Anaerobiosis; Fermentation; Respiration; Cell Respiration; Photosynthesis; Chemistry (all); Biochemistry, Genetics and Molecular Biology (all); Physics and Astronomy (all); General Physics and Astronomy; General Biochemistry, Genetics and Molecular Biology; General Chemistry; Multidisciplinary
Abstract :
[en] While photosynthesis transforms sunlight energy into sugar, aerobic and anaerobic respiration (fermentation) catabolizes sugars to fuel cellular activities. These processes take place within one cell across several compartments, however it remains largely unexplored how they interact with one another. Here we report that the weak acids produced during fermentation down-regulate both photosynthesis and aerobic respiration. This effect is mechanistically explained with an "ion trapping" model, in which the lipid bilayer selectively traps protons that effectively acidify subcellular compartments with smaller buffer capacities - such as the thylakoid lumen. Physiologically, we propose that under certain conditions, e.g., dim light at dawn, tuning down the photosynthetic light reaction could mitigate the pressure on its electron transport chains, while suppression of respiration could accelerate the net oxygen evolution, thus speeding up the recovery from hypoxia. Since we show that this effect is conserved across photosynthetic phyla, these results indicate that fermentation metabolites exert widespread feedback control over photosynthesis and aerobic respiration. This likely allows algae to better cope with changing environmental conditions.
Pang, Xiaojie ; Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China ; University of Chinese Academy of Sciences, 100049, Beijing, China
Nawrocki, Wojciech ; Université de Liège - ULiège > Département des sciences de la vie > Génétique et physiologie des microalgues ; Department of Physics and Astronomy and LaserLab Amsterdam Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands ; Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR7141, Centre National de la Recherche Scientifique, Sorbonne Université, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005, Paris, France
Cardol, Pierre ; Université de Liège - ULiège > Département des sciences de la vie > Génétique et physiologie des microalgues
Zheng, Mengyuan ; Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China ; University of Chinese Academy of Sciences, 100049, Beijing, China
Jiang, Jingjing; Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
Fang, Yuan; Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China ; University of Chinese Academy of Sciences, 100049, Beijing, China
Yang, Wenqiang; Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China ; University of Chinese Academy of Sciences, 100049, Beijing, China
Croce, Roberta ; Department of Physics and Astronomy and LaserLab Amsterdam Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
Tian, Lijin ; Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China. ltian@ibcas.ac.cn ; University of Chinese Academy of Sciences, 100049, Beijing, China. ltian@ibcas.ac.cn
Language :
English
Title :
Weak acids produced during anaerobic respiration suppress both photosynthesis and aerobic respiration.
This work was supported by grants from the National Key R&D Program of China (No. 2019YFA0904600), the National Natural Science Foundation of China (Grant Nos. 11804172, 31970381), the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDA 26030201 and the Dutch Organization for Scientific research (NWO) via a Vici grant.
