Acoustic black hole; Piezoelectric; Vibration mitigation; Dynamic substructuring
Abstract :
[en] Acoustic black holes (ABHs) offer new opportunities for designing mechanical devices that can trap and reduce the vibrational energy of a system. This paper proposes the digital realization of the ABH effect, also called virtual ABH (VABH), through piezoelectric patches. A self-contained and autonomous reduction vibration device is thus developed. However, piezoelectric VABHs raise theoretical and experimental difficulties which are discussed herein. An improved pseudo-collocated approach is proposed, and the synthetic impedance is theoretically derived. Experiments are conducted using a cantilever beam where the VABH is implemented with few piezoelectric patches. It is shown to provide excellent vibration reduction over a large frequency range. The herein presented original concept solves the two long-lasting challenges of mechanical ABHs, i.e, its manufacturing and inability to operate at low frequencies, making it highly attractive for applications on real-life structures.
Frahm H 1911 Device for damping vibrations of bodies US Patent (US989958A)
Den Hartog J P Ormondroyd J 1928 Theory of the dynamic vibration absorber J. Appl. Mech. 50 11 22 11-22
Mironov M 1988 Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval Sov. Phys. Acoust. 34 318 9 318-9
Krylov V V Tilman F J B S 2004 Acoustic ‘black holes’ for flexural waves as effective vibration dampers J. Sound Vib. 274 605 19 605-19 10.1016/j.jsv.2003.05.010
Conlon S C Fahnline J B Semperlotti F 2015 Numerical analysis of the vibroacoustic properties of plates with embedded grids of acoustic black holes J. Acoust. Soc. Am. 137 447 10.1121/1.4904501
Aklouche O Pelat A Maugeais S Gautier F 2016 Scattering of flexural waves by a pit of quadratic profile inserted in an infinite thin plate J. Sound Vib. 375 38 52 38-52 10.1016/j.jsv.2016.04.034
Lee J Y Jeon W 2017 Vibration damping using a spiral acoustic black hole J. Acoust. Soc. Am. 141 1437 45 1437-45 10.1121/1.4976687
Zhou T Cheng L 2018 A resonant beam damper tailored with acoustic black hole features for broadband vibration reduction J. Sound Vib. 430 174 84 174-84 10.1016/j.jsv.2018.05.047
Hagood N W von Flotow A 1991 Damping of structural vibrations with piezoelectric materials and passive electrical networks J. Sound Vib. 146 243 68 243-68 10.1016/0022-460X(91)90762-9
Yu H Wang K W 2007 Piezoelectric networks for vibration suppression of mistuned bladed disks J. Vib. Acoust. 129 559 66 559-66 10.1115/1.2775511
Alaluf D Mokrani B Wang K Preumont A 2019 Damping of piezoelectric space instruments: application to an active optics deformable mirror CEAS Space J. 11 543 51 543-51 10.1007/s12567-019-00278-4
Zhang L Kerschen G Cheng L 2020 Electromechanical coupling and energy conversion in a PZT-coated acoustic black hole beam Int. J. Appl. Mech. 12 2050095 10.1142/S1758825120500957
Li H Touzé C Pelat A Gautier F 2021 Combining nonlinear vibration absorbers and the acoustic black hole for passive broadband flexural vibration mitigation Int. J. Non-Linear Mech. 129 103558 10.1016/j.ijnonlinmec.2020.103558
Zhen Y Li H Tang Y 2023 Novel vibration control method of acoustic black hole plates using active-passive piezoelectric networks Thin-Walled Struct. 186 110705 10.1016/j.tws.2023.110705
Fleming A J Behrens S Moheimani O R 2000 Synthetic impedance for implementation of piezoelectric shunt-damping circuits Electron. Lett. 36 1525 6 1525-6
