[en] Bite force is often associated with specific morphological features, such as sagittal crests. The presence of a pronounced sagittal crest in some tapirs (Perissodactyla: Tapiridae) was recently shown to be negatively correlated with hard-object feeding, in contrast with similar cranial structures in carnivorans. The aim of this study was to investigate bite forces and sagittal crest heights across a wide range of modern and extinct tapirs and apply a comparative investigation to establish whether these features are correlated across a broad phylogenetic scope. We examined a sample of 71 specimens representing 15 tapir species (5 extant, 10 extinct) using the dry-skull method, linear measurements of cranial features, phylogenetic reconstruction, and comparative analyses. Tapirs were found to exhibit variation in bite force and sagittal crest height across their phylogeny and between different biogeographical realms, with high-crested morphologies occurring mostly in Neotropical species. The highest bite forces within tapirs appear to be driven by estimates for the masseter-pterygoid muscle complex, rather than predicted forces for the temporalis muscle. Our results demonstrate that relative sagittal crest height is poorly correlated with relative cranial bite force, suggesting high force application is not a driver for pronounced sagittal crests in this sample. The divergent biomechanical capabilities of different contemporaneous tapirids may have allowed multiple species to occupy overlapping territories and partition resources to avoid excess competition. Bite forces in tapirs peak in Pleistocene species, independent of body size, suggesting possible dietary shifts as a potential result of climatic changes during this epoch.
Disciplines :
Zoology
Author, co-author :
Van Linden, Lisa ; Functional Morphology Lab, Department of Biology, Campus Drie Eiken, Universiteit Antwerpen, Antwerpen, Belgium
Stoops, Kim; Functional Morphology Lab, Department of Biology, Campus Drie Eiken, Universiteit Antwerpen, Antwerpen, Belgium
Dumbá, Larissa C C S ; Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
Cozzuol, Mario A ; Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
Maclaren, James ; Université de Liège - ULiège > Département de géologie > Evolution and diversity dynamics lab ; Functional Morphology Lab, Department of Biology, Campus Drie Eiken, Universiteit Antwerpen, Antwerpen, Belgium
Language :
English
Title :
Sagittal crest morphology decoupled from relative bite performance in Pleistocene tapirs (Perissodactyla: Tapiridae).
The authors wish to thank C. Cartelle (Museu de Ciências Naturais PUC Minas), L. F. B. Flamarion (Coleção de Mastozoologia do Museu Nacional do Rio de Janeiro), F. A. Perini (Coleção de Mastozoologia da Universidade Federal de Minas Gerais), O. Pauwels (Royal Belgian Institute of Natural Sciences), J. Lésur (Museum National d'Histoire Naturelle), L. Tyteca (MuseOs Natuurhistorichmuseum), and R. C. Hulbert Jr. (Florida Museum of Natural History) for the access to tapir collections. This study was conceived by JAM. Measurements were collected by LVL, KS, and JAM; first‐hand images were provided by LCCSD, MAC, and JAM. Statistical analyses were performed by LVL; drafts were written by LVL and KS, with all authors contributing to the final version of the manuscript. This work was facilitated by doctoral and post‐doctoral funding awarded to JAM (doctoral by the Fonds Wetenschappelijk Onzerzoek [FWO]; post‐doctoral by Fonds de la Recherche Scientifique [FNRS]; travel grant from the Florida Museum of Natural History [FLMNH]), and a doctoral fellowship awarded to LCCSD (by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior [CAPES]).The authors wish to thank C. Cartelle (Museu de Ciências Naturais PUC Minas), L. F. B. Flamarion (Coleção de Mastozoologia do Museu Nacional do Rio de Janeiro), F. A. Perini (Coleção de Mastozoologia da Universidade Federal de Minas Gerais), O. Pauwels (Royal Belgian Institute of Natural Sciences), J. Lésur (Museum National d'Histoire Naturelle), L. Tyteca (MuseOs Natuurhistorichmuseum), and R. C. Hulbert Jr. (Florida Museum of Natural History) for the access to tapir collections. This study was conceived by JAM. Measurements were collected by LVL, KS, and JAM; first-hand images were provided by LCCSD, MAC, and JAM. Statistical analyses were performed by LVL; drafts were written by LVL and KS, with all authors contributing to the final version of the manuscript. This work was facilitated by doctoral and post-doctoral funding awarded to JAM (doctoral by the Fonds Wetenschappelijk Onzerzoek [FWO]; post-doctoral by Fonds de la Recherche Scientifique [FNRS]; travel grant from the Florida Museum of Natural History [FLMNH]), and a doctoral fellowship awarded to LCCSD (by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior [CAPES]).
