Marketing; Management Science and Operations Research; Strategy and Management; Management Information Systems
Abstract :
[en] Throughout its history, Operational Research has evolved to include methods, models and algorithms that have been applied to a wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first summarises the up-to-date knowledge and provides an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion and used as a point of reference by a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order. The authors dedicate this paper to the 2023 Turkey/Syria earthquake victims. We sincerely hope that advances in OR will play a role towards minimising the pain and suffering caused by this and future catastrophes.
Disciplines :
Quantitative methods in economics & management
Author, co-author :
Petropoulos, Fotios; School of Management, University of Bath, Bath, UK ; Makridakis Open Forecasting Center, University of Nicosia, Nicosia, Cyprus
Laporte, Gilbert; School of Management, University of Bath, Bath, UK ; Department of Decision Sciences, HEC Montréal, Montreal, Canada ; Molde University College, Molde, Norway
Aktas, Emel ; Cranfield School of Management, Cranfield University, Cranfield, UK
Alumur, Sibel A.; Department of Management Sciences, University of Waterloo, Waterloo, Canada
Archetti, Claudia; Department of Information Systems, Decision Sciences and Statistics, ESSEC Business School in Paris, Cergy, France
Ayhan, Hayriye; H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, USA
Battarra, Maria; School of Management, University of Bath, Bath, UK
Bennell, Julia A.; Centre for Decision Research, Leeds University Business School, University of Leeds, Leeds, United Kingdom
Bourjolly, Jean-Marie; Université du Québec à Montréal, Montreal, Canada
Boylan, John E. ; Centre for Marketing Analytics and Forecasting, Lancaster University Management School, Lancaster University, Lancaster, UK
Breton, Michèle; Department of Decision Sciences, HEC Montréal, Montreal, Canada
Canca, David ; Department of Industrial Engineering and Management Science I, School of Engineering, University of Seville, Seville, Spain
Charlin, Laurent; Department of Decision Sciences, HEC Montréal, Montreal, Canada ; Mila-Quebec AI Institute, Montreal, Canada
Chen, Bo ; Warwick Business School, University of Warwick, Coventry, UK
Cicek, Cihan Tugrul; Department of Industrial Engineering, Atilim University, Ankara, Turkey
Cox, Louis Anthony; Department of Business Analytics, University of Colorado School of Business, Denver, USA ; Cox Associates, Denver, USA
Currie, Christine S.M.; Mathematical Sciences Department, University of Southampton, Southampton, UK
Demeulemeester, Erik; Faculty of Economics and Business, Research Center for Operations Management, KU Leuven, Leuven, Belgium
Ding, Li; Durham University Business School, Durham University, Durham, UK
Disney, Stephen M.; Center for Simulation, Analytics, and Modelling, University of Exeter Business School, Exeter, UK
Ehrgott, Matthias; Department of Management Science, Lancaster University Management School, Lancaster University, Lancaster, UK
Eppler, Martin J.; University of St. Gallen, St. Gallen, Switzerland
Erdoğan, Güneş; School of Management, University of Bath, Bath, UK
Fortz, Bernard ; Université de Liège - ULiège > HEC Liège Research > HEC Liège Research: Business Analytics & Supply Chain Mgmt ; Département d’Informatique, Université Libre de Bruxelles, Brussels, Belgium ; Inria Lille-Nord Europe, Villeneuve d’Ascq, France
Franco, L. Alberto; School of Business and Economics, Loughborough University, Loughborough, UK ; Universidad del Pacífico, Lima, Perú
Frische, Jens; WHU – Otto Beisheim School of Management, Vallendar, Germany
Greco, Salvatore; Department of Economics and Business, University of Catania, Catania, Italy ; Portsmouth Business School, Centre of Operations Research and Logistics (CORL), University of Portsmouth, Portsmouth, UK
Gregory, Amanda J.; Faculty of Business, Law and Politics, Centre for Systems Studies, University of Hull, Hull, UK
Hämäläinen, Raimo P.; Systems Analysis Laboratory, Aalto University, Finland
Herroelen, Willy; Faculty of Economics and Business, Research Center for Operations Management, KU Leuven, Leuven, Belgium
Hewitt, Mike; Department of Information Systems and Supply Chain Management, Loyola University, Chicago, USA
Holmström, Jan; Department of Industrial Engineering and Management, Aalto University, Aalto, Finland
Hooker, John N.; Tepper School of Business, Carnegie Mellon University, Pittsburgh, USA
Işık, Tuğçe; Department of Industrial Engineering, Clemson University, Clemson, USA
Johnes, Jill; Department of Accounting, Finance and Economics, University of Huddersfield, Huddersfield, UK
Kara, Bahar Y.; Department of Industrial Engineering, Bilkent University, Ankara, Turkey
Karsu, Özlem ; Department of Industrial Engineering, Bilkent University, Ankara, Turkey
Kent, Katherine; Office for National Statistics, Newport, UK
Köhler, Charlotte; Europa Universität Viadrina, Frankfurt (Oder), Germany
Kunc, Martin; Southampton Business School, University of Southampton, Southampton, UK
Kuo, Yong-Hong; Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China ; HKU Musketeers Foundation Institute of Data Science, The University of Hong Kong, Pokfulam, Hong Kong, China
Letchford, Adam N. ; Department of Management Science, Lancaster University Management School, Lancaster University, Lancaster, UK
Leung, Janny; State Key Laboratory of Internet of Things for Smart City, Choi Kai Yau College, University of Macau, Taipa, Macau, China
Li, Dong; School of Business and Economics, Loughborough University, Loughborough, UK
Li, Haitao ; Supply Chain & Analytics Department, University of Missouri-St. Louis, St. Louis, USA
Lienert, Judit; Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
Ljubić, Ivana; ESSEC Business School, Cergy-Pontoise, France
Lodi, Andrea; Jacobs Technion-Cornell Institute, Cornell Tech and Technion – IIT, New York, USA
Lozano, Sebastián ; Department of Industrial Management, Escuela Superior de Ingenieros, University of Seville, Sevilla, Spain
Lurkin, Virginie; HEC Lausanne Faculty of Business and Economics, University of Lausanne, Lausanne, Switzerland
Martello, Silvano; DEI “Guglielmo Marconi”, Alma Mater Studiorum Università di Bologna, Bologna, Italy
McHale, Ian G.; Centre for Sports Business, University of Liverpool Management School, UK
Midgley, Gerald; Faculty of Business, Law and Politics, Centre for Systems Studies, University of Hull, Hull, UK ; Birmingham Leadership Institute, University of Birmingham, Birmingham, UK ; Department of Informatics, Faculty of Technology, Linnaeus University, Växjö, Sweden ; School of Innovation, Design and Engineering, Mälardalen University, Eskilstuna, Sweden ; School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
Morecroft, John D.W.; London Business School, London, UK
Mutha, Akshay; Grossman School of Business, University of Vermont, Burlington, Vermont, USA
Oğuz, Ceyda; Department of Industrial Engineering, Koç University, İstanbul, Turkey
Petrovic, Sanja; Nottingham University Business School, University of Nottingham, Nottingham, UK
Pferschy, Ulrich; Department of Operations and Information Systems, University of Graz, Graz, Austria
Psaraftis, Harilaos N.; Department of Technology, Management and Economics, Technical University of Denmark, Lyngby, Denmark
Rose, Sam; Department for Transport, London, UK
Saarinen, Lauri; Department of Industrial Engineering and Management, Aalto University, Aalto, Finland
Salhi, Said; Centre for Logistics and Heuristic optimisation, Kent Business School, University of Kent, Kent, UK
Song, Jing-Sheng; The Fuqua School of Business, Duke University, Durham, North Carolina, USA
Sotiros, Dimitrios; Department of Operations Research and Business Intelligence, Wrocław University of Science and Technology, Wrocław, Poland
Stecke, Kathryn E.; Naveen Jindal School of Management, The University of Texas at Dallas, Richardson, Texas, USA
Strauss, Arne K.; WHU – Otto Beisheim School of Management, Vallendar, Germany
Tarhan, İstenç; Department of Industrial Engineering, Koç University, İstanbul, Turkey
Thielen, Clemens; TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
Toth, Paolo; DEI “Guglielmo Marconi”, Alma Mater Studiorum Università di Bologna, Bologna, Italy
Van Woensel, Tom; Management Department, University of Exeter Business School, Exeter, UK
Berghe, Greet Vanden; School of Industrial Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
Vasilakis, Christos; School of Management, University of Bath, Bath, UK
Vaze, Vikrant; Department of Computer Science, KU Leuven, Gent, Belgium
Vigo, Daniele; Thayer School of Engineering, Dartmouth College, Hanover, USA
Virtanen, Kai; Department of Electrical, Electronic, and Information Engineering “G. Marconi” and CIRI-ICT, University of Bologna, Bologna, Italy ; Department of Mathematics and Systems Analysis, Aalto University, Helsinki, Finland
Wang, Xun; Department of Military Technology, National Defence University, Helsinki, Finland
Weron, Rafał; Department of Operations Research and Business Intelligence, Wrocław University of Science and Technology, Wrocław, Poland
White, Leroy; Logistics Systems Dynamics Group, Cardiff Business School, Cardiff University, UK
Yearworth, Mike; Center for Simulation, Analytics, and Modelling, University of Exeter Business School, Exeter, UK
Yıldırım, E. Alper; School of Mathematics, The University of Edinburgh, Edinburgh, UK
Zaccour, Georges; Department of Decision Sciences, HEC Montréal, Montreal, Canada
Zhao, Xuying; Mendoza College of Business, University of Notre Dame, Notre Dame, Indiana, USA
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Aardal, K., Bixby, R., Hurkens, C., Lenstra, A., Smeltink, J., 2000. Market split and basis reduction: Towards a solution of the Cornuéjols-Dawande instances. INFORMS Journal on Computing, 12, 192–202. https://doi.org/10.1287/ijoc.12.3.192.12635
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org.
