trial Registration: <jats:ext-link>clinicaltrials.gov</jats:ext-link>; identifier number: <jats:ext-link>NCT06002893</jats:ext-link>
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Hermans, Michel P.; Cliniques Universitaires St-Luc > Endocrinology and Nutrition
Dierckxsens, Yvan; Laboratoire Tilman
Janssens, Isabelle; Laboratoire Tilman
Seidel, Laurence ; Centre Hospitalier Universitaire de Liège - CHU > > Service des informations médico économiques (SIME)
Albert, Adelin ; Université de Liège - ULiège > Département des sciences de la santé publique
Rousseau, Michel F.; Cliniques Universitaires St-Luc > Cardiology
Khan, Amjad; University of Oxford [GB] > Radcliffe Department of Medicine > Nuffield Division of Clinical Laboratory Sciences
Language :
English
Title :
The antihyperlipidemic effect of a combined supplement of standardized dry extracts of amla (Emblica officinalis), walnut (Juglans regia), olive (Olea europaea) and red yeast rice (Monascus purpureus) powder: Reduction in circulatory low-density lipoprotein-cholesterol (LDL-C) and remnant cholesterol (RC) levels in patients with hypercholesterolemia
Akhtar M. S. Ramzan A. Ali A. Ahmad M. (2011). Effect of Amla fruit (Emblica officinalis Gaertn.) on blood glucose and lipid profile of normal subjects and type 2 diabetic patients. Int. J. Food Sci. Nutr. 62 (6), 609–616. 10.3109/09637486.2011.560565
Antony B. Benny M. Kaimal T. N. B. (2008a). A Pilot clinical study to evaluate the effect of Emblica officinalis extract (Amlamax™) on markers of systemic inflammation and dyslipidemia. Indian J. Clin. Biochem. 23 (4), 378–381. 10.1007/s12291-008-0083-6
Antony B. Merina B. Sheeba V. (2008b). Amlamax in the management of dyslipidemia in humans. Indian J. Pharm. Sci. 70 (4), 504–507. 10.4103/0250-474x.44604
Authors/Task Force Members ESC Committee for Practice Guidelines (CPG) ESC National Cardiac Societies (2019). 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Atherosclerosis 290, 140–205. 10.1016/j.atherosclerosis.2019.08.014
Azhar R. Ali S. Khan H. Farooq F. Noureen F. Anjum A. F. (2021). Effect of ethanolic extract of walnut leaves on lipid profile and atherogenic index in hypercholesterolemic rats. Pak. J. Med. Health Sci. 15, 3955–3958. 10.53350/pjmhs2115123955
Baigent C. Keech A. Kearney P. M. Blackwell L. Buck G. Pollicino C. et al. (2005). Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366 (9493), 1267–1278. 10.1016/s0140-6736(05)67394-1
Banel D. K. Hu F. B. (2009). Effects of walnut consumption on blood lipids and other cardiovascular risk factors: a meta-analysis and systematic review. Am. J. Clin. Nutr. 90 (1), 56–63. 10.3945/ajcn.2009.27457
Barbagallo C. M. Cefalù A. B. Noto D. Averna M. R. (2015). Role of nutraceuticals in hypolipidemic therapy. Front. Cardiovasc Med. 2, 22. 10.3389/fcvm.2015.00022
Becker D. J. Gordon R. Y. Halbert S. C. French B. Morris P. B. Rader D. J. (2009). Red yeast rice for dyslipidemia in statin-intolerant patients: a randomized trial. Ann. Intern Med. 150 (12), 830–839. 10.7326/0003-4819-150-12-200906160-00006
Bogsrud M. P. Ose L. Langslet G. Ottestad I. Strøm E. C. Hagve T. A. et al. (2010). HypoCol (red yeast rice) lowers plasma cholesterol - a randomized placebo controlled study. Scand. Cardiovasc J. 44 (4), 197–200. 10.3109/14017431003624123