Atteia, A. et al. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes. Biochim. Biophys. Acta 1827, 210–223 (2013). DOI: 10.1016/j.bbabio.2012.08.002
Tcherkez, G. et al. Leaf day respiration: low CO2 flux but high significance for metabolism and carbon balance. N. Phytol. 216, 986–1001 (2017). DOI: 10.1111/nph.14816
Grossman, A. R. et al. Novel metabolism in Chlamydomonas through the lens of genomics. Curr. Opin. Plant Biol. 10, 190–198 (2007). DOI: 10.1016/j.pbi.2007.01.012
Grossman, A. R. et al. Multiple facets of anoxic metabolism and hydrogen production in the unicellular green alga Chlamydomonas reinhardtii. N. Phytol. 190, 279–288 (2011). DOI: 10.1111/j.1469-8137.2010.03534.x
Dubini, A. et al. Flexibility in anaerobic metabolism as revealed in a mutant of Chlamydomonas reinhardtii lacking hydrogenase activity. J. Biol. Chem. 284, 7201–7213 (2009). DOI: 10.1074/jbc.M803917200
Strenkert, D. et al. Multiomics resolution of molecular events during a day in the life of Chlamydomonas. Proc. Natl Acad. Sci. USA 116, 2374–2383 (2019). DOI: 10.1073/pnas.1815238116
Johnson, X. & Alric, J. Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. Eukaryot. Cell 12, 776–793 (2013). DOI: 10.1128/EC.00318-12
Mus, F. et al. Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways. J. Biol. Chem. 282, 25475–25486 (2007). DOI: 10.1074/jbc.M701415200
Martin, W. Evolutionary origins of metabolic compartmentalization in eukaryotes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 847–855 (2010). DOI: 10.1098/rstb.2009.0252
Dao, O. et al. Physiological functions of malate shuttles in plants and algae. Trends Plant Sci. 27, 488–501 (2022). DOI: 10.1016/j.tplants.2021.11.007
Cardol, P. et al. Photosynthesis and state transitions in mitochondrial mutants of Chlamydomonas reinhardtii affected in respiration. Plant Physiol. 133, 2010–2020 (2003). DOI: 10.1104/pp.103.028076
Kong, F. et al. Interorganelle communication: peroxisomal MALATE DEHYDROGENASE2 connects lipid catabolism to photosynthesis through redox coupling in Chlamydomonas. Plant Cell 30, 1824–1847 (2018). DOI: 10.1105/tpc.18.00361
Bailleul, B. et al. Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms. Nature 524, 366–369 (2015). DOI: 10.1038/nature14599
Gain, G. et al. Trophic state alters the mechanism whereby energetic coupling between photosynthesis and respiration occurs in Euglena gracilis. N. Phytol. 232, 1603–1617 (2021). DOI: 10.1111/nph.17677
Catalanotti, C. et al. Fermentation metabolism and its evolution in algae. Front. Plant Sci. 4, 150–167 (2013). DOI: 10.3389/fpls.2013.00150
Endo, T. & Asada, K. Dark induction of the non-photochemical quenching of chlorophyll fluorescence by acetate in Chlamydomonas reinhardtii. Plant Cell Physiol. 37, 551–555 (1996). DOI: 10.1093/oxfordjournals.pcp.a028979
Tian, L. et al. pH dependence, kinetics and light-harvesting regulation of nonphotochemical quenching in Chlamydomonas. Proc. Natl Acad. Sci. USA 116, 8320–8325 (2019). DOI: 10.1073/pnas.1817796116
Liguori, N. et al. Regulation of light harvesting in the green alga Chlamydomonas reinhardtii: the C-terminus of LHCSR is the knob of a dimmer switch. J. Am. Chem. Soc. 135, 18339–18342 (2013). DOI: 10.1021/ja4107463
Bonente, G. et al. Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii. PLoS Biol. 9, e1000577–e1000594 (2011). DOI: 10.1371/journal.pbio.1000577
Dinc, E. et al. LHCSR1 induces a fast and reversible pH-dependent fluorescence quenching in LHCII in Chlamydomonas reinhardtii cells. Proc. Natl Acad. Sci. USA 113, 7673–7678 (2016). DOI: 10.1073/pnas.1605380113
Peers, G. et al. An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462, 518–521 (2009). DOI: 10.1038/nature08587