Matten G Collet M Cogan S Sadoulet-Reboul E 2014 Synthetic impedance for adaptive piezoelectric metacomposite Proc. Technol. 15 84 89 84-89 10.1016/j.protcy.2014.09.037
Sugino C Ruzzene M Erturk A 2018 Design and analysis of piezoelectric metamaterial beams with synthetic impedance shunt circuits IEEE/ASME Trans. Mech. 23 2144 55 2144-55 10.1109/TMECH.2018.2863257
Yi K Matten G Ouisse M Sadoulet-Reboul E Collet M Chevallier G 2020 Programmable metamaterials with digital synthetic impedance circuits for vibration control Smart Mater. Struct. 29 035005 10.1088/1361-665X/ab6693
Raze G Jadoul A Guichaux S Broun V Kerschen G 2019 A digital nonlinear piezoelectric tuned vibration absorber Smart Mater. Struct. 29 015007 10.1088/1361-665X/ab5176
Alshaqaq M Sugino C Erturk A 2022 Programmable rainbow trapping and band-gap enhancement via spatial group-velocity tailoring in elastic metamaterials Phys. Rev. Appl. 17 L021003 10.1103/PhysRevApplied.17.L021003
Maugan F Chesne S Monteil M Collet M Yi K 2019 Enhancement of energy harvesting using acoustical-black-hole-inspired wave traps Smart Mater. Struct. 28 075015 10.1088/1361-665X/ab1f11
Sugino C Alshaqaq M Erturk A 2022 Spatially programmable wave compression and signal enhancement in a piezoelectric metamaterial waveguide Phys. Rev. B 106 174304 10.1103/PhysRevB.106.174304
Soleimanian S Petrone G Franco F De Rosa S Kołakowski P 2023 Numerical realization of a semi-active virtual acoustic black hole effect Front. Mech. Eng. 9 1126489 10.3389/fmech.2023.1126489
Quaegebeur S Raze G Cheng L Kerschen G 2023 A virtual acoustic black hole on a cantilever beam J. Sound Vib. 554 117697 10.1016/j.jsv.2023.117697
Thomas O Deü J-F Ducarne J 2009 Vibrations of an elastic structure with shunted piezoelectric patches: efficient finite element formulation and electromechanical coupling coefficients Int. J. Numer. Methods Eng. 80 235 68 235-68 10.1002/nme.2632
Yang S Y Huang W H 1998 Is a collocated piezoelectric sensor/actuator pair feasible for an intelligent beam? J. Sound Vib. 216 529 38 529-38 10.1006/jsvi.1998.1753
Lee Y-S 2011 Comparison of collocation strategies of sensor and actuator for vibration control J. Mech. Sci. Technol. 25 61 68 61-68 10.1007/s12206-010-1102-0
Preumont A 2011 Collocated versus Non-collocated Control Vibration Control of Active Structures: An Introduction (Solid Mechanics and Its Applications) 3rd edn ed Preumont A Springer pp 117 30 pp 117-30
Lazarus A Thomas O Deü J F 2012 Finite element reduced order models for nonlinear vibrations of piezoelectric layered beams with applications to NEMS Finite Elem. Anal. Des. 49 35 51 35-51 10.1016/j.finel.2011.08.019
Craig R Bampton M 1968 Coupling of substructures for dynamic analyses AIAA J. 6 1313 9 1313-9 10.2514/3.4741
Preumont A 2011 Stability Vibration Control of Active Structures: An Introduction (Solid Mechanics and Its Applications) 3rd edn ed Preumont A Springer pp 299 316 pp 299-316
Cheer J Hook K Daley S 2021 Active feedforward control of flexural waves in an acoustic black hole terminated beam Smart Mater. Struct. 30 035003 10.1088/1361-665X/abd90f
Li H Sécail-Géraud M Pelat A Gautier F Touzé C 2021 Experimental evidence of energy transfer and vibration mitigation in a vibro-impact acoustic black hole Appl. Acoust. 182 108168 10.1016/j.apacoust.2021.108168
Zhang L Sun X Dietrich J Kerschen G Cheng L 2023 Enhanced energy transfer and multimodal vibration mitigation in an electromechanical acoustic black hole beam J. Sound Vib. 561 117841 10.1016/j.jsv.2023.117841