Bulotta S. Celano M. Lepore S. M. Montalcini T. Pujia A. Russo D. (2014). Beneficial effects of the olive oil phenolic components oleuropein and hydroxytyrosol: focus on protection against cardiovascular and metabolic diseases. J. Transl. Med. 12, 219. 10.1186/s12967-014-0219-9
Castañer O. Pintó X. Subirana I. Amor A. J. Ros E. Hernáez Á. et al. (2020). Remnant cholesterol, not LDL cholesterol, is associated with incident cardiovascular disease. J. Am. Coll. Cardiol. 76 (23), 2712–2724. 10.1016/j.jacc.2020.10.008
Castelli W. P. Garrison R. J. Wilson P. W. F. Abbott R. D. Kalousdian S. Kannel W. B. (1986). Incidence of coronary heart disease and lipoprotein cholesterol levels: the framingham study. JAMA 256 (20), 2835–2838. 10.1001/jama.1986.03380200073024
Chait A. Ginsberg H. N. Vaisar T. Heinecke J. W. Goldberg I. J. Bornfeldt K. E. (2020). Remnants of the triglyceride-rich lipoproteins, diabetes, and cardiovascular disease. Diabetes 69 (4), 508–516. 10.2337/dbi19-0007
Choi J. Y. Na J. O. (2019). Pharmacological strategies beyond statins: ezetimibe and PCSK9 inhibitors. J. Lipid Atheroscler. 8 (2), 183–191. 10.12997/jla.2019.8.2.183
Cicero A. F. G. Colletti A. Bajraktari G. Descamps O. Djuric D. M. Ezhov M. et al. (2017). Lipid lowering nutraceuticals in clinical practice: position paper from an International Lipid Expert Panel. Arch. Med. Sci. 13 (5), 965–1005. 10.5114/aoms.2017.69326
Cicero A. F. G. Fogacci F. Banach M. (2019). Red yeast rice for hypercholesterolemia. Methodist Debakey Cardiovasc J. 15 (3), 192–199. 10.14797/mdcj-15-3-192
Cicero A. F. G. Fogacci F. Di Micoli A. Veronesi M. Grandi E. Borghi C. (2022). Hydroxytyrosol-rich olive extract for plasma cholesterol control. Appl. Sci. 12 (19), 10086. 10.3390/app121910086
Cicero A. F. G. Fogacci F. Stoian A. P. Toth P. P. (2023). Red yeast rice for the improvement of lipid profiles in mild-to-moderate hypercholesterolemia: a narrative review. Nutrients 15 (10), 2288. 10.3390/nu15102288
Cicero A. F. G. Fogacci F. Zambon A. (2021). Red yeast rice for hypercholesterolemia: JACC focus seminar. J. Am. Coll. Cardiol. 77 (5), 620–628. 10.1016/j.jacc.2020.11.056
Collaboration APCS Barzi F. Jamrozik K. Lam T. H. Ueshima H. Whitlock G. et al. (2004). Serum triglycerides as a risk factor for cardiovascular diseases in the Asia-Pacific region. Circulation 110 (17), 2678–2686. 10.1161/01.CIR.0000145615.33955.83
Covas M.-I. Nyyssönen K. Poulsen H. E. Kaikkonen J. Zunft H.-J. F. Kiesewetter H. et al. (2006). The effect of polyphenols in olive oil on heart disease risk factors: a randomized trial. Ann. Intern Med. 145 (5), 333–341. 10.7326/0003-4819-145-5-200609050-00006
de la Torre-Carbot K. Chávez-Servín J. L. Jaúregui O. Castellote A. I. Lamuela-Raventós R. M. Nurmi T. et al. (2010). Elevated circulating LDL phenol levels in men who consumed virgin rather than refined olive oil are associated with less oxidation of plasma LDL. J. Nutr. 140 (3), 501–508. 10.3945/jn.109.112912
Delaviz H. Mohammadi J. Ghalamfarsa G. Mohammadi B. Farhadi N. (2017). A review study on phytochemistry and pharmacology applications of Juglans regia plant. Pharmacogn. Rev. 11 (22), 145–152. 10.4103/phrev.phrev_10_17
Doi T. Nordestgaard B. G. Langsted A. (2023). Can remnant cholesterol (triglyceride-rich lipoproteins) reclassify estimated risk of atherosclerotic cardiovascular disease? Curr. Opin. Endocrinol. Diabetes Obes. 30 (2), 128–135. 10.1097/med.0000000000000799