Bennoun, P. Evidence for a respiratory chain in the chloroplast. Proc. Natl Acad. Sci. USA 79, 4352–4356 (1982). DOI: 10.1073/pnas.79.14.4352
Finazzi, G. & Rappaport, F. In vivo characterization of the electrochemical proton gradient generated in darkness in green algae and its kinetic effects on cytochrome b6f turnover. Biochemistry 37, 9999–10005 (1998). DOI: 10.1021/bi980320j
Joliot, P. & Joliot, A. Dependence of delayed luminescence upon adenosine triphosphatase activity in Chlorella. Plant Physiol. 65, 691–696 (1980). DOI: 10.1104/pp.65.4.691
Bennoun, P. Chlororespiration revisited-mitochondrial-plastid interactions in Chlamydomonas. Biochim. Biophys. Acta Bioenerg. 1186, 59–66 (1994). DOI: 10.1016/0005-2728(94)90135-X
Cournac, L. et al. Electron flow between photosystem II and oxygen in chloroplasts of photosystem I-deficient algae is mediated by a quinol oxidase involved in chlororespiration. J. Biol. Chem. 275, 17256–17262 (2000). DOI: 10.1074/jbc.M908732199
Nawrocki, W. J. et al. State transitions redistribute rather than dissipate energy between the two photosystems in Chlamydomonas. Nat. Plants 2, 1–7 (2016). DOI: 10.1038/nplants.2016.31
Unlu, C. et al. State transitions in Chlamydomonas reinhardtii strongly modulate the functional size of photosystem II but not of photosystem I. Proc. Natl Acad. Sci. USA 111, 3460–3465 (2014). DOI: 10.1073/pnas.1319164111
Cardol, P. et al. Impaired respiration discloses the physiological significance of state transitions in Chlamydomonas. Proc. Natl Acad. Sci. USA 106, 15979–15984 (2009). DOI: 10.1073/pnas.0908111106
Ballottari, M. et al. Identification of pH-sensing sites in the light harvesting complex stress-related 3 protein essential for triggering non-photochemical quenching in Chlamydomonas reinhardtii. J. Biol. Chem. 291, 7334–7346 (2016). DOI: 10.1074/jbc.M115.704601
Hirooka, S. et al. Acidophilic green algal genome provides insights into adaptation to an acidic environment. Proc. Natl Acad. Sci. USA 114, E8304–E8313 (2017). DOI: 10.1073/pnas.1707072114
Plancke, C. et al. Lack of isocitrate lyase in Chlamydomonas leads to changes in carbon metabolism and in the response to oxidative stress under mixotrophic growth. Plant J. 77, 404–417 (2014). DOI: 10.1111/tpj.12392
Roach, T. et al. Diurnal changes in the xanthophyll cycle pigments of freshwater algae correlate with the environmental hydrogen peroxide concentration rather than non-photochemical quenching. Ann. Bot. 116, 519–527 (2015). DOI: 10.1093/aob/mcv034
Houille-Vernes, L. et al. Plastid terminal oxidase 2 (PTOX2) is the major oxidase involved in chlororespiration in Chlamydomonas. Proc. Natl Acad. Sci. USA 108, 20820–20825 (2011). DOI: 10.1073/pnas.1110518109
Desplats, C. et al. Characterization of Nda2, a plastoquinone-reducing type II NAD(P)H dehydrogenase in Chlamydomonas chloroplasts. J. Biol. Chem. 284, 4148–4157 (2009). DOI: 10.1074/jbc.M804546200
Buchert, F. et al. Disentangling chloroplast ATP synthase regulation by proton motive force and thiol modulation in Arabidopsis leaves. Biochim. Biophys. Acta Bioenerg. 1862, 148434–148445 (2021). DOI: 10.1016/j.bbabio.2021.148434
Lemaire, C. et al. Restoration of phototrophic growth in a mutant of Chlamydomonas reinhardtii in which the chloroplast atpB gene of the ATP synthase has a deletion: an example of mitochondria-dependent photosynthesis. Proc. Natl Acad. Sci. USA 85, 1344–1348 (1988). DOI: 10.1073/pnas.85.5.1344
Allorent, G. et al. A dual strategy to cope with high light in Chlamydomonas reinhardtii. Plant Cell 25, 545–557 (2013). DOI: 10.1105/tpc.112.108274
Shore, P. A. et al. The gastric secretion of drugs: a pH partition hypothesis. J. Pharm. Exp. Ther. 119, 361–369 (1957).
