[en] Glasses are commonly described as disordered counterparts of the corresponding crystals; both usually share the same short-range order, but glasses lack long-range order. Here, a quantification of chemical bonding in a series of glasses and their corresponding crystals is performed, employing two quantum-chemical bonding descriptors, the number of electrons transferred and shared between adjacent atoms. For popular glasses like SiO2, GeSe2, and GeSe, the quantum-chemical bonding descriptors of the glass and the corresponding crystal hardly differ. This explains why these glasses possess a similar short-range order as their crystals. Unconventional glasses, which differ significantly in their short-range order and optical properties from the corresponding crystals are only found in a distinct region of the map spanned by the two bonding descriptors. This region contains crystals of GeTe, Sb2Te3, and GeSb2Te4, which employ metavalent bonding. Hence, unconventional glasses are only obtained for solids, whose crystals employ theses peculiar bonds.
Disciplines :
Physics Chemistry
Author, co-author :
Raty, Jean-Yves ; Université de Liège - ULiège > Département de chimie (sciences)
Bichara, Christophe; Centre Interdisciplinaire de Nanoscience de Marseille, Aix-Marseille University, CNRS UMR 7325, 13288 Marseille, France
Schön, Carl-Friedrich; Institute of Physics 1A, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany
Gatti, Carlo ; Consiglio Nazionale delle Ricerche - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Milano 20133, Italy ; Istituto Lombardo Accademia di Scienze e Lettere, Milano 20121, Italy
F.R.S.-FNRS - Fonds de la Recherche Scientifique FWB - Fédération Wallonie-Bruxelles DFG - Deutsche Forschungsgemeinschaft BMBF - Bundesministerium für Bildung und Forschung
W. H. Zachariasen, The atomic arrangement in glass. J. Am. Chem. Soc. 54, 3841-3851 (1932).
M. Wuttig, N. Yamada, Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824-832 (2007).
Q. Wang et al., Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photon. 10, 60-65 (2016).
I. Boybat et al., Neuromorphic computing with multi-memristive synapses. Nat. Commun. 9, 2514 (2018).
A. V. Kolobov et al., Understanding the phase-change mechanism of rewritable optical media. Nat. Mater. 3, 703-708 (2004).
J. Y. Raty et al., Aging mechanisms in amorphous phase-change materials. Nat. Commun. 6, 1-8 (2015).
S. Caravati, M. Bernasconi, T. D. Kühne, M. Krack, M. Parrinello, Coexistence of tetrahedral-and octahedral-like sites in amorphous phase change materials. Appl. Phys. Lett. 91, 171906 (2007).
W. Zhang, R. Mazzarello, M. Wuttig, M. Ma, Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat. Rev. Mater. 4, 150-168 (2019).
F. Rao et al., Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing. Science 358, 1423-1427 (2017).
D. Loke et al., Breaking the speed limits of phase-change memory. Science 336, 1566-1569 (2012).
G. Bruns et al., Nanosecond switching in GeTe phase change memory cells. Appl. Phys. Lett. 95, 043108 (2009).
M. Wuttig, V. L. Deringer, X. Gonze, C. Bichara, J. Y. Raty, Incipient metals: Functional materials with a unique bonding mechanism. Adv. Mater. 30, 1803777 (2018).
M. Wuttig, H. Bhaskaran, T. Taubner, T., Phase-change materials for non-volatile photonic applications. Nat. Photon. 11, 465-476 (2017).
D. N. Basov, R. D. Averitt, D. Hsieh, Towards properties on demand in quantum materials. Nat. Mater. 16, 1077 (2017).
X. Fradera, M. A. Austen, R. W. F. Bader, The Lewis model and beyond. J. Phys. Chem. A 103, 304-314 (1999).
P. Golub, A. I. Baranov, Domain overlap matrices from plane-wave- based methods of electronic structure calculation. J. Chem Phys. 145, 154107 (2016).
A. Otero-de- la- Roza, A. P. Pendás, E. R. Johnson, Quantitative electron delocalization in solids from maximally localized Wannier functions. J. Chem. Theory Comput. 14, 4699-4710 (2018).
J. Y. Raty et al., A quantum-mechanical map for bonding and properties in solids. Adv. Mater. 31, 1806280 (2019).
M. Wuttig et al., Revisiting the nature of chemical bonding in chalcogenides to explain and design their properties. Adv. Mater. 35, 2208485 (2023).
D. A. Keen, M. T. T. Dove, Local structures of amorphous and crystalline phases of silica, SiO2, by neutron total scattering. J. Phys.: Condens. Matter 11, 9263 (1999).
T. H. Lee, S. R. Elliott, S.R., Chemical bonding in chalcogenides: The concept of multicenter hyperbonding. Adv. Mater. 32, 2000340 (2020).
J. Y. Raty, C. Otjacques, J. P. Gaspard, C. Bichara, C., Amorphous structure and electronic properties of the Ge1Sb2Te4 phase change material. Solid State Sci. 12, 193-198 (2010).
L. Guarneri et al., Metavalent bonding in crystalline solids: How does it collapse? Adv. Mater. 33, 2102356 (2021).
M. Micoulaut, J. Y. Raty, C. Otjacques, C. Bichara, Understanding amorphous phase-change materials from the viewpoint of Maxwell rigidity. Phys. Rev. B 81, 174206 (2010).
C. Persch et al., The potential of chemical bonding to design crystallization and vitrification kinetics. Nat. Commun. 12, 4978 (2021).
A. Heßler et al., In3SbTe2 as a programmable nanophotonics material platform for the infrared. Nat. Commun. 12, 924 (2021).
L. Conrads et al., Reconfigurable and polarization dependent perfect absorber for large-area emissivity control based on the plasmonic phase-change material In3SbTe2. Adv. Opt. Mater. 11, 2202696 (2023).
N. B. M. Schröter et al., Chiral topological semimetal with multifold band crossings and long Fermi arcs. Nat. Phys. 15, 759-765 (2019).
R. S. K. Madsen et al., Ultrahigh-field 67Zn NMR reveals short-range disorder in zeolitic imidazolate framework glasses. Science 367, 6485 (2020).
A. Singh, M. K. Jana, D. B. Mitzi, Reversible crystal-glass transition in a metal halide perovskite. Adv. Mater. 33, 2005868 (2021).
M. Wuttig et al., Halide perovskites: Third generation photovoltaic materials empowered by an unconventional bonding mechanism. Adv. Funct. Mater. 32, 2110166 (2022).
W. Kohn, L. J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).
G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal- amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994).
J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
P. E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953-17978 (1994).
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).
K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, D. C. Langreth, Higher-accuracy van der Waals density functional. Phys. Rev. B 82, 08110 (2010).
S. Baroni, R. Resta, Ab initio calculation of the macroscopic dielectric constant in silicon. Phys. Rev. B 33, 7017 (1986).
P. Giannozzi et al., Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).
A. Otero-de- la- Roza, E. R. Johnson, V. Luaña, Critic2: A program for real-space analysis of quantum chemical interactions in solids. Comput. Phys. Commun. 185, 1007-1018 (2014).
A. Otero-de- la- Roza, https://github.com/aoterodelaroza/critic2 (2018). Accessed 1 September 2018.
A. A. Mostofi et al., Wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685-699 (2008).
R. Hoppe, Effective coordination numbers (ECoN) and mean fictive ionic radii (MEFIR). Z. Kristallogr. Cryst. Mater. 150, 23-52 (1979).