Dugani S. B. Akinkuolie A. O. Paynter N. Glynn R. J. Ridker P. M. Mora S. (2016). Association of lipoproteins, insulin resistance, and rosuvastatin with incident type 2 diabetes mellitus: secondary analysis of a randomized clinical trial. JAMA Cardiol. 1 (2), 136–145. 10.1001/jamacardio.2016.0096
Efentakis P. Iliodromitis E. K. Mikros E. Papachristodoulou A. Dagres N. Skaltsounis A. L. et al. (2015). Effects of the olive tree leaf constituents on myocardial oxidative damage and atherosclerosis. Planta Med. 81 (8), 648–654. 10.1055/s-0035-1546017
EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) (2011). Scientific Opinion on the substantiation of health claims related to polyphenols in olive and protection of LDL particles from oxidative damage (ID 1333, 1638, 1639, 1696, 2865), maintenance of normal blood HDL cholesterol concentrations (ID 1639), mainte: polyphenols in olive related health claims. EFSA J. 9 (4), 2033. 10.2903/j.efsa.2011.2033
Endo A. (1980). Monacolin K, a new hypocholesterolemic agent that specifically inhibits 3-hydroxy-3-methylglutaryl coenzyme A reductase. J. Antibiotics 33 (3), 334–336. 10.7164/antibiotics.33.334
Feingold K. R. (2021). Cholesterol lowering drugs. https://www.ncbi.nlm.nih.gov/books/NBK395573/(Accessed October 11, 2023).
Fogacci F. Banach M. Mikhailidis D. P. Bruckert E. Toth P. P. Watts G. F. et al. (2019). Safety of red yeast rice supplementation: a systematic review and meta-analysis of randomized controlled trials. Pharmacol. Res. 143, 1–16. 10.1016/j.phrs.2019.02.028
Fonollá J. Maldonado-Lobón J. A. Luque R. Rodríguez C. Bañuelos Ó. López-Larramendi J. L. et al. (2021). Effects of a combination of extracts from olive fruit and almonds skin on oxidative and inflammation markers in hypercholesterolemic subjects: a randomized controlled trial. J. Med. Food 24 (5), 479–486. 10.1089/jmf.2020.0088
Gerards M. C. Terlou R. J. Yu H. Koks C. H. Gerdes V. E. (2015). Traditional Chinese lipid-lowering agent red yeast rice results in significant LDL reduction but safety is uncertain - a systematic review and meta-analysis. Atherosclerosis 240 (2), 415–423. 10.1016/j.atherosclerosis.2015.04.004
Ginsberg H. N. Packard C. J. Chapman M. J. Borén J. Aguilar-Salinas C. A. Averna M. et al. (2021). Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur. Heart J. 42 (47), 4791–4806. 10.1093/eurheartj/ehab551
Gopa B. Bhatt J. Hemavathi K. G. (2012). A comparative clinical study of hypolipidemic efficacy of Amla (Emblica officinalis) with 3-hydroxy-3-methylglutaryl-coenzyme-A reductase inhibitor simvastatin. Indian J. Pharmacol. 44 (2), 238–242. 10.4103/0253-7613.93857
Guasch-Ferré M. Li J. Hu F. B. Salas-Salvadó J. Tobias D. K. (2018). Effects of walnut consumption on blood lipids and other cardiovascular risk factors: an updated meta-analysis and systematic review of controlled trials. Am. J. Clin. Nutr. 108 (1), 174–187. 10.1093/ajcn/nqy091
Gul M. Liu Z.-W. Haq I.-U. Rabail R. Faheem F. Walayat N. et al. (2022). Functional and nutraceutical significance of amla (Phyllanthus emblica L.): a review. Antioxidants 11 (5), 816. 10.3390/antiox11050816
Gupta A. Behl T. Panichayupakaranan P. (2019). A review of phytochemistry and pharmacology profile of Juglans regia. Obes. Med. 16, 100142. 10.1016/j.obmed.2019.100142
Hashmi M. A. Khan A. Hanif M. Farooq U. Perveen S. (2015). Traditional uses, phytochemistry, and pharmacology of Olea europaea (olive). Evid. Based Complement. Altern. Med. 2015, 541591. 10.1155/2015/541591