Takeshige, K. & Tazawa, M. Measurement of the cytoplasmic and vacuolar buffer capacities in Chara corallina. Plant Physiol. 89, 1049–1052 (1989). DOI: 10.1104/pp.89.4.1049
Junge, W. et al. The buffering capacity of the internal phase of thylakoids and the magnitude of the pH changes inside under flashing light. Biochim. Biophys. Acta 546, 121–141 (1979). DOI: 10.1016/0005-2728(79)90175-0
Hauser, M. et al. Chloroplast pH values and buffer capacities in darkened leaves as revealed by CO2 solubilization in-vivo. Planta 196, 199–204 (1995). DOI: 10.1007/BF00201374
Oja, V. et al. The size of the lumenal proton pool in leaves during induction and steady-state photosynthesis. Photosynth. Res. 110, 73–88 (2011). DOI: 10.1007/s11120-011-9697-2
Foyer, C. et al. The mechanisms contributing to photosynthetic control of electron transport by carbon assimilation in leaves. Photosynth. Res. 25, 83–100 (1990). DOI: 10.1007/BF00035457
Shikanai, T. & Yamamoto, H. Contribution of cyclic and pseudo-cyclic electron transport to the formation of proton motive force in chloroplasts. Mol. Plant 10, 20–29 (2017). DOI: 10.1016/j.molp.2016.08.004
Foyer, C. H. et al. Photosynthetic control of electron transport and the regulation of gene expression. J. Exp. Bot. 63, 1637–1661 (2012). DOI: 10.1093/jxb/ers013
Bailleul, B. et al. Electrochromism: a useful probe to study algal photosynthesis. Photosynth. Res. 106, 179–189 (2010). DOI: 10.1007/s11120-010-9579-z
Malone, L. A. et al. Cytochrome b6f–orchestrator of photosynthetic electron transfer. Biochim. Biophys. Acta Bioenerg. 1862, 148380–148401 (2021). DOI: 10.1016/j.bbabio.2021.148380
Ting, C. S. & Owens, T. G. Photochemical and non-photochemical fluorescence quenching processes in the diatom Phaeodactylum tricornutum. Plant Physiol. 101, 1323–1330 (1993). DOI: 10.1104/pp.101.4.1323
Wilhelm, C. & Duval, J.-C. Fluorescence induction kinetics as a tool to detect a chlororespiratory activity in the prasinophycean alga, Mantoniella squamata. Biochim. Biophys. Acta Bioenerg. 1016, 197–202 (1990). DOI: 10.1016/0005-2728(90)90058-C
Gasulla, F. et al. Chlororespiration induces non-photochemical quenching of chlorophyll fluorescence during darkness in lichen chlorobionts. Physiol. Plant 166, 538–552 (2019). DOI: 10.1111/ppl.12792
Von Jagow, G. et al. An inhibitor of mitochondrial respiration which binds to cytochrome b and displaces quinone from the iron-sulfur protein of the cytochrome bc1 complex. J. Biol. Chem. 259, 6318–6326 (1984). DOI: 10.1016/S0021-9258(20)82143-7
Ravenel, J. & Peltier, G. Inhibition of chlororespiration by myxothiazol and antimycin A in Chlamydomonas reinhardtii. Photosynth. Res. 28, 141–148 (1991). DOI: 10.1007/BF00054127
Nawrocki, W. J. et al. The plastid terminal oxidase: its elusive function points to multiple contributions to plastid physiology. Annu. Rev. Plant Biol. 66, 49–74 (2015). DOI: 10.1146/annurev-arplant-043014-114744
Nakanishi-Matsui, M. & Futai, M. Stochastic rotational catalysis of proton pumping F-ATPase. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 2135–2142 (2008). DOI: 10.1098/rstb.2008.2266
Berne, C. et al. Bacterial adhesion at the single-cell level. Nat. Rev. Microbiol. 16, 616–627 (2018). DOI: 10.1038/s41579-018-0057-5
Gabba, M. et al. Weak acid permeation in synthetic lipid vesicles and across the yeast plasma membrane. Biophys. J. 118, 422–434 (2020). DOI: 10.1016/j.bpj.2019.11.3384
Poburko, D. et al. Dynamic regulation of the mitochondrial proton gradient during cytosolic calcium elevations. J. Biol. Chem. 286, 11672–11684 (2011). DOI: 10.1074/jbc.M110.159962
Curien, G. et al. The water to water cycles in microalgae. Plant Cell Physiol. 57, 1354–1363 (2016).