Abbas, A. E., Tambe, M., von Winterfeldt, D., 2017. Improving homeland security decisions. Cambridge University Press.
Abbey, J. D., Blackburn, J., Guide, V. D. R., 2015. Optimal pricing for new and remanufactured products. Journal of Operations Management, 36, 130–146. https://doi.org/10.1016/j.jom.2015.03.007
Abbey, J. D., Kleber, R., Souza, G. C., Voigt, G., 2017. The role of perceived quality risk in pricing remanufactured products. Production and Operations Management, 26 (1), 100–115. https://doi.org/10.1111/poms.12628
Abbott, M., Doucouliagos, C., 2009. Competition and efficiency: Overseas students and technical efficiency in Australian and New Zealand universities. Education Economics, 17 (1), 31–57. https://doi.org/10.1080/09645290701773433
Accorsi, L., Lodi, A., Vigo, D., 2022. Guidelines for the computational testing of machine learning approaches to vehicle routing problems. Operations Research Letters, 50 (2), 229–234. https://doi.org/10.1016/j.orl.2022.01.018
Accorsi, L., Vigo, D., 2021. A fast and scalable heuristic for the solution of large-scale capacitated vehicle routing problems. Transportation Science, 55 (4), 832–856. https://doi.org/10.1287/trsc.2021.1059
Acito, F., Khatri, V., 2014. Business analytics: Why now and what next?Business Horizons, 57 (5), 565–570. https://doi.org/10.1016/j.bushor.2014.06.001
Ackermann, F., Eden, C., 2011. Making strategy: Mapping out strategic success (2nd ed.). SAGE.
Ackermann, F., Howick, S., 2022. Experiences of mixed method or practitioners: Moving beyond a technical focus to insights relating to modelling teams. Journal of the Operational Research Society, 73 (9), 1905–1918. https://doi.org/10.1080/01605682.2021.1970486
Ackoff, R. L., 1956. The development of operations research as a science. Operations Research, 4 (3), 265–295. https://doi.org/10.1287/opre.4.3.265
Ackoff, R. L., 1970. A black ghetto’s research on a university. Operations Research, 18 (5), 761–771. https://doi.org/10.1287/opre.18.5.761
Ackoff, R. L., 1977. Optimization + objectivity = optout. European Journal of Operational Research, 1 (1), 1–7. https://doi.org/10.1016/S0377-2217(77)81003-5
Ackoff, R. L., 1979a. The future of operational research is past. Journal of the Operational Research Society, 30 (2), 93–104. https://doi.org/10.2307/3009290
Ackoff, R. L., 1979b. Resurrecting the future of operational research. Journal of the Operational Research Society, 30 (3), 189–199. https://doi.org/10.2307/3009600
Ackoff, R. L., 1981. Creating the corporate future: Plan or be planned for. Wiley.
Acworth, P. A., Broadie, M., Glasserman, P., 1998. A comparison of some Monte Carlo and quasi Monte Carlo techniques for option pricing. In Niederreiter, H., Hellekalek, P., Larcher, G., Zinterhof, P. (Eds.), Monte Carlo and Quasi-Monte carlo methods 1996 (pp. 1–18). Springer-Verlag.
Adouani, Y., Jarboui, B., Masmoudi, M., 2022. A matheuristic for the 0–1 generalized quadratic multiple knapsack problem. Optimization Letters, 16, 37–58. https://doi.org/10.1007/s11590-019-01503-z
Afsharian, M., Podinovski, V. V., 2018. A linear programming approach to efficiency evaluation in nonconvex metatechnologies. European Journal of Operational Research, 268 (1), 268–280. https://doi.org/10.1016/j.ejor.2018.01.013
Afzali, H. H. A., Karnon, J., Gray, J., 2012. A critical review of model-based economic studies of depression: Modelling techniques, model structure and data sources. PharmacoEconomics, 30 (6), 461–482. https://doi.org/10.2165/11590500-000000000-00000
Agarwal, R., Ergun, Ö., 2008. Ship scheduling and network design for cargo routing in liner shipping. Transportation Science, 42 (2), 175–196. https://doi.org/10.1287/trsc.1070.0205
Agasisti, T., 2016. Cost structure, productivity and efficiency of the Italian public higher education industry 2001–2011. International Review of Applied Economics, 30 (1), 48–68. https://doi.org/10.1080/02692171.2015.1070130
Agatz, N., Campbell, A., Fleischmann, M., Savelsbergh, M., 2011. Time slot management in attended home delivery. Transportation Science, 45 (3), 435–449. https://doi.org/10.1287/trsc.1100.0346
Agatz, N., Campbell, A. M., Fleischmann, M., Van Nunen, J., Savelsbergh, M., 2013. Revenue management opportunities for internet retailers. Journal of Revenue and Pricing Management, 12 (2), 128–138. https://doi.org/10.1057/rpm.2012.51
Agatz, N., Fleischmann, M., Van Nunen, J. A., 2008. E-fulfillment and multi-channel distribution–A review. European Journal of Operational Research, 187 (2), 339–356. https://doi.org/10.1016/j.ejor.2007.04.024
Aghezzaf, E., 2005. Capacity planning and warehouse location in supply chains with uncertain demands. Journal of the Operational Research Society, 56 (4), 453–462. https://doi.org/10.1057/palgrave.jors.2601834
Agrawal, S., Avadhanula, V., Goyal, V., Zeevi, A., 2019. MNL-bandit: A dynamic learning approach to assortment selection. Operations Research, 67 (5), 1453–1485. https://doi.org/10.1287/opre.2018.1832
Ahuja, R. K., Magnanti, T. L., Orlin, J. B., 1993. Network flows: Theory, algorithms, and applications.Prentice Hall.
Aigner, D., Lovell, C. A. K., Schmidt, P., 1977. Formulation and estimation of stochastic frontier production function models. Journal of Econometrics, 6 (1), 21–37. https://doi.org/10.1016/0304-4076(77)90052-5
AIMMS. 2022. AIMMS. https://www.aimms.com/
Akçalı, E., Çetinkaya, S., Üster, H., 2009. Network design for reverse and closed-loop supply chains: An annotated bibliography of models and solution approaches. Networks, 53 (3), 231–248. https://doi.org/10.1002/net.20267
Akhmedov, M., Kwee, I., Montemanni, R., 2016. A divide and conquer matheuristic algorithm for the prize-collecting steiner tree problem. Computers & Operations Research, 70, 18–25. https://doi.org/10.1016/j.cor.2015.12.015
Akhtar, S., Scarf, P., Rasool, Z., 2015. Rating players in test match cricket. Journal of the Operational Research Society, 66 (4), 684–695. https://doi.org/10.1057/jors.2014.30
Al Hajj Hassan, L., Hewitt, M., Mahmassani, H. S., 2022. Daily load planning under different autonomous truck deployment scenarios. Transportation Research Part E: Logistics and Transportation Review, 166, 102885. https://doi.org/10.1016/j.tre.2022.102885
Al-Kanj, L., Nascimento, J., Powell, W. B., 2020. Approximate dynamic programming for planning a ride-hailing system using autonomous fleets of electric vehicles. European Journal of Operational Research, 284 (3), 1088–1106. https://doi.org/10.1016/j.ejor.2020.01.033
Albano, A., Sapuppo, G., 1980. Optimal allocation of two-dimensional irregular shapes using heuristic search methods. IEEE Transactions on Systems, Man, and Cybernetics, 10 (5), 242–248. https://doi.org/10.1109/TSMC.1980.4308483
Albayrak Ünal, Ö., Erkayman, B., Usanmaz, B., 2023. Applications of artificial intelligence in inventory management: A systematic review of the literature. Archives of Computational Methods in Engineering, 30 (4), 2605–2625. https://doi.org/10.1007/s11831-022-09879-5
Alexander, C., 1992. The Kalai–Smorodinsky bargaining solution in wage negotiations. Journal of the Operational Research Society, 43, 779–786. https://doi.org/10.2307/2583096
Alfandari, L., Ljubić, I., da Silva, M. D. M., 2022. A tailored benders decomposition approach for last-mile delivery with autonomous robots. European Journal of Operational Research, 299 (2), 510–525. https://doi.org/10.1016/j.ejor.2021.06.048
Alfieri, A., Groot, R., Kroon, L., Schrijver, A., 2006. Efficient circulation of railway rolling stock. Transportation Science, 40 (3), 378–391. https://doi.org/10.1287/trsc.1060.0155
Algaba, A., Ardia, D., Bluteau, K., Borms, S., Boudt, K., 2020. Econometrics meets sentiment: An overview of methodology and applications. Journal of Economic Surveys, 34 (3), 512–547. https://doi.org/10.1111/joes.12370
Ali, S., Ramos, A. G., Carravilla, M. A., Oliveira, J. F., 2022. On-line three-dimensional packing problems: A review of off-line and on-line solution approaches. Computers & Industrial Engineering, 168, 108122. https://doi.org/10.1016/j.cie.2022.108122
Allen, R., Athanassopoulos, A., Dyson, R. G., Thanassoulis, E., 1997. Weights restrictions and value judgements in data envelopment analysis: Evolution, development and future directions. Annals of Operations Research, 73, 13–34.