Hermans M. P. Lempereur P. Salembier J. P. Maes N. Albert A. Jansen O. et al. (2020). Supplementation effect of a combination of olive (Olea europea L.) leaf and fruit extracts in the clinical management of hypertension and metabolic syndrome. Antioxidants (Basel) 9 (9), 872. 10.3390/antiox9090872
Hu T. He X. W. Jiang J. G. Xu X. L. (2014). Hydroxytyrosol and its potential therapeutic effects. J. Agric. Food Chem. 62 (7), 1449–1455. 10.1021/jf405820v
Istvan E. S. Deisenhofer J. (2001). Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292 (5519), 1160–1164. 10.1126/science.1059344
Jelodar G. Mohammadi M. Akbari A. Nazifi S. (2020). Cyclohexane extract of walnut leaves improves indices of oxidative stress, total homocysteine and lipids profiles in streptozotocin-induced diabetic rats. Physiol. Rep. 8 (1), e14348. 10.14814/phy2.14348
Joseph J. P. Afonso M. Berdaï D. Salles N. Bénard A. Gay B. et al. (2015). Benefits and risks for primary prevention with statins in the elderly. Presse Med. 44 (12), 1219–1225. 10.1016/j.lpm.2015.09.015
Journoud M. Jones P. J. H. (2004). Red yeast rice: a new hypolipidemic drug. Life Sci. 74 (22), 2675–2683. 10.1016/j.lfs.2003.10.018
Keys A. (1980). Seven countries: a multivariate analysis of death and coronary heart disease. Harvard University Press.
Lacoste L. Lam J. Y. Hung J. Letchacovski G. Solymoss C. B. Waters D. (1995). Hyperlipidemia and coronary disease: correction of the increased thrombogenic potential with cholesterol reduction. Circulation 92 (11), 3172–3177. 10.1161/01.cir.92.11.3172
Li P. Wang Q. Chen K. Zou S. Shu S. Lu C. et al. (2022). Red yeast rice for hyperlipidemia: a meta-analysis of 15 high-quality randomized controlled trials. Front. Pharmacol. 12, 819482. 10.3389/fphar.2021.819482
Lin Y.-L. Wang T.-H. Lee M.-H. Su N.-W. (2008). Biologically active components and nutraceuticals in the Monascus-fermented rice: a review. Appl. Microbiol. Biotechnol. 77, 965–973. 10.1007/s00253-007-1256-6
Mahmoodi M. Eghbali H. zijoud S. Pour-Rashidi A. Mohamadi A. Borhani M. et al. (2011). Study of the effects of walnut leaf on some blood biochemical parameters in hypercholesterolemic rats. Biochem. Anal. Biochem., 1. 10.4172/2161-1009.1000103
Marrugat J. Covas M.-I. Fitó M. Schröder H. Miró-Casas E. Gimeno E. et al. (2004). Effects of differing phenolic content in dietary olive oils on lipids and LDL oxidation-a randomized controlled trial. Eur. J. Nutr. 43 (3), 140–147. 10.1007/s00394-004-0452-8
Mateos R. Martínez-López S. Arévalo G. B. Amigo-Benavent M. Sarriá B. Bravo-Clemente L. (2016). Hydroxytyrosol in functional hydroxytyrosol-enriched biscuits is highly bioavailable and decreases oxidised low density lipoprotein levels in humans. Food Chem. 205, 248–256. 10.1016/j.foodchem.2016.03.011
Navab M. Berliner J. A. Watson A. D. Hama S. Y. Territo M. C. Lusis A. J. et al. (1996). The yin and yang of oxidation in the development of the fatty streak. A review based on the 1994 george lyman duff memorial lecture. Arterioscler. Thromb. Vasc. Biol. 16 (7), 831–842. 10.1161/01.atv.16.7.831
Nordestgaard B. G. Varbo A. (2014). Triglycerides and cardiovascular disease. Lancet 384 (9943), 626–635. 10.1016/s0140-6736(14)61177-6
Nova M. (2019). GRAS notice (GRN) No. 876; office of food additive safety. https://www.fda.gov/media/134474/download (Accessed September 14, 2022).