Nawrocki, W. J. et al. Chlororespiration controls growth under intermittent light. Plant Physiol. 179, 630–639 (2019). DOI: 10.1104/pp.18.01213
Burlacot, A. et al. Flavodiiron-mediated O2 photoreduction links H2 production with CO2 fixation during the anaerobic induction of photosynthesis. Plant Physiol. 177, 1639–1649 (2018). DOI: 10.1104/pp.18.00721
Kindle, K. High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc. Natl Acad. Sci. USA 87, 1228–1232 (1990). DOI: 10.1073/pnas.87.3.1228
Sueoka, N. Mitotic replication of deoxyribonucleic acid in Chlamydomonas Reinhardi. Proc. Natl Acad. Sci. USA 46, 83–91 (1960). DOI: 10.1073/pnas.46.1.83
Wang, J. et al. Optimization of culturing conditions of Porphyridium cruentum using uniform design. World J. Microbiol. Biotechnol. 23, 1345–1350 (2007). DOI: 10.1007/s11274-007-9369-8
Ashton, N. W. et al. Analysis of gametophytic development in the moss, physcomitrella patens, using auxin and cytokinin resistant mutants. Planta 144, 427–435 (1979). DOI: 10.1007/BF00380118
Li, X. et al. A genome-wide algal mutant library and functional screen identifies genes required for eukaryotic photosynthesis. Nat. Genet. 51, 627–635 (2019). DOI: 10.1038/s41588-019-0370-6
Li, X. et al. An indexed, mapped mutant library enables reverse genetics studies of biological processes in Chlamydomonas reinhardtii. Plant Cell 28, 367–387 (2016). DOI: 10.1105/tpc.15.00465
Johnson, E. A. et al. Expression by Chlamydomonas reinhardtii of a chloroplast ATP synthase with polyhistidine-tagged beta subunits. Biochim. Biophys. Acta Bioenerg. 1767, 374-380 (2007). DOI: 10.1016/j.bbabio.2007.03.003
Klughammer, C. & Schreiber, U. Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method. PAM Appl. Notes 1, 27–35 (2008).
Furutani, R. et al. The difficulty of estimating the electron transport rate at photosystem I. J. Plant Res. 135, 565–577 (2021). DOI: 10.1007/s10265-021-01357-6
Braun, F. J. & Hegemann, P. Direct measurement of cytosolic calcium and pH in living Chlamydomonas reinhardtii cells. Eur. J. Cell Biol. 78, 199–208 (1999). DOI: 10.1016/S0171-9335(99)80099-5
Ozkan, P. & Mutharasan, R. A rapid method for measuring intracellular pH using BCECF-AM. Biochim. Biophys. Acta 1572, 143–148 (2002). DOI: 10.1016/S0304-4165(02)00303-3
Tobey, N. A. et al. Mechanisms of HCl-induced lowering of intracellular pH in rabbit esophageal epithelial cells. Gastroenterology 105, 1035–1044 (1993). DOI: 10.1016/0016-5085(93)90946-A
Schreiber, U. & Klughammer, C. New accessory for the DUAL-PAM-100: the P515/535 module and examples of its application. PAM Appl. Notes 1, 1–10 (2008).
Joliot, P. & Delosme, R. Flash-induced 519 nm absorption change in green algae. Biochim. Biophys. Acta 357, 267–284 (1974). DOI: 10.1016/0005-2728(74)90066-8
Yang, W. et al. Alternative acetate production pathways in Chlamydomonas reinhardtii during dark anoxia and the dominant role of chloroplasts in fermentative acetate production. Plant Cell 26, 4499–4518 (2014). DOI: 10.1105/tpc.114.129965
Marchand, J. et al. Ion and metabolite transport in the chloroplast of algae: lessons from land plants. Cell. Mol. Life Sci. 75, 2153–2176 (2018). DOI: 10.1007/s00018-018-2793-0