Allon, G., Van Mieghem, J. A., 2010. Global dual sourcing: Tailored base-surge allocation to near- and offshore production. Management Science, 56 (1), 110–124. https://doi.org/10.1287/mnsc.1090.1099
Almgren, R., Chriss, N., 2001. Optimal execution of portfolio transactions. Journal of Risk, 3, 5–40. https://doi.org/10.21314/JOR.2001.041
Altay, N., GreenIII, W. G., 2006. OR/MS research in disaster operations management. European Journal of Operational Research, 175 (1), 475–493. https://doi.org/10.1016/j.ejor.2005.05.016
Altay, N., Labonte, M., 2014. Challenges in humanitarian information management and exchange: Evidence from Haiti. Disasters, 38 (s1), S50–S72. https://doi.org/10.1111/disa.12052
Altın, A., Fortz, B., Thorup, M., Ümit, H., 2013. Intra-domain traffic engineering with shortest path routing protocols. Annals of Operations Research, 204 (1), 65–95. https://doi.org/10.1007/s10479-012-1270-7
Alumur, S., Kara, B. Y., 2008. Network hub location problems: The state of the art. European Journal of Operational Research, 190, 1–21. https://doi.org/10.1016/j.ejor.2007.06.008
Alumur, S. A., Campbell, J. F., Contreras, I., Kara, B. Y., Marianov, V., O’Kelly, M. E., 2021. Perspectives on modeling hub location problems. European Journal of Operational Research, 291 (1), 1–17. https://doi.org/10.1016/j.ejor.2020.09.039
Alvarez, J. F., Tsilingiris, P., Engebrethsen, E. S., Kakalis, N. M. P., 2011. Robust fleet sizing and deployment for industrial and independent bulk ocean shipping companies. INFOR: Information Systems and Operational Research, 49 (2), 93–107. https://doi.org/10.3138/infor.49.2.093
Álvarez-Miranda, E., Salgado-Rojas, J., Hermoso, V., Garcia-Gonzalo, J., Weintraub, A., 2020. An integer programming method for the design of multi-criteria multi-action conservation plans. Omega, 92, 102147. https://doi.org/10.1016/j.omega.2019.102147
Alvarez-Valdes, R., Martinez, A., Tamarit, J. M., 2013. A branch & bound algorithm for cutting and packing irregularly shaped pieces. International Journal of Production Economics, 145 (2), 463–477. https://doi.org/10.1016/j.ijpe.2013.04.007
Alyahyan, E., Düstegör, D., 2020. Predicting academic success in higher education: Literature review and best practices. International Journal of Educational Technology in Higher Education, 17, 3. https://doi.org/10.1186/s41239-020-0177-7
Amazon Last Mile Routing. 2021. Research challenge. Retrieved September 14, 2021, from https://routingchallenge.mit.edu/
Anandalingam, G., 1987. Asymmetric players and bargaining for profit shares in natural resource development. Management Science, 33 (8), 1048–1057. https://doi.org/10.1287/mnsc.33.8.1048
Andersen, D. F., Vennix, J. A. M., Richardson, G. P., Rouwette, E. A. J. A., 2007. Group model building: Problem structuring, policy simulation and decision support. Journal of the Operational Research Society, 58 (5), 691–694. https://doi.org/10.1057/palgrave.jors.2602339
Anderson, E., Chen, B., Shao, L., 2017. Supplier competition with option contracts for discrete blocks of capacity. Operations Research, 65 (4), 952–967. https://doi.org/10.1287/opre.2017.1593
Anderson, E., Chen, B., Shao, L., 2022. Capacity games with supply function competition. Operations Research, 70 (4), 1969–1983. https://doi.org/10.1287/opre.2021.2221
Andersson, H., Duesund, J. M., Fagerholt, K., 2011. Ship routing and scheduling with cargo coupling and synchronization constraints. Computers & Industrial Engineering, 61 (4), 1107–1116. https://doi.org/10.1016/j.cie.2011.07.001
Andersson, H., Fagerholt, K., Hobbesland, K., 2015. Integrated maritime fleet deployment and speed optimization: Case study from RoRo shipping. Computers & Operations Research, 55, 233–240. https://doi.org/10.1016/j.cor.2014.03.017
Andras, V., 2010. Omnet++. In Klaus, W., Mesut, G., James, G. (Eds.), Modeling and tools for network simulation (pp. 35–59). Springer.
Angelelli, E., Mansini, R., Speranza, M. G., 2010. Kernel search: A general heuristic for the multi-dimensional knapsack problem. Computers & Operations Research, 37 (11), 2017–2026. https://doi.org/10.1016/j.cor.2010.02.002
Angelus, A., 2023. Generalizations of the clark-scarf model and analysis. In Song, J.-S. (Ed.), Research handbook on inventory management. Edward Elgar Publishing.
Annabi, A., Breton, M., François, P., 2012. Resolution of financial distress under chapter 11. Journal of Economic Dynamics and Control, 36 (12), 1867–1887. https://doi.org/10.1016/j.jedc.2012.06.004
Antunes, D., Vaze, V., Antunes, A. P., 2019. A robust pairing model for airline crew scheduling. Transportation Science, 53 (6), 1751–1771. https://doi.org/10.1287/trsc.2019.0897
Aparicio, J., Crespo-Cebada, E., Pedraja-Chaparro, F., Santín, D., 2017. Comparing school ownership performance using a pseudo-panel database: A Malmquist-type index approach. European Journal of Operational Research, 256 (2), 533–542. https://doi.org/10.1016/j.ejor.2016.06.030
Aparicio, J., Ruiz, J. L., Sirvent, I., 2007. Closest targets and minimum distance to the Pareto-efficient frontier in DEA. Journal of Productivity Analysis, 28 (3), 209–218. https://doi.org/10.1007/s11123-007-0039-5
Applegate, D., Bixby, R., Chvátal, V., Cook, W., 2007. The traveling salesman problem: A computational study.Princeton University Press.
Applegate, D. L., Bixby, R. E., Chvátal, V., Cook, W. J., 2011. The traveling salesman problem. Princeton University Press.
Arana-Jiménez, M., Sánchez-Gil, M. C., Lozano, S., Younesi, A., 2022. Efficiency assessment using fuzzy production possibility set and enhanced Russell Graph measure. Computational and Applied Mathematics, 41 (2), 79. https://doi.org/10.1007/s40314-022-01780-y
Araújo, A. M., Santos, D., Marques, I., Barbosa-Povoa, A., 2020. Blood supply chain: A two-stage approach for tactical and operational planning. OR Spectrum, 43, 1023–1053. https://doi.org/10.1007/s00291-020-00600-1
Archetti, C., Bertazzi, L., 2021. Recent challenges in routing and inventory routing: E-commerce and last-mile delivery. Networks, 77 (2), 255–268. https://doi.org/10.1002/net.21995
Archetti, C., Bertazzi, L., Laporte, G., Speranza, M. G., 2007. A branch-and-cut algorithm for a vendor-managed inventory-routing problem. Transportation Science, 41 (3), 382–391. https://doi.org/10.1287/trsc.1060.0188
Archetti, C., Boland, N., Speranza, M. G., 2017. A matheuristic for the multivehicle inventory routing problem. INFORMS Journal on Computing, 29 (3), 377–387. https://doi.org/10.1287/ijoc.2016.0737
Archetti, C., Corberán, A., Plana, I., Sanchis, J. M., Speranza, M. G., 2015. A matheuristic for the team orienteering arc routing problem. European Journal of Operational Research, 245, 392–401. https://doi.org/10.1016/j.ejor.2015.03.022
Argyris, N., Karsu, Ö., Yavuz, M., 2022. Fair resource allocation: Using welfare-based dominance constraints. European Journal of Operational Research, 297 (2), 560–578. https://doi.org/10.1016/j.ejor.2021.05.003
Ariely, D., Simonson, I., 2003. Buying, bidding, playing, or competing? value assessment and decision dynamics in online auctions. Journal of consumer psychology: The official journal of the Society for Consumer Psychology, 13 (1), 113–123. https://doi.org/10.1207/153276603768344834
Aringhieri, R., Bruni, M. E., Khodaparasti, S., van Essen, J. T., 2017. Emergency medical services and beyond: Addressing new challenges through a wide literature review. Computers & Operations Research, 78, 349–368. https://doi.org/10.1016/j.cor.2016.09.016
Arnold, F., Sörensen, K., 2019. What makes a VRP solution good? The generation of problem-specific knowledge for heuristics. Computers & Operations Research, 106, 280–288. https://doi.org/10.1016/j.cor.2018.02.007
Arnold, P., Peeters, D., Thomas, I., 2004. Modelling a rail/road intermodal transportation system. Transportation Research Part E: Logistics and Transportation Review, 40 (3), 255–270. https://doi.org/10.1016/j.tre.2003.08.005
Arrow, K. J., Karlin, S., Scarf, H. E., 1958. Studies in the mathematical theory of inventory and production. Stanford University Press.