Acosta H, Cavelier J, Londono S (1996). Aportes al Conocimiento de la Biologia de la Danta de Montana, Tapirus pinchaque, en los Andes Centrales de Colombia. Biotropica 28, 258–66.
Bapst DW (2012). Paleotree: An R package for paleontological and phylogenetic analyses of evolution. Methods in Ecology and Evolution 3, 803–7.
Bates KT, Wang L, Dempsey M, Broyde S, Fagan MJ, Cox PG (2021). Back to the bones: Do muscle area assessment techniques predict functional evolution across a macroevolutionary radiation? Journal of the Royal Society Interface 18, 20210324.
Becerra F, Echeverría AI, Casinos A, Vassallo AI (2014). Another one bites the dust: Bite force and ecology in three caviomorph rodents (Rodentia, Hystricognathi). Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 321, 220–32.
Behrensmeyer AK, Turner A (2013). Taxonomic Occurrences of Tapiridae recorded in the Paleobiology Database. Fossilworks. http://www.fossilworks.org/
Bertrand OC, Schillaci MA, Silcox MT (2016). Cranial dimensions as estimators of body mass and locomotor habits in extant and fossil rodents. Journal of Vertebrate Paleontology 36, e1014905.
Blanco RE, Rinderknecht A, Lecuona G (2012). The bite force of the largest fossil rodent (Hystricognathi, Caviomorpha, Dinomyidae). Lethaia 45, 157–63.
Brünnich MT (1772). Zoologiæ fundamenta prælectionibus academicis accomodata: Grunde i Dyrelæren. pp. 1–253.
Button DJ, Rayfield EJ, Barrett PM (2014). Cranial biomechanics underpins high sauropod diversity in resource-poor environments. Proceedings of the Royal Society B: Biological Sciences 281, 20142114.
Campbell KM, Santana SE (2017). Do differences in skull morphology and bite performance explain dietary specialization in sea otters? Journal of Mammals 98, 1408–16.
Campos-Arceiz A, Traeholt C, Jaffar R, Santamaria L, Corlett RT (2012). Asian tapirs are no elephants when it comes to seed dispersal. Biotropica 44, 220–27.
Cassini GH, Vizcaíno SF, Bargo MS (2012). Body mass estimation in Early Miocene native South American ungulates: A predictive equation based on 3D landmarks. Journal of Zoology 287, 53–64.
Christiansen P, Wroe S (2007). Bite forces and evolutionary adaptations to feeding ecology in carnivores. Ecology 88, 347–58.
Colbert MW (2005). The facial skeleton of the early Oligocene Colodon (Perissodactyla, Tapiroidea). Palaeontologia Electronica 8, 8.1.13.
Colbert MW (2006). Hesperaletes (Mammalia: Perissodactyla), a new tapiroid from the middle Eocene of southern California. Journal of Vertebrate Paleontology 26, 697–711.
Cox PG, Rinderknecht A, Blanco RE (2015). Predicting bite force and cranial biomechanics in the largest fossil rodent using finite element analysis. Journal of Anatomy 226, 215–23.
Cozzuol MA, Clozato CL, Holanda EC et al. (2013). A new species of tapir from the Amazon. Journal of Mammals 94, 1331–45.
Currey JD (2006). Bones: Structure and Mechanics. Princeton University Press, New Jersey.
Czaplewski NJ, Puckette WL, Russell C (2002). A Pleistocene tapir and associated mammals from the southwestern Ozark Highland. Journal of Cave and Karst Studies 64, 97–107.