Palmer M. K. Nicholls S. J. Lundman P. Barter P. J. Karlson B. W. (2013). Achievement of LDL-C goals depends on baseline LDL-C and choice and dose of statin: an analysis from the VOYAGER database. Eur. J. Prev. Cardiol. 20 (6), 1080–1087. 10.1177/2047487313489875
Pérez-Jiménez F. Pascual V. Meco J. F. Pérez Martínez P. Delgado Lista J. Domenech M. et al. (2018). Document of recommendations of the SEA 2018. Lifestyle in cardiovascular prevention. Clinica Investig. Arterioscler. 30 (6), 280–310. 10.1016/j.arteri.2018.06.005
Quispe R. Martin S. S. Michos E. D. Lamba I. Blumenthal R. S. Saeed A. et al. (2021). Remnant cholesterol predicts cardiovascular disease beyond LDL and ApoB: a primary prevention study. Eur. Heart J. 42 (42), 4324–4332. 10.1093/eurheartj/ehab432
Raederstorff D. (2009). Antioxidant activity of olive polyphenols in humans: a review. Int. J. Vitam. Nutr. Res. 79 (3), 152–165. 10.1024/0300-9831.79.3.152
Rajak S. Banerjee S. K. Sood S. Dinda A. K. Gupta Y. K. Gupta S. K. et al. (2004). Emblica officinalis causes myocardial adaptation and protects against oxidative stress in ischemic-reperfusion injury in rats. Phytother. Res. 18 (1), 54–60. 10.1002/ptr.1367
Sahebkar A. Serban M. C. Gluba-Brzózka A. Mikhailidis D. P. Cicero A. F. Rysz J. et al. (2016). Lipid-modifying effects of nutraceuticals: an evidence-based approach. Nutrition 32 (11-12), 1179–1192. 10.1016/j.nut.2016.04.007
Sandesara P. B. Virani S. S. Fazio S. Shapiro M. D. (2019). The forgotten lipids: triglycerides, remnant cholesterol, and atherosclerotic cardiovascular disease risk. Endocr. Rev. 40 (2), 537–557. 10.1210/er.2018-00184
Sarwar N. Danesh J. Eiriksdottir G. Sigurdsson G. Wareham N. Bingham S. et al. Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 Western prospective studies. Circulation. (2007) 115(4):450–458. 10.1161/CIRCULATIONAHA.106.637793
Shao Q. Yang Z. Wang Y. Li Q. Han K. Liang J. et al. (2022). Elevated remnant cholesterol is associated with adverse cardiovascular outcomes in patients with acute coronary syndrome. J. Atheroscler. Thromb. 29 (12), 1808–1822. 10.5551/jat.63397
Sharma M. Sharma M. Sharma M. (2022). A comprehensive review on ethnobotanical, medicinal and nutritional potential of walnut (Juglans regia L.). Proc. Indian Natl. Sci. Acad. 88 (4), 601–616. 10.1007/s43538-022-00119-9
Shimoda H. Tanaka J. Kikuchi M. Fukuda T. Ito H. Hatano T. et al. (2009). Effect of polyphenol-rich extract from walnut on diet-induced hypertriglyceridemia in mice via enhancement of fatty acid oxidation in the liver. J. Agric. Food Chem. 57 (5), 1786–1792. 10.1021/jf803441c
Sinha R. Sharma N. Advani U. Dadheech G. Kulshreshtha S. Parakh R. (2014). Comparitive study of hypolipidemic effects of atorvastatin with emblica officinalis (amla) in patients of type II hyperlipidemia, 2799–2810.
Stamler J. (1996). Is the relationship between serom cholesterol and risk of premature death from coronary heart disease continuous and graded? JAMA 276, 882–888.