Artzner, P., Delbaen, F., Eber, J.-M., Heath, D., 1999. Coherent measures of risk. Mathematical Finance, 9 (3), 203–228. https://doi.org/10.1111/1467-9965.00068
Arvan, M., Fahimnia, B., Reisi, M., Siemsen, E., 2019. Integrating human judgement into quantitative forecasting methods: A review. Omega, 86, 237–252. https://doi.org/10.1016/j.omega.2018.07.012
Asghari, M., Jaber, M. Y., Mirzapour Al-e-hashem, S. M. J., 2023. Coordinating vessel recovery actions: Analysis of disruption management in a liner shipping service. European Journal of Operational Research, 307 (2), 627–644. https://doi.org/10.1016/j.ejor.2022.08.039
Asmuni, H., Burke, E. K., Garibaldi, J. M., McCollum, B., Parkes, A. J., 2009. An investigation of fuzzy multiple heuristic orderings in the construction of university examination timetables. Computers & Operations Research, 36 (4), 981–1001. https://doi.org/10.1016/j.cor.2007.12.007
Åström, K. J., 2012. Introduction to stochastic control theory. Courier Corporation.
Åström, K. J., Kumar, P. R., 2014. Control: A perspective. Automatica, 50 (1), 3–43. https://doi.org/10.1016/j.automatica.2013.10.012
Åström, K. J., Wittenmark, B., 2013. Adaptive control.Courier Corporation.
Atan, Z., Ahmadi, T., Stegehuis, C., de Kok, T., Adan, I., 2017. Assemble-to-order systems: A review. European Journal of Operational Research, 261 (3), 866–879. https://doi.org/10.1016/j.ejor.2017.02.029
Atasu, A., Sarvary, M., Van Wassenhove, L. N., 2008. Remanufacturing as a marketing strategy. Management Science, 54 (10), 1731–1746. https://doi.org/10.1287/mnsc.1080.0893
Athanasopoulos, G., Gamakumara, P., Panagiotelis, A., Hyndman, R. J., Affan, M., 2020. Hierarchical forecasting. In P.Fuleky (Ed.), Macroeconomic forecasting in the era of big data: Theory and practice (pp. 689–719). Springer.
Atkinson, S., Gary, M. S., 2016. Mergers and acquisitions: Modeling decision making in integration projects. In M.Kunc, J.Malpass, & L.White (Eds.), Behavioral operational research: Theory, methodology and practice (pp. 319–336). Palgrave Macmillan.
Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M., 1999. Complexity and approximation: Combinatorial optimization problems and their approximability properties. Springer.
Aven, T., 2015. Risk analysis. John Wiley & Sons.
Aven, T., 2020. Three influential risk foundation papers from the 80s and 90s: Are they still state-of-the-art?Reliability Engineering & System Safety, 193, 106680. https://doi.org/10.1016/j.ress.2019.106680
Aviv, Y., 2003. A time-series framework for supply-chain inventory management. Operations Research, 51 (2), 210–227. https://doi.org/10.1287/opre.51.2.210.12780
Axsäter, S., 1993. Continuous review policies for multi-level inventory systems with stochastic demand. Handbooks in Operations Research and Management Science, 4, 175–197.
Axsäter, S., 1996. Using the deterministic EOQ formula in stochastic inventory control. Management Science, 42 (6), 830–834. https://doi.org/10.1287/mnsc.42.6.830
Axsäter, S., 2003. Supply chain operations: Serial and distribution inventory systems. In S. C.Graves, A. G.de Kok (Eds.), Handbooks in operations research and management science (Vol. 11., pp. 525–559). Elsevier.
Axsäter, S., 2006. Inventory control. Springer.
Axsäter, S., Rosling, K., 1993. Installation vs. echelon stock policies for multilevel inventory control. Management Science, 39 (10), 1274–1280. https://doi.org/10.1287/mnsc.39.10.1274
Ayhan, H., Baccelli, F., 2001. Expansions for joint laplace transform of stationary waiting times in (max,+)-linear systems with poisson input. Queueing Systems, 37 (1), 291–328.
Ayhan, H., Palmowski, Z., Schegel, S., 2004. Cyclic queueing networks with subexponential service trimes. Journal of Applied Probability, 41 (3), 291–301. https://doi.org/10.1239/jap/1091543426
Azoury, K. S., 1985. Bayes solution to dynamic inventory models under unknown demand distribution. Management Science, 31 (9), 1150–1160. https://doi.org/10.1287/mnsc.31.9.1150
Baar, T., Brucker, P., Knust, S., 1999. Tabu search algorithms and lower bounds for the resource-constrained project scheduling problem. In S.Voβ, S.Martello, I. H.Osman., C.Roucairol (Eds.), Meta-heuristics: Advances and trends in local search paradigms for optimization (pp. 1–18). Springer US.
Babich, V., Birge, J. R., et al., 2021. The interface of finance, operations, and risk management. Foundations and Trends® in Technology, Information and Operations Management, 15 (1–2), 1–203. https://doi.org/10.1561/0200000101
Babich, V., Hilary, G., 2020. OM Forum—Distributed ledgers and operations: What operations management researchers should know about blockchain technology. Manufacturing & Service Operations Management, 22 (2), 223–240. https://doi.org/10.1287/msom.2018.0752
Baboolal, K., Griffiths, J. D., Knight, V. A., Nelson, A. V., Voake, C., Williams, J. E., 2012. How efficient can an emergency unit be? A perfect world model. Emergency Medicine Journal, 29 (12), 972–977. https://doi.org/10.1136/emermed-2011-200101
Baccelli, F., Cohen, G., Olsder, G. J., Quadrat, J.-P., 1992. Synchronization and linearity: An algebra for discrete event systems. John Wiley & Sons Ltd.
Baccelli, F., Hasenfuss, S., Schmidt, V., 1997. Transient and stationary waiting times in (max,+)-linear systems with poisson input. Queueing Systems, 26 (3), 301–342. https://doi.org/10.1023/A:1019141510202
Baccelli, F., Schlegel, S., Schmidt, V., 1999. Asymptotics of stochastic networks with subexponential service times. Queueing Systems, 33, 205–232. https://doi.org/10.1023/A:1019176129224
Baccelli, F., Schmidt, V., 1996. Taylor series expansions for poisson-driven (max,+)-linear systems. The Annals of Applied Probability, 6 (1), 138–185.
Bacciotti, A., Rosier, L., 2005. Liapunov functions and stability in control theory. Springer Science & Business Media.
Başar, T., Haurie, A., Zaccour, G., 2018. Nonzero-sum differential games. In T.Başar & G.Zaccour (Eds.), Handbook of dynamic game theory (pp. 61–110). Springer.
Başar, T., Olsder, G., 1999. Dynamic noncooperative game theory (2nd ed.). SIAM.
Bailey, N. T. J., 1952. A study of queues and appointment systems in hospital out-patient departments, with special reference to waiting-times. Journal of the Royal Statistical Society, 14 (2), 185–199. https://doi.org/10.1111/j.2517-6161.1952.tb00112.x
Baker, R. D., McHale, I. G., 2015. Deterministic evolution of strength in multiple comparisons models: Who is the greatest golfer?Scandinavian Journal of Statistics, Theory and Applications, 42 (1), 180–196. https://doi.org/10.1111/sjos.12101
Bakir, I., Erera, A., Savelsbergh, M., 2021. Motor carrier service network design. In T. G.Crainic, M.Gendreau, B.Gendron, B. (Eds.), Network design with applications to transportation and logistics (pp. 427–467). Springer.
Bakshi, N., Pinker, E., 2018. Public warnings in counterterrorism operations: Managing the “Cry-Wolf” effect when facing a strategic adversary. Operations Research, 66 (4), 977–993. https://doi.org/10.1287/opre.2018.1721
Balakrishnan, A., Altinkemer, K., 1992. Using a hop-constrained model to generate alternative communication network design. ORSA Journal on Computing, 4 (2), 192–205. https://doi.org/10.1287/ijoc.4.2.192
Balas, E., 1965. An additive algorithm for solving linear programs with zero-one variables. Operations Research, 13, 517–546. https://doi.org/10.1287/opre.13.4.517
Balas, E., 1971. Intersection cuts—A new type of cutting planes for integer programming. Operations Research, 19, 19–39. https://doi.org/10.1287/opre.19.1.19
Balas, E., 1975. Facets of the knapsack polytope. Mathematical Programming, 8, 146–164. https://doi.org/10.1007/BF01580440
Balas, E., 1979. Disjunctive programming. Annals of Discrete Mathematics, 5, 3–51.