Davis JL, Santana SE, Dumont ER, Grosse IR (2010). Predicting bite force in mammals: Two-dimensional versus three-dimensional lever. Journal of Experimental Biology 213, 1844–51.
Demes B (1982). The resistance of primate skulls against mechanical stresses. Journal of Human Evolution 11, 687–91.
DeSantis LRG (2011). Stable isotope ecology of extant tapirs from the Americas. Biotropica 43, 746–54.
DeSantis LRG, Sharp AC, Schubert BW, Colbert MW, Wallace SC, Grine FE (2020). Clarifying relationships between cranial form and function in tapirs, with implications for the dietary ecology of early hominins. Scientific Reports 10, 8809.
Desmarest AG (1819). Tapir l'inde, Tapirus indicus. Nouveau dictionnaire d'histoire naturelle, appliquée aux arts, à l'agriculture, à l'économie rurale et domestique, à la médecine. Deterville, Paris. p. 458.
de Soler BG, Vall-llosera GC, van der Made J et al. (2012). A new key locality for the Pliocene vertebrate record of Europe: The Camp dels Ninots maar (NE Spain). Geologica Acta 10, 1–17.
Downer CC (1996). The mountain tapir, endangered ‘flagship’ species of the high Andes. Oryx 30, 45–58.
Downer CC (2001). Observations on the diet and habitat of the mountain tapir (Tapirus pinchaque). Journal of Zoology 254, 279–91.
Dumbá LCCS, Dutra RP, Cozzuol MA (2018). Cranial geometric morphometric analysis of the genus Tapirus (Mammalia, Perissodactyla). Journal of Mammalian Evolution 26, 545–55.
Ellis JL, Thomason JJ, Kebreab E, France J (2008). Calibration of estimated biting forces in domestic canids: Comparison of post-mortem and in vivo measurements. Journal of Anatomy 212, 769–80.
Emerson SB, Radinsky L (1980). Functional analysis of sabertooth cranial morphology. Paleobiology 6, 295–312.
Engels S, Schultz JA (2019). Evolution of the power stroke in early Equoidea (Perissodactyla, Mammalia). Palaeobiodiversity and Palaeoenvironments 99, 271–91.
Ferrero BS, Noriega JI (2007). A new upper Pleistocene tapir from Argentina: Remarks on the phylogenetics and diversification of neotropical Tapiridae. Journal of Vertebrate Paleontology 27, 504–11.
Figueirido B, Tseng ZJ, Martín-Serra A (2013). Skull shape evolution in durophagous carnivorans. Evolution 67, 1975–93.
Franco-Moreno RA, Polly PD, Toro-Ibacache V et al. (2020). Bite force in four pinniped species from the West Coast of Baja California, Mexico, in relation to diet, feeding strategy, and niche differentiation. Journal of Mammalian Evolution 28, 307–21.
Franzen JL (2010). Pseudo horses and relatives of horses. In: Franzen JL, ed. The Rise of Horses: 55 Million Years of Evolution. Johns Hopkins University Press, Baltimore, MD, pp. 145–64.
Freeman PW, Lemen CA (2008). A simple morphological predictor of bite force in rodents. Journal of Zoology 275, 418–22.
Gignac PM, Erickson GM (2016). Ontogenetic bite-force modeling of Alligator mississippiensis: Implications for dietary transitions in a large-bodied vertebrate and the evolution of crocodylian feeding. Journal of Zoology 299, 229–38.
Gignac PM, Smaers JB, O'Brien HD (2021). Unexpected bite-force conservatism as a stable performance foundation across mesoeucrocodylian historical diversity. The Anatomical Record 305, 2823–37.
Gill TN (1865). October 10th - Dr. Bridges in the Chair. Proceedings of the Academy of Natural Sciences of Philadelphia 17, 183.
Gordon IJ, Illius AW (1989). Resource partitioning by ungulates on the Isle of Rhum. Oecologia 79, 383–9.
Gorniak GC (1985). Trends in the actions of mammalian masticatory muscles. Integrative and Comparative Biology 25, 331–8.