Stroes E. S. Thompson P. D. Corsini A. Vladutiu G. D. Raal F. J. Ray K. K. et al. (2015). Statin-associated muscle symptoms: impact on statin therapy-European atherosclerosis society consensus Panel statement on assessment, aetiology and management. Eur. Heart J. 36 (17), 1012–1022. 10.1093/eurheartj/ehv043
Suganya N. Bhakkiyalakshmi E. Sarada D. V. L. Ramkumar K. M. (2016). Reversibility of endothelial dysfunction in diabetes: role of polyphenols. Br. J. Nutr. 116 (2), 223–246. 10.1017/S0007114516001884
Tshongo Muhindo C. Ahn S. A. Rousseau M. F. Dierckxsens Y. Hermans M. P. (2017). Efficacy and safety of a combination of red yeast rice and olive extract in hypercholesterolemic patients with and without statin-associated myalgia. Complement. Ther. Med. 35, 140–144. 10.1016/j.ctim.2017.10.014
Upadya H. Prabhu S. Prasad A. Subramanian D. Gupta S. Goel A. (2019). A randomized, double blind, placebo controlled, multicenter clinical trial to assess the efficacy and safety of Emblica officinalis extract in patients with dyslipidemia. BMC Complement. Altern. Med. 19 (1), 27. 10.1186/s12906-019-2430-y
Usharani P. Fatima N. Muralidhar N. (2013). Effects of Phyllanthus emblica extract on endothelial dysfunction and biomarkers of oxidative stress in patients with type 2 diabetes mellitus: a randomized, double-blind, controlled study. Diabetes Metab. Syndr. Obes. 6, 275–284. 10.2147/dmso.S46341
Usharani P. Merugu P. L. Nutalapati C. (2019). Evaluation of the effects of a standardized aqueous extract of Phyllanthus emblica fruits on endothelial dysfunction, oxidative stress, systemic inflammation and lipid profile in subjects with metabolic syndrome: a randomised, double blind, placebo controlled clinical study. BMC Complement. Altern. Med. 19 (1), 97. 10.1186/s12906-019-2509-5
Vanhoutte P. M. (2009). Endothelial dysfunction - the first step toward coronary arteriosclerosis. Circ. J. 73 (4), 595–601. 10.1253/circj.CJ-08-1169
Varbo A. Benn M. Nordestgaard B. G. (2014). Remnant cholesterol as a cause of ischemic heart disease: evidence, definition, measurement, atherogenicity, high risk patients, and present and future treatment. Pharmacol. Ther. 141 (3), 358–367. 10.1016/j.pharmthera.2013.11.008
Variya B. C. Bakrania A. K. Chen Y. Han J. Patel S. S. (2018). Suppression of abdominal fat and anti-hyperlipidemic potential of Emblica officinalis: upregulation of PPARs and identification of active moiety. Biomed. Pharmacother. 108, 1274–1281. 10.1016/j.biopha.2018.09.158
Variya B. C. Bakrania A. K. Patel S. S. (2016). Emblica officinalis (Amla): a review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms. Pharmacol. Res. 111, 180–200. 10.1016/j.phrs.2016.06.013
Verhoeven V. Van der Auwera A. Van Gaal L. Remmen R. Apers S. Stalpaert M. et al. (2015). Can red yeast rice and olive extract improve lipid profile and cardiovascular risk in metabolic syndrome? a double blind, placebo controlled randomized trial. BMC Complement. Altern. Med. 15, 52. 10.1186/s12906-015-0576-9
Visioli F. Davalos A. López de Las Hazas M. C. Crespo M. C. Tomé-Carneiro J. (2020). An overview of the pharmacology of olive oil and its active ingredients. Br. J. Pharmacol. 177 (6), 1316–1330. 10.1111/bph.14782
Wang T. J. Lien A. S. Chen J. L. Lin C. H. Yang Y. S. Yang S. H. (2019). A randomized clinical efficacy trial of red yeast rice (Monascus pilosus) against hyperlipidemia. Am. J. Chin. Med. 47 (2), 323–335. 10.1142/s0192415x19500150
Yokozawa T. Kim H. Y. Kim H. J. Okubo T. Chu D. C. Juneja L. R. (2007). Amla (Emblica officinalis Gaertn.)prevents dyslipidaemia and oxidative stress in the ageing process. Br. J. Nutr. 97 (6), 1187–1195. 10.1017/S0007114507691971
Zhao Q. Zhang T. Y. Cheng Y. J. Ma Y. Xu Y. K. Yang J. Q. et al. (2020). Prognostic impact of estimated remnant-like particle cholesterol in patients with differing glycometabolic status: an observational cohort study from China. Lipids Health Dis. 19 (1), 179. 10.1186/s12944-020-01355-y
Zhu B. Qi F. Wu J. Yin G. Hua J. Zhang Q. et al. (2019). Red yeast rice: a systematic review of the traditional uses, chemistry, pharmacology, and quality control of an important Chinese folk medicine. Front. Pharmacol. 10, 1449. 10.3389/fphar.2019.01449