Balas, E., Ceria, S., Cornuéjols, G., 1993. A lift-and-project cutting plane algorithm for mixed 0–1 programs. Mathematical Programming, 58, 295–324. https://doi.org/10.1007/BF01581273
Balas, E., Ceria, S., Cornuéjols, G., 1996a. Mixed 0-1 programming by lift-and-project in a branch-and-cut framework. Management Science, 42, 1229–1246. https://doi.org/10.1287/mnsc.42.9.1229
Balas, E., Ceria, S., Cornuéjols, G., Natraj, N., 1996b. Gomory cuts revisited. Operations Research Letters, 19, 1–9. https://doi.org/10.1016/0167-6377(96)00007-7
Balas, E., Martin, C., 1980. Pivot and complement—A heuristic for 0-1 programming. Management Science, 26, 86–96. https://doi.org/10.1287/mnsc.26.1.86
Balcik, B., Beamon, B. M., 2008. Facility location in humanitarian relief. International Journal of Logistics, 11 (2), 101–121. https://doi.org/10.1080/13675560701561789
Baldacci, R., Hadjiconstantinou, E., Mingozzi, A., 2004. An exact algorithm for the capacitated vehicle routing problem based on a two-commodity network flow formulation. Operations Research, 52 (5), 723–738. https://doi.org/10.1287/opre.1040.0111
Baldacci, R., Mingozzi, A., Roberti, R., 2011. New route relaxation and pricing strategies for the vehicle routing problem. Operations Research, 59 (5), 1269–1283. https://doi.org/10.1287/opre.1110.0975
Ballestín, F., 2007a. A genetic algorithm for the resource renting problem with minimum and maximum time lags. In C.Cotta & J.Hemert (Eds.), Evolutionary computation in combinatorial optimization (pp. 25–35). Springer.
Ballestín, F., 2007b. When it is worthwhile to work with the stochastic RCPSP?Journal of Scheduling, 10 (3), 153–166. https://doi.org/10.1007/s10951-007-0012-1
Ballestín, F., Leus, R., 2009. Resource-constrained project scheduling for timely project completion with stochastic activity durations. Production and Operations Management, 18 (4), 459–474. https://doi.org/10.1111/j.1937-5956.2009.01023.x
Balon, S., Skivée, F., Leduc, G., 2006. How well do traffic engineering objective functions meet TE requirements? In Proceedings of IFIP Networking 2006 (Vol. 3976, pp. 75–86). Springer LNCS.
Bandi, C., Bertsimas, D., 2014. Robust option pricing. European Journal of Operational Research, 239 (3), 842–853. https://doi.org/10.1016/j.ejor.2014.06.002
Bandi, C., Gupta, D., 2020. Operating room staffing and scheduling. Manufacturing & Service Operations Management, 22 (5), 958–974. https://doi.org/10.1287/msom.2019.0781
Banerjee, D., Erera, A. L., Toriello, A., 2022. Fleet sizing and service region partitioning for same-day delivery systems. Transportation Science, 56 (5), 1327–1347. https://doi.org/10.1287/trsc.2022.1125
Banker, R. D., Charnes, A., Cooper, W. W., 1984. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30 (9), 1078–1092. https://doi.org/10.1287/mnsc.30.9.1078
Banker, R. D., Morey, R. C., 1986. Efficiency analysis for exogenously fixed inputs and outputs. Operations Research, 34 (4), 513–521. https://doi.org/10.1287/opre.34.4.513
Banks, D., Gallego, V., Naveiro, R., Ríos Insua, D., 2022. Adversarial risk analysis: An overview. Wiley Interdisciplinary Reviews: Computational Statistics, 14, 1530.
Banks, J., Carson, J., Nelson, B. L., Nicol, D., 2004. Discrete-event system simulation (4th ed.).Prentice Hall.
Barbosa-Póvoa, A. P., da Silva, C., Carvalho, A., 2018. Opportunities and challenges in sustainable supply chain: An operations research perspective. European Journal of Operational Research, 268 (2), 399–431. https://doi.org/10.1016/j.ejor.2017.10.036
Bardossy, M., Raghavan, S., 2010. Dual-based local search for the connected facility location and related problems. INFORMS Journal on Computing, 22, 584–602. https://doi.org/10.1287/ijoc.1090.0375
Barnhart, C., Farahat, A., Lohatepanont, M., 2009. Airline fleet assignment with enhanced revenue modeling. Operations Research, 57 (1), 231–244. https://doi.org/10.1287/opre.1070.0503
Barnhart, C., Fearing, D., Vaze, V., 2014. Modeling passenger travel and delays in the national air transportation system. Operations Research, 62 (3), 580–601. https://doi.org/10.1287/opre.2014.1268
Barnhart, C., Kniker, T. S., Lohatepanont, M., 2002. Itinerary-based airline fleet assignment. Transportation Science, 36 (2), 199–217. https://doi.org/10.1287/trsc.36.2.199.566
Barnhart, C., Schneur, R. R., 1996. Air network design for express shipment service. Operations Research, 44 (6), 852–863. https://doi.org/10.1287/opre.44.6.852
Barocas, S., Hardt, M., Narayanan, A., 2019. Fairness and machine learning: Limitations and opportunities. fairmlbook.org, http://www.fairmlbook.org.
Barrena, E., Canca, D., Coelho, L. C., Laporte, G., 2014a. Exact formulations and algorithm for the train timetabling problem with dynamic demand. Computers & Operations Research, 44, 66–74. https://doi.org/10.1016/j.cor.2013.11.003
Barrena, E., Canca, D., Coelho, L. C., Laporte, G., 2014b. Single-line rail rapid transit timetabling under dynamic passenger demand. Transportation Research Part B: Methodological, 70, 134–150. https://doi.org/10.1016/j.trb.2014.08.013
Baryannis, G., Validi, S., Dani, S., Antoniou, G., 2019. Supply chain risk management and artificial intelligence: State of the art and future research directions. International Journal of Production Research, 57 (7), 2179–2202. https://doi.org/10.1080/00207543.2018.1530476
Baskett, F., Chandy, K. M., Muntz, R. R., Palacios, F. G., 1975. Open, closed, and mixed networks of queues with different classes of customers. Journal of the ACM, 22 (2), 248–260. https://doi.org/10.1145/321879.321887
Basole, R., Bendoly, E., Chandrasekaran, A., Linderman, K., 2022. Visualization in operations management research. INFORMS Journal on Data Science, 1 (2), 172–187. https://doi.org/10.1287/ijds.2021.0005
Bates, J. M., Granger, C. W., 1969. The combination of forecasts. Journal of the Operational Research Society, 20 (4), 451–468. https://doi.org/10.2307/3008764
Bates, T., Cobo, C., Mariño, O., Wheeler, S., 2020. Can artificial intelligence transform higher education?International Journal of Educational Technology in Higher Education, 17 (1), 1–12. https://doi.org/10.1186/s41239-020-00218-x
Baxter, A. E., Wilborn Lagerman, H. E., Keskinocak, P., 2020. Quantitative modeling in disaster management: A literature review. IBM Journal of Research and Development, 64 (1/2), 3:1–3:13. https://doi.org/10.1147/JRD.2019.2960356
Bayram, V., Yaman, H., 2018. Shelter location and evacuation route assignment under uncertainty: A Benders decomposition approach. Transportation Science, 52 (2), 416–436. https://doi.org/10.1287/trsc.2017.0762
Bazaraa, M. S., Sherali, H. D., Shetty, C. M., 2005. Nonlinear programming–Theory and algorithms (3rd ed.). Wiley.
Beamon, B. M., 1999. Designing the green supply chain. Logistics Information Management, 12 (6), 332–342. https://doi.org/10.1108/09576059910284159
Beasley, J. E., 1990. OR-Library: Distributing test problems by electronic mail. Journal of the Operational Research Society, 41 (11), 1069–1072. https://doi.org/10.2307/2582903
Beer, S., 1966. Decision and control. Wiley.
Beer, S., 1981. Brain of the firm (2nd ed.). Wiley.
Beham, A., 2020. SimSharp. https://github.com/heal-research/SimSharp
Behl, A., Dutta, P., 2019. Humanitarian supply chain management: A thematic literature review and future directions of research. Annals of Operations Research, 283 (1), 1001–1044. https://doi.org/10.1007/s10479-018-2806-2
Bell, D., Raiffa, H., Tversky, A., 1988. Descriptive, normative, and prescriptive interactions in decision making. Cambridge University Press.
Bell, E., Davison, J., 2013. Visual management studies: Empirical and theoretical approaches. International Journal of Management Reviews, 15 (2), 167–184. https://doi.org/10.1111/j.1468-2370.2012.00342.x
Bell, P. C., O’Keefe, R. M., 1995. An experimental investigation into the efficacy of visual interactive simulation. Management Science, 41 (6), 1018–1038. https://doi.org/10.1287/mnsc.41.6.1018
Bell, S., 2012. DPSIR = A problem structuring method? An exploration from the “Imagine” approach. European Journal of Operational Research, 222 (2), 350–360. https://doi.org/10.1016/j.ejor.2012.04.029
Bell, W. J., Dalberto, L. M., Fisher, M. L., Greenfield, A. J., Jaikumar, R., Kedia, P., Mack, R. G., Prutzman, P. J., 1983. Improving the distribution of industrial gases with an on-line computerized routing and scheduling optimizer. Interfaces, 13 (6), 4–23. https://doi.org/10.1287/inte.13.6.4
Bellenguez, O., Brauner, N., Tsoukiàs, A., 2023. Is there an ethical operational research practice? and what this implies for our research?EURO Journal on Decision Processes, 11, 100029. https://doi.org/10.1016/j.ejdp.2023.100029
Bellman, R., 1953. An introduction to the theory of dynamic programming. Tech. rep., RAND Corp Santa Monica CA.
Bellman, R., 1957. Dynamic programming. Princeton University Press.
Bellmore, M., Nemhauser, G. L., 1968. The traveling salesman problem: A survey. Operations Research, 16 (3), 538–558. https://doi.org/10.1287/opre.16.3.538
Belobaba, P., Odoni, A., Barnhart, C., 2015. The global airline industry (2nd ed.). John Wiley & Sons.
Belobaba, P. P., 1987a. Air travel demand and airline seat inventory management [Thesis]. Massachusetts Institute of Technology.
Belobaba, P. P., 1987b. Survey paper—airline yield management an overview of seat inventory control. Transportation Science, 21 (2), 63–73. https://doi.org/10.1287/trsc.21.2.63
Ben-Ameur, H., Breton, M., Karoui, L., L’Ecuyer, P., 2007. A dynamic programming approach for pricing options embedded in bonds. Journal of Economic Dynamics and Control, 31 (7), 2212–2233. https://doi.org/10.1016/j.jedc.2006.06.007
Ben-Ameur, H., Breton, M., L’Ecuyer, P., 2002. A dynamic programming procedure for pricing American-style Asian options. Management Science, 48 (5), 625–643. https://doi.org/10.1287/mnsc.48.5.625.7803
Ben-Tal, A., El Ghaoui, L., Nemirovski, A., 2009. Robust optimization. Princeton University Press.
Ben-Tal, A., Golany, B., Nemirovski, A., Vial, J.-P., 2005. Retailer-supplier flexible commitments contracts: A robust optimization approach. Manufacturing & Service Operations Management, 7 (3), 248–271. https://doi.org/10.1287/msom.1050.0081
Ben-Tal, A., Nemirovski, A., 2002. Robust optimization–Methodology and applications. Mathematical Programming, 92 (3), 453–480. https://doi.org/10.1007/s101070100286
Benders, J. F., 1962. Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik, 4 (1), 238–252. https://doi.org/10.1007/BF01386316
Benders, J. F., 2005. Partitioning procedures for solving mixed-variables programming problems. Computational Management Science, 2 (1), 3–19. https://doi.org/10.1007/s10287-004-0020-y
Bendoly, E., Clark, S., 2016. Visual analytics for management: Translational science and applications in practice. Routledge.
Bengio, Y., Lodi, A., Prouvost, A., 2021. Machine learning for combinatorial optimization: A methodological tour d’horizon. European Journal of Operational Research, 290 (2), 405–421. https://doi.org/10.1016/j.ejor.2020.07.063
Bennell, J. A., Cabo, M., Martínez-Sykora, A., 2018. A beam search approach to solve the convex irregular bin packing problem with guillotine cuts. European Journal of Operational Research, 270 (1), 89–102. https://doi.org/10.1016/j.ejor.2018.03.029
Bennell, J. A., Oliveira, J. F., 2008. The geometry of nesting problems: A tutorial. European Journal of Operational Research, 184 (2), 397–415. https://doi.org/10.1016/j.ejor.2006.11.038
Bennell, J. A., Oliveira, J. F., 2009. A tutorial in irregular shape packing problems. Journal of the Operational Research Society, 60 (1), S93–S105. https://doi.org/10.1057/jors.2008.169
Bennis, W. G., Nanus, B., 1985. Leaders: Strategies for taking charge. Harper & Row.
Benson, H., Sağlam, Ü., 2013. Mixed-integer second-order cone programming: A survey. In H.Topaloglu (Ed.), Theory driven by influential applications (pp. 13–36). INFORMS.
Bergmeir, C., Benítez, J. M., 2012. On the use of cross-validation for time series predictor evaluation. Information Sciences, 191, 192–213. https://doi.org/10.1016/j.ins.2011.12.028
Berkey, J. O., Wang, P. Y., 1987. Two-dimensional finite bin-packing algorithms. Journal of the Operational Research Society, 38 (5), 423–429. https://doi.org/10.2307/2582731
Bernhard, P., 2005. The robust control approach to option pricing and interval models: An overview. In M.Breton & H.Ben-Ameur (Eds.), Numerical methods in finance (pp. 91–108). Springer.
Bertsekas, D., 2012a. Dynamic programming and optimal control (Vol. I). Athena Scientific.
Bertsekas, D., 2012b. Dynamic programming and optimal control (Volume II: Approximate dynamic programming). Athena Scientific.
Bertsekas, D., Tsitsiklis, J. N., 1996. Neuro-dynamic programming. Athena Scientific.
Bertsekas, D. P., 2016. Nonlinear programming (3rd ed.). Athena Scientific.
Bertsekas, D. P., Tsitsiklis, J. N., Wu, C., 1997. Rollout algorithms for combinatorial optimization. Journal of Heuristics, 3 (3), 245–262. https://doi.org/10.1023/A:1009635226865
Bertsimas, D., Brown, D. B., Caramanis, C., 2011a. Theory and applications of robust optimization. SIAM Review, 53 (3), 464–501. https://doi.org/10.1137/080734510
Bertsimas, D., De Boer, S., 2005. Simulation-based booking limits for airline revenue management. Operations Research, 53 (1), 90–106. https://doi.org/10.1287/opre.1040.0164
Bertsimas, D., Lo, A. W., 1998. Optimal control of execution costs. Journal of Financial Markets, 1 (1), 1–50. https://doi.org/10.1016/S1386-4181(97)00012-8
Bertsimas, D., Lulli, G., Odoni, A., 2011b. An integer optimization approach to large-scale air traffic flow management. Operations Research, 59 (1), 211–227. https://doi.org/10.1287/opre.1100.0899
Bertsimas, D., Mourtzinou, G., 1997. Transient laws of non-stationary queueing systems and their applications. Queueing Systems, 25 (1), 115–155.
Bertsimas, D., Nakazato, D., 1995. The distributional Little’s law and its applications. Operations Research, 43 (2), 298–310. https://doi.org/10.1287/opre.43.2.298
Bertsimas, D., Patterson, S. S., 1998. The air traffic flow management problem with enroute capacities. Operations Research, 46 (3), 406–422. https://doi.org/10.1287/opre.46.3.406
Berwick, D. M., 2005. The John Eisenberg lecture: Health services research as a citizen in improvement. Health Services Research, 40 (2), 317–336. https://doi.org/10.1111/j.1475-6773.2005.0n359.x
Besiou, M., Pedraza-Martinez, A. J., Van Wassenhove, L. N., 2018. OR applied to humanitarian operations. European Journal of Operational Research, 269 (2), 397–405. https://doi.org/10.1016/j.ejor.2018.02.046
Besiou, M., Van Wassenhove, L. N., 2021. System dynamics for humanitarian operations revisited. Journal of Humanitarian Logistics and Supply Chain Management, 11 (4), 599–608. https://doi.org/10.1108/JHLSCM-06-2021-0048
Bestuzheva, K., Besançon, M., Chen, W.-K., Chmiela, A., Donkiewicz, T., van Doornmalen, J., Eifler, L., Gaul, O., Gamrath, G., Gleixner, A., Gottwald, L., Graczyk, C., Halbig, K., Hoen, A., Hojny, C., van der Hulst, R., Koch, T., Lübbecke, M., Maher, S. J., Matter, F., Mühmer, E., Müller, B., Pfetsch, M. E., Rehfeldt, D., Schlein, S., Schlösser, F., Serrano, F., Shinano, Y., Sofranac, B., Turner, M., Vigerske, S., Wegscheider, F., Wellner, P., Weninger, D., Witzig, J., 2021. The SCIP Optimization Suite 8.0. https://www.scipopt.org/
Böðvarsdóttir, E. B., Smet, P., Vanden Berghe, G., Stidsen, T. J., 2021. Achieving compromise solutions in nurse rostering by using automatically estimated acceptance thresholds. European Journal of Operational Research, 292 (3), 980–995. https://doi.org/10.1016/j.ejor.2020.11.017
Better, M., Glover, F., 2011. Simulation optimization in risk management. In J. J.Cochran, L. A.CoxJr., P.Keskinocak, J. P.Kharoufeh, J. C.Smith (Eds.), Wiley encyclopedia of operations research and management science (pp. 1–9). John Wiley & Sons.
Beullens, P., Van Oudheusden, D., Van Wassenhove, L. N., 2004. Collection and vehicle routing issues in reverse logistics. In R.Dekker, M.Fleischmann, K.Inderfurth, L. N.Van Wassenhove (Eds.), Reverse logistics: Quantitative models for closed-loop supply chains (pp. 95–134). Springer.
Bezanson, J., Edelman, A., Karpinski, S., Shah., V. B., 2017. Julia: A fresh approach to numerical computing. SIAM Review, 59, 65–98. https://doi.org/10.1137/141000671
Bhatia, R., Hao, F., Kodialam, M., Lakshman, T., 2015. Optimized network traffic engineering using segment routing. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 657–665).
Bi, X., Zhang, Q., Fan, K., Tang, S., Guan, H., Gao, X., Cui, Y., Ma, Y., Wu, Q., Hao, Y., Ning, N., Liu, C., 2021. Risk culture and COVID-19 protective behaviors: A cross-sectional survey of residents in china. Frontiers in Public Health, 9, 686705. https://doi.org/10.3389/fpubh.2021.686705
Bielecki, T. R., Cialenco, I., Pitera, M., 2017. A survey of time consistency of dynamic risk measures and dynamic performance measures in discrete time: LM-measure perspective. Probability Uncertainty and Quantitative Risk, 2 (3).
Bijvank, M., Huh, W. T., Janakiraman, G., 2023. Lost-sales inventory systems. In J.-S.Song (Ed.) Research handbook on inventory management. Edward Elgar Publishing.
Billionnet, A., 2013. Mathematical optimization ideas for biodiversity conservation. European Journal of Operational Research, 231 (3), 514–534. https://doi.org/10.1016/j.ejor.2013.03.025
Bimpikis, K., Markakis, M. G., 2016. Inventory pooling under heavy-tailed demand. Management Science, 62 (6), 1800–1813. https://doi.org/10.1287/mnsc.2015.2204
Binmore, K., Rubinstein, A., Wolinsky, A., 1986. The Nash bargaining solution in economic modeling. RAND Journal of Economics, 17, 176–188. https://doi.org/10.2307/2555382
Birge, J. R., 1982. The value of the stochastic solution in stochastic linear programs with fixed recourse. Mathematical Programming, 24 (1), 314–325. https://doi.org/10.1007/BF01585113
Birge, J. R., 1985. Decomposition and partitioning methods for multistage stochastic linear programs. Operations Research, 33 (5), 989–1007. https://doi.org/10.1287/opre.33.5.989
Birge, J. R., Louveaux, F., 2011. Introduction to stochastic programming. Springer.
Bischoff, J., Kaddoura, I., Maciejewski, M., Nagel, K., 2018. Simulation-based optimization of service areas for pooled ride-hailing operators. Procedia Computer Science, 130, 816–823. https://doi.org/10.1016/j.procs.2018.04.069
Bixby, R., Boyd, E., Indovina, R., 1992. MIPLIB: A test set of mixed integer programming problems. SIAM News, 25, 16.
Black, L. J., Andersen, D. F., 2012. Using visual representations as boundary objects to resolve conflict in collaborative model-building approaches. Systems Research and Behavioral Science, 29 (2), 194–208. https://doi.org/10.1002/sres.2106
Blackwell, A. F., Phaal, R., Eppler, M., Crilly, N., 2008. Strategy roadmaps: New forms, new practices. In G.Stapleton, J.Howse, J.Lee (Eds.), Diagrammatic representation and inference (pp. 127–140). Springer.
Bland, R. G., 1977. New finite pivoting rules for the simplex method. Mathematics of Operations Research, 2 (2), 103–107. https://doi.org/10.1287/moor.2.2.103
Bland, R. G., Goldfarb, D., Todd, M. J., 1981. Feature article—The ellipsoid method: A survey. Operations Research, 29 (6), 1039–1091. https://doi.org/10.1287/opre.29.6.1039
Błażewicz, J., Ecker, K., Pesch, E., Schmidt, G., Weglarz, J., 2001. Scheduling computer and manufactoring processes. Springer.
Błażewicz, J., Ecker, K., Pesch, E., Schmidt, G., Weglarz, J., 2007. Handbook on scheduling: From theory to applications.Springer.
Bley, A., Fortz, B., Gourdin, E., Holmberg, K., Klopfenstein, O., Pióro, M., Tomaszewski, A., Ümit, H., 2009. Optimization of OSPF routing in IP networks. In A.Koster, X.Muñoz (Eds.), Graphs and algorithms in communication networks (pp. 199–240). Springer.
Bloomfield, P., Cox, D., 1972. A low traffic approximation for queues. Journal of Applied Probability, 9 (4), 832–840. https://doi.org/10.2307/3212619
Blum, C., Roli, A., 2003. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys (CSUR), 35 (3), 268–308. https://doi.org/10.1145/937503.937505
Blum, L., Cucker, F., Shub, M., Smale, S., 1998. Complexity and real computation.Springer.
Blumenfeld, D. E., Burns, L. D., Diltz, J. D., Daganzo, C. F., 1985. Analyzing trade-offs between transportation, inventory and production costs on freight networks. Transportation Research Part B: Methodological, 19 (5), 361–380. https://doi.org/10.1016/0191-2615(85)90051-7
Board, J., Sutcliffe, C., Ziemba, W. T., 2003. Applying operations research techniques to financial markets. Interfaces, 33 (2), 12–24. https://doi.org/10.1287/inte.33.2.12.14465
Boginski, V., Pasiliao, E. L., Shen, S., 2015. Special issue on optimization in military applications. Optimization Letters, 9 (8), 1475–1476. https://doi.org/10.1007/s11590-015-0966-4
Boland, N., Hewitt, M., Marshall, L., Savelsbergh, M., 2017. The continuous-time service network design problem. Operations Research, 65 (5), 1303–1321. https://doi.org/10.1287/opre.2017.1624
Boland, N., Hewitt, M., Marshall, L., Savelsbergh, M., 2019. The price of discretizing time: A study in service network design. EURO Journal on Transportation and Logistics, 8 (2), 195–216. https://doi.org/10.1007/s13676-018-0119-x
Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosselut, A., Brunskill, E., Brynjolfsson, E., Buch, S., Card, D., Castellon, R., Chatterji, N. S., Chen, A. S., Creel, K. A., Davis, J., Demszky, D., Donahue, C., Doumbouya, M., Durmus, E., Ermon, S., Etchemendy, J., Ethayarajh, K., Fei-Fei, L., Finn, C., Gale, T., Gillespie, L. E., Goel, K., Goodman, N. D., Grossman, S., Guha, N., Hashimoto, T., Henderson, P., Hewitt, J., Ho, D. E., Hong, J., Hsu, K., Huang, J., Icard, T. F., Jain, S., Jurafsky, D., Kalluri, P., Karamcheti, S., Keeling, G., Khani, F., Khattab, O., Koh, P. W., Krass, M. S., Krishna, R., Kuditipudi, R., Kumar, A., Ladhak, F., Lee, M., Lee, T., Leskovec, J., Levent, I., Li, X. L., Li, X., Ma, T., Malik, A., Manning, C. D., Mirchandani, S. P., Mitchell, E., Munyikwa, Z., Nair, S., Narayan, A., Narayanan, D., Newman, B., Nie, A., Niebles, J. C., Nilforoshan, H., Nyarko, J. F., Ogut, G., Orr, L., Papadimitriou, I., Park, J. S., Piech, C., Portelance, E., Potts, C., Raghunathan, A., Reich, R., Ren, H., Rong, F., Roohani, Y. H., Ruiz, C., Ryan, J., R’e, C., Sadigh, D., Sagawa, S., Santhanam, K., Shih, A., Srinivasan, K. P., Tamkin, A., Taori, R., Thomas, A. W., Tramèr, F., Wang, R. E., Wang, W., Wu, B., Wu, J., Wu, Y., Xie, S. M., Yasunaga, M., You, J., Zaharia, M. A., Zhang, M., Zhang, T., Zhang, X., Zhang, Y., Zheng, L., Zhou, K., Liang, P., 2021. On the opportunities and risks of foundation models. arXiv:2108.07258.
Bonami, P., Biegler, L., Conn, A., Cornuéjols, G., Grossmann, I., Laird, C., Lee, J., Lodi, A., Margot, F., Sawaya, N., Waechter, A., 2005. An algorithmic framework for convex mixed integer nonlinear programs. https://projects.coin-or.org/Bonmin
Bordignon, S., Bunn, D. W., Lisi, F., Nan, F., 2013. Combining day-ahead forecasts for British electricity prices. Energy Economics, 35, 88–103. https://doi.org/10.1016/j.eneco.2011.12.001
Borůvka, O., 1926. O jistém problému minimálním (pp. 37–58). Práce Moravsk’e Přírodovědecké Společnosti.
Bortfeldt, A., Wäscher, G., 2013. Constraints in container loading–A state-of-the-art review. European Journal of Operational Research, 229 (1), 1–20. https://doi.org/10.1016/j.ejor.2012.12.006
Boschetti, M. A., Maniezzo, V., 2022. Matheuristics: Using mathematics for heuristic design. 4OR - A Quarterly Journal of Operations Research, 20 (2), 173–208. https://doi.org/10.1007/s10288-022-00510-8
Bouleimen, K., Lecocq, H., 2003. A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version. European Journal of Operational Research, 149 (2), 268–281. https://doi.org/10.1016/S0377-2217(02)00761-0
Boute, R., Disney, S. M., Gijsbrechts, J., Mieghem, J. A. V., 2022. Dual sourcing and smoothing under non-stationary demand time series: Re-shoring with SpeedFactories. Management Science, 68, 1039–1057. https://doi.org/10.1287/mnsc.2020.3951
Bowen, K. (Ed.), 1995. In at the deep end: MSc student projects in community operational research. Community Operational Research Unit Publications.
Box, George, E. P., Jenkins, Gwilym, 1976. Time series analysis forecasting and control. Holden-Day.
Boxma, O., Cohen, J., 2000. The single server queue: Heavy tails and heavy traffic. In K.Park & W.Willinger (Eds.), Self-similar network traffic and performance evaluation (pp. 143–169). Wiley Online Library.