Graham RW, Grady F, Ryan TM (2019). Juvenile Pleistocene tapir skull from Russells Reserve Cave, Bath County, Virginia: Implications for cold climate adaptations. Quaternary International 530–531, 35–41.
Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W (2008). GEIGER: Investigating evolutionary radiations. Bioinformatics 24, 129–31.
Hartstone-Rose A, Perry JMG, Morrow CJ (2012). Bite force estimation and the fiber architecture of felid masticatory muscles. The Anatomical Record 295, 1336–51.
Hemae KM (1967). Masticatory function in the mammals. Journal of Dental Research 46, 883–93.
Henry O, Feer F, Sabatier D (2000). Diet of the Lowland Tapir (Tapirus terrestris L.) in French Guiana. Biotropica 32, 364.
Herbst EC, Lautenschlager S, Bastiaans D, Miedema F, Scheyer TM (2021). Modeling tooth enamel in FEA comparisons of skulls: Comparing common simplifications with biologically realistic models. iScience 24, 103182.
Herrel A, De Smet A, Aguirre LF, Aerts P (2008). Morphological and mechanical determinants of bite force in bats: Do muscles matter? Journal of Experimental Biology 211, 86–91.
Herring SW, Scapino RP (1973). Physiology of feeding in miniature pigs. Journal of Morphology 141, 427–60.
Herring SW, Rafferty KL, Liu ZJ, Marshall CD (2001). Jaw muscles and the skull in mammals: The biomechanics of mastication. Comparative Biochemistry and Physiology - Part A Molecular and Integrative Physiology 131, 207–19.
Holanda E (2006). New records of Tapirus from the late Pleistocene of southwestern Amazonia, Brazil. Revista Brasileria de Paleontologia 9, 193–200.
Holanda EC, Ferrero BS (2013). Reappraisal of the genus Tapirus (Perissodactyla, Tapiridae): Systematics and phylogenetic affinities of the South American Tapirs. Journal of Mammalian Evolution 20, 33–44.
Holanda EC, Ferigolo J, Ribeiro AM (2011). New Tapirus species (Mammalia: Perissodactyla: Tapiridae) from the upper Pleistocene of Amazonia, Brazil. Journal of Mammalogy 92, 112–20.
Holmes M, Taylor AB (2021). The influence of jaw-muscle fibre-type phenotypes on estimating maximum muscle and bite forces in primates. Interface Focus 11, 20210009.
Hulbert RC (2010). A new early Pleistocene tapir (Mammalia: Perissodactyla) from Florida, with a review of Blancan tapirs from the state. Bulletin of the Florida Museum of Natural History 49, 67–126.
Hulbert RC, Wallace SC (2005). Phylogenetic analysis of Late Cenozoic Tapirus (Mammalia, Perissodactyla). Journal of Vertebrate Paleontology 25, 72A.
Hulbert RC, Wallace SC, Klippel WE, Parmalee PW (2009). Cranial morphology and systematics of an extraordinary sample of the Late Neogene dwarf tapir, Tapirus polkensis (Olsen). Journal of Paleontology 83, 238–62.
Janzen DH (1982). Seeds in tapir dung in Santa Rosa National Park, Costa Rica. Brenesia 19/20, 129–35.
Ji X-P, Jablonski NG, Tong H et al. (2015). Tapirus yunnanensis from Shuitangba, a terminal Miocene hominoid site in Zhaotong, Yunnan Province of China. Vertebrata Palasiatica 53, 177–92.
Klein DR, Bay C (1994). Resource partitioning by mammalian herbivores in the high Arctic. Oecologia 97, 439–50.
Koc D, Dogan A, Bek B (2010). Bite force and influential factors on bite force measurements: A literature review. European Journal of Dentistry 4, 223–32.
Koch PL, Hoppe KA, Webb SD (1998). The isotopic ecology of late Pleistocene mammals in North America, Part 1: Florida. Chemical Geology 152, 119–38.
Kohn MJ, McKay MP, Knight JL (2005). Dining in the Pleistocene - Who's on the menu? Geology 33, 649–52.
Kuninori T, Tomonari H, Uehara S, Kitashima F, Yagi T, Miyawaki S (2014). Influence of maximum bite force on jaw movement during gummy jelly mastication. Journal of Oral Rehabilitation 41, 338–45.
Law CJ, Mehta RS (2019). Dry versus wet and gross: Comparisons between the dry skull method and gross dissection in estimations of jaw muscle cross-sectional area and bite forces in sea otters. Journal of Morphology 280, 1706–13.
Legendre P (2018). Package ‘lmodel2’. https://cran.r-project.org/web/packages/lmodel2/index.html
Leidy T (1860). Description of vertebrate fossils. In: Simmons HF, ed. Post-Pliocene Fossils of South Carolina. Russel & Jones, Charleston, SC, pp. 99–122.
Leuthold W (1978). Ecological separation among browsing ungulates in Tsavo East National Park, Kenya. Oecologia 35, 241–52.
Lieber RL, Fridén J (2000). Functional and clinical significance of skeletal muscle architecture. Muscle & Nerve 23, 1647–66.
Linnaeus C (1758). Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata (ed. 10) 1, pp. 1–824.
Lizcano DJ, Pizarro V, Cavelier J Carmona J (2002). Geographic distribution and population size of the mountain tapir (Tapirus pinchaque) in Colombia. Journal of Biogeography 29, 7–15.
MacFadden BJ, Cerling TE (1996). Mammalian herbivore communities, ancient feeding ecology, and carbon isotopes: A 10 million-year sequence from the neogene of Florida. Journal of Vertebrate Paleontology 16, 103–15.
MacLaren JA, Hulbert RC, Wallace SC, Nauwelaerts S (2018). A morphometric analysis of the forelimb in the genus Tapirus (Perissodactyla: Tapiridae) reveals influences of habitat, phylogeny and size through time and across geographical space. Zoological Journal of Linnean Society 184, 499–515.
MacLaren JA, Nauwelaerts S (2016). A three-dimensional morphometric analysis of upper forelimb morphology in the enigmatic tapir (Perissodactyla: Tapirus) hints at subtle variations in locomotor ecology. Journal of Morphology 277, 1469–85.
MacLaren JA, Nauwelaerts S (2017). Interspecific variation in the tetradactyl manus of modern tapirs (Perissodactyla: Tapirus) exposed using geometric morphometrics. Journal of Morphology 278, 1517–35.
Maddison WP, Maddison DR (2019). Mesquite: a modular system for evolutionary analysis. Version 3.61. http://www.mesquiteproject.org
Maestri R, Patterson BD, Fornel R, Monteiro LR, de Freitas TRO (2016). Diet, bite force and skull morphology in the generalist rodent morphotype. Journal of Evolutionary Biology 29, 2191–204.
Matthew WD, Granger W (1923). New fossil mammals from the Pliocene of Sze-Chuan, China. Bulletin of the American Museum of Natural History 48, 563–98.
Milewski AV, Dierenfeld ES (2013). Structural and functional comparison of the proboscis between tapirs and other extant and extinct vertebrates. Integrative Zoology 8, 84–94.
Murie J (1871). The Malayan tapir. Journal of Anatomy Physiology 6, 131–69, 512.15–19.
Nabavizadeh A (2016). Evolutionary trends in the jaw adductor mechanics of ornithischian dinosaurs. The Anatomical Record 299, 271–94.
Nett EM, Jaglowski B, Ravosa LJ, Ravosa DD, Ravosa MJ (2021). Mechanical properties of food and masticatory behavior in llamas, Llama glama. Journal of Mammals 102, 1375–89.
O'Farrill G, Galetti M, Campos-Arceiz A (2013). Frugivory and seed dispersal by tapirs: An insight on their ecological role. Integrative Zoology 8, 4–17.
Olsen SJ (1960). Age and faunal relationships of Tapiravus remains from Florida. Journal of Paleontology 34, 164–7.
Orme D, Freckleton RP, Thomas GH, Petzoldt T, Fritz SA, Isaac N (2013). CAPER: Canalyses of phylogenetics and evolution in R. Methods in Ecology and Evolution 3, 145–51.
Padilla M, Dowler RC (1994). Tapirus terrestris. Mammalian Species 481, 1–8.
Padilla M, Dowler RC, Downer CC (2010). Tapirus pinchaque (Perissodactyla: Tapiridae). Mammalian Species 42, 166–82.
Pagel M (1999). Inferring the historical patterns of biological evolution. Nature 401, 877–84.
Palmqvist P, Martínez-Navarro B, Pérez-Claros JA et al. (2011). The giant hyena Pachycrocuta brevirostris: Modelling the bone-cracking behavior of an extinct carnivore. Quaternary International 243, 61–79.
Pisias NG, Moore TC (1981). The evolution of the Pleistocene climate: A time series approach. Earth and Planetary Science Letters 52, 450–8.
Radinsky LB (1965). Evolution of the tapiroid skeleton from Heptodon to Tapirus. Bulletin of the Museum of Comparative Zoology 134, 69–106.
Radinsky LB (1966). A new genus of Early Eocene Tapiroid (Mammalia, Perissodactyla). Journal of Paleontology 40, 740–2.
Randau M, Carbone C, Turvey ST (2013). Canine evolution in Sabretoothed Carnivores: Natural selection or sexual selection? PLoS ONE 8, e72868.
R Core Team (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
Revell LJ (2012). Phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3, 217–23.
Reynolds PS (2002). How big is a giant? The importance of method in estimating body size of extinct mammals. Journal of Mammals 83, 321–32.
Rojas RR, Mora WV, Lozano EP, Herrera ER T, Heymann EW, Bodmer R (2021). Ontogenetic skull variation in an Amazonian population of lowland tapir, Tapirus terrestris (Mammalia: Perissodactyla) in the department of Loreto, Peru. Acta Amazonica 51, 311–22.
Roulin M (1829). Rapport sur un Memoire de M.Roulin, ayant pour objet la decouverte d'une nouvelle espece de Tapir dans l'Amerique du Sud, fait a l'Academie royal des Sciences. Annales des Sciences Naturelles 17, 107–12.
Ruiz-García M, Castellanos A, Bernal L, Pinedo M, Kaston F, Shostell J (2016b). Mitogenomics of the mountain tapir (Tapirus pinchaque, Tapiridae, Perissodactyla, Mammalia) in Colombia and Ecuador: Phylogeography and insights into the origin and systematics of the South American tapirs. Mammalian Biology 81, 163–75.
Ruiz-García M, Vsquez C, Pinedo-Castro M et al. (2012). Chapter 4: Phylogeography of the Mountain Tapir (Tapirus pinchaque) and the Central American Tapir (Tapirus bairdii) and the origins of the three Latin-American Tapirs by means of mtCyt-B sequences. Anamthawat-Jónsson, Kesara, Current Topics in Phylogenetics and Phylogeography of Terrestrial and Aquatic Systems. InTechOpen, London, UK, pp. 83–116.
Ruiz-García M, Vásquez C, Sandoval S, Kaston F, Luengas-Villamil K, Shostell JM (2016a). Phylogeography and spatial structure of the lowland tapir (Tapirus terrestris, Perissodactyla: Tapiridae) in South America. Mitochondrial DNA Part A 27, 2334–42.
Sakamoto M, Lloyd GT, Benton MJ (2010). Phylogenetically structured variance in felid bite force: The role of phylogeny in the evolution of biting performance. Journal of Evolutionary Biology 23, 463–78.
Sanson G (2006). The biomechanics of browsing and grazing. American Journal of Botany 93, 1531–45.
Santana SE, Dumont ER, Davis JL (2010). Mechanics of bite force production and its relationship to diet in bats. Functional Ecology 24, 776–84.
Savage RJG, Long MR (1986). Mammal Evolution: An Illustrated Guide. Facts on File Publications, UK.
Scherler L, Becker D, Berger JP (2011). Tapiridae (Perissodactyla, Mammalia) of the Swiss Molasse Basin during the Oligocene-Miocene transition. Journal of Vertebrate Paleontology 31, 479–96.
Schindelin J, Arganda-Carreras I, Frise E et al. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods 9, 676–82.
Schoch RM (1984). The type specimens of Tapiravus validus and Tapiravus rams (Mammalia, Perissodactyla), with a review of the genus, and a new report of Miotapirus (Miotapirus marslandensis Schoch and Prins, new species) from Nebraska. Postilla 195, 1–12.
Schultz CB, Martin LD, Corner RG (1975). Middle and Late Cenozoic tapirs from Nebraska. Bulletin of the University of Nebraska State Museum 10, 1–21.
Sellards EH (1918). The skull of a Pleistocene tapir including description of a new species and a note on the associated fauna and flora. Florida Geological Survey Annual Report 10, 57–70.
Sharp AC (2014). Three dimensional digital reconstruction of the jaw adductor musculature of the extinct marsupial giant Diprotodon optatum. PeerJ 2, e514.
Sharp AC, Rich TH (2016). Cranial biomechanics, bite force and function of the endocranial sinuses in Diprotodon optatum, the largest known marsupial. Journal of Anatomy 228, 984–95.
Shipley LA, Gross JE, Spalinger DE, Hobbs NT, Wunder BA (1994). The scaling of intake rate in mammalian herbivores. American Naturalist 143, 1055–82.
Slater GJ, Van Valkenburgh B (2009). Allometry and performance: The evolution of skull form and function in felids. Journal of Evolutionary Biology 22, 2278–87.
Snively E, Fahlke JM, Welsh RC (2015). Bone-breaking bite force of Basilosaurus isis (Mammalia, Cetacea) from the late Eocene of Egypt estimated by finite element analysis. PLoS ONE 10, e0118380.
Szalay FS (1969). Origin and evolution of function of the mesonychid condylarth feeding mechanism. Evolution 23, 703–20.
Tanner JB, Dumont ER, Sakai ST, Lundrigan BL, Holekamp KE (2008). Of arcs and vaults: The biomechanics of bone-cracking in spotted hyenas (Crocuta crocuta). Biological Journal of the Linnean Society 95, 246–55.
Therrien F (2005). Mandibular force profiles of extant carnivorans and implications for the feeding behaviour of extinct predators. Journal of Zoology 267, 249–70.
Thomason JJ (1991). Cranial strength in relation to estimated biting forces in some mammals. Canadian Journal of Zoology 69, 2326–33.
Thompson CJ, Ahmed NI, Veen T et al. (2017). Many-to-one form-to-function mapping weakens parallel morphological evolution. Evolution 71, 2738–49.
Tseng ZJ, Flynn JJ (2015). Are cranial biomechanical simulation data linked to known diets in extant taxa? A method for applying diet-biomechanics linkage models to infer feeding capability of extinct species. PLoS ONE 10, e0124020.
Van der Hammen T (1974). The pleistocene changes of vegetation and climate in tropical South America. Journal of Biogeography 1, 3–26.
Van Valkenburgh B (2007). Déjà vu: The evolution of feeding morphologies in the Carnivora. Integrative and Comparative Biology 47, 147–63.
Vogel ER, Zulfa A, Hardus M, Wich SA, Dominy NJ, Taylor AB (2014). Food mechanical properties, feeding ecology, and the mandibular morphology of wild orangutans. Journal of Human Evolution 75, 110–24.
Wainwright PC, Alfaro ME, Bolnick DI, Hulsey CD (2005). Many-to-one mapping of form to function: A general principle in organismal design? Integrative and Comparative Biology 45, 256–62.
Wortman JL, Earle C (1893). Ancestors of the tapir from the lower Miocene of Dakota. Bulletin of the American Museum of Natural History 5, 159–80.
Wroe S, Crowther M, Dortch J, Chong J (2004). The size of the largest marsupial and why it matters. Proceedings of the Royal Society B: Biological Sciences 271, 6–9.
Wroe S, McHenry C, Thomason J (2005). Bite club: Comparative bite force in big biting mammals and the prediction of predatory behaviour in fossil taxa. Proceedings of the Royal Society B: Biological Sciences 272, 619–25.