Boyd, A., Geerling, T., Gregory, W. J., Kagan, C., Midgley, G., Murray, P., Walsh, M. P., 2007. Systemic evaluation: A participative, multi-method approach. Journal of the Operational Research Society, 58 (10), 1306–1320. https://doi.org/10.1057/palgrave.jors.2602281
Boykov, Y., Kolmogorov, V., 2004. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 (9), 1124–1137. https://doi.org/10.1109/TPAMI.2004.60
Boysen, N., Fliedner, M., Jaehn, F., Pesch, E., 2012. Shunting yard operations: Theoretical aspects and applications. European Journal of Operational Research, 220, 1–14. https://doi.org/10.1016/j.ejor.2012.01.043
Brailsford, S., Schmidt, B., 2003. Towards incorporating human behaviour in models of health care systems: An approach using discrete event simulation. European Journal of Operational Research, 150 (1), 19–31. https://doi.org/10.1016/S0377-2217(02)00778-6
Brailsford, S. C., Lattimer, V. A., Tarnaras, P., Turnbull, J. C., 2004. Emergency and on-demand health care: Modelling a large complex system. Journal of the Operational Research Society, 55 (1), 34–42. https://doi.org/10.1057/palgrave.jors.2601667
Bramson, M., 1998. State space collapse with application to heavy traffic limits for multiclass queueing networks. Queueing Systems, 30 (1), 89–140.
Branke, J., Corrente, S., Greco, S., Słowiński, R., Zielniewicz, P., 2016. Using Choquet integral as preference model in interactive evolutionary multiobjective optimization. European Journal of Operational Research, 250 (3), 884–901. https://doi.org/10.1016/j.ejor.2015.10.027
Branke, J., Deb, K., Miettinen, K., Slowiński, R. (Eds.), 2008. Multiobjective optimization: Interactive and evolutionary approaches. Vol. 5252 of Lecture notes in computer science. Springer-Verlag.
Brans, J.-P., Gallo, G., 2007. Ethics in OR/MS: Past, present and future. Annals of Operations Research, 153 (1), 165–178. https://doi.org/10.1007/s10479-007-0177-1
Brax, S. A., Visintin, F., 2017. Meta-model of servitization: The integrative profiling approach. Industrial Marketing Management, 60, 17–32. https://doi.org/10.1016/j.indmarman.2016.04.014
Bresciani, S., Eppler, M. J., 2015. The pitfalls of visual representations: A review and classification of common errors made while designing and interpreting visualizations. SAGE Open, 5 (4), 2158244015611451. https://doi.org/10.1177/2158244015611451
Bresciani, S., Eppler, M. J., 2018. The collaborative dimensions of argument maps: A socio-visual approach. Semiotica, 2018 (220), 199–216. https://doi.org/10.1515/sem-2015-0140
Breton, M., 2018. Dynamic games in finance. In J.-C.Duan, W. K.Härdle, J. E.Gentle (Eds.), Handbook of dynamic game theory (pp. 827–863). Springer.
Breton, M., Marzouk, O., 2018. Evaluation of counterparty risk for derivatives with early-exercise features. Journal of Economic Dynamics and Control, 88, 1–20. https://doi.org/10.1016/j.jedc.2018.01.014
Brettel, M., Friederichsen, N., Keller, M., Rosenberg, M., 2014. How virtualization, decentralization and network building change the manufacturing landscape: An industry 4.0 perspective. International Journal of Mechanical, Industrial Science and Engineering, 8 (1), 37–44.
Brezavšček, A., Bach, M. P., Baggia, A., 2017. Markov analysis of students’ performance and academic progress in higher education. Organizacija, 50 (2), 83–95. https://doi.org/10.1515/orga-2017-0006
Briskorn, D., Drexl, A., Spieksma, F. C. R., 2010. Round robin tournaments and three index assignments. 4OR - A Quarterly Journal of Operations Research, 8 (4), 365–374. https://doi.org/10.1007/s10288-010-0123-y
Broadie, M., 2012. Assessing golfer performance on the PGA TOUR. Interfaces, 42 (2), 146–165. https://doi.org/10.1287/inte.1120.0626
Broadie, M., Chernov, M., Sundaresan, S., 2007. Optimal debt and equity values in the presence of Chapter 7 and Chapter 11. The Journal of Finance, 62 (3), 1341–1377. https://doi.org/10.1111/j.1540-6261.2007.01238.x
Brooks-Pollock, E., Danon, L., Jombart, T., Pellis, L., 2021. Modelling that shaped the early COVID-19 pandemic response in the UK. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 376 (1829), 20210001. https://doi.org/10.1098/rstb.2021.0001
Brotcorne, L., Laporte, G., Semet, F., 2003. Ambulance location and relocation models. European Journal of Operational Research, 147 (3), 451–463. https://doi.org/10.1016/S0377-2217(02)00364-8
Brouer, B. D., Alvarez, J. F., Plum, C. E. M., Pisinger, D., Sigurd, M. M., 2014. A base integer programming model and benchmark suite for Liner-Shipping network design. Transportation Science, 48 (2), 281–312. https://doi.org/10.1287/trsc.2013.0471
Brown, G., Carlyle, M., Diehl, D., Kline, J., Wood, K., 2005. A two-sided optimization for theater ballistic missile defense. Operations Research, 53 (5), 745–763. https://doi.org/10.1287/opre.1050.0231
Brown, G. G., Dell, R. F., Newman, A. M., 2004. Optimizing military capital planning. Interfaces, 34 (6), 415–425. https://doi.org/10.1287/inte.1040.0107
Brown, R. G., 1956. Exponential smoothing for predicting demand. Little.
Browne, J., Dubois, D., Sethi, S., Rathmill, K., Stecke, K., 1984. Classification of flexible manufacturing systems. The FMS Magazine, 2 (2), 114–117.
Brucker, P., Knust, S., Schoo, A., Thiele, O., 1998. A branch and bound algorithm for the resource-constrained project scheduling problem. European Journal of Operational Research, 107 (2), 272–288. https://doi.org/10.1016/S0377-2217(97)00335-4
Brumelle, S. L., McGill, J. I., 1993. Airline seat allocation with multiple nested fare classes. Operations Research, 41 (1), 127–137. https://doi.org/10.1287/opre.41.1.127
Brumelle, S. L., McGill, J. I., Oum, T. H., Sawaki, K., Tretheway, M., 1990. Allocation of airline seats between stochastically dependent demands. Transportation Science, 24 (3), 183–192. https://doi.org/10.1287/trsc.24.3.183
Bryant, J. W., 1978. Modelling for natural resource utilization analysis. Journal of the Operational Research Society, 29 (7), 667–676. https://doi.org/10.2307/3009844
Buhaug, H., 2002. Long waiting lists in hospitals. BMJ, 324 (7332), 252–253. https://doi.org/10.1136/bmj.324.7332.252
Buraimo, B., Forrest, D., McHale, I. G., Tena, J. D., 2020. Unscripted drama: Soccer audience response to suspense, surprise, and shock. Economic Inquiry, 58 (2), 881–896. https://doi.org/10.1111/ecin.12874
Burdett, E. L., Kozan, E., 2009. Techniques for inserting additional trains into existing timetables. Transportation Research Part B: Methodological, 43 (8–9), 821–836. https://doi.org/10.1016/j.trb.2009.02.005
Burger, K., White, L., Yearworth, M., 2019. Developing a smart operational research with hybrid practice theories. European Journal of Operational Research, 277 (3), 1137–1150. https://doi.org/10.1016/j.ejor.2019.03.027
Burk, R. C., Parnell, G. S., 2011. Portfolio decision analysis: Lessons from military applications. In A.Salo, J.Keisler, A.Morton (Eds.), Portfolio decision analysis: Improved methods for resource allocation (pp. 333–357). Springer.
Burkard, R., Dell’Amico, M., Martello, S., 2012. Assignment problems (revised reprint). SIAM.
Burkard, R., Derigs, U., 1980. Assignment and matching problems: Solution methods with FORTRAN programs.Springer-Verlag.
Burke, E. K., Bykov, Y., 2008. A late acceptance strategy in hill-climbing for exam timetabling problems. InProceedings of the International Conference of the Practice and Theory of Automated Timetabling (PATAT 2008)(pp. 1–7).
Burke, E. K., Curtois, T., 2014. New approaches to nurse rostering benchmark instances. European Journal of Operational Research, 237, 71–81. https://doi.org/10.1016/j.ejor.2014.01.039
Burke, E. K., De Causmaecker, P., Vanden Berghe, G., Van Landeghem, H., 2004a. The state of the art of nurse rostering. Journal of Scheduling, 7 (6), 441–499. https://doi.org/10.1023/B:JOSH.0000046076.75950.0b
Burke, E. K., Kendall, G., Whitwell, G., 2004b. A new placement heuristic for the orthogonal Stock-Cutting problem. Operations Research, 52 (4), 655–671. https://doi.org/10.1287/opre.1040.0109
Burke, E. K., MacCarthy, B. L., Petrovic, S., Qu, R., 2006. Multiple-retrieval case-based reasoning for course timetabling problems. Journal of the Operational Research Society, 57 (2), 148–162. https://doi.org/10.1057/palgrave.jors.2601970
Burke, E. K., Petrovic, S., 2002. Recent research directions in automated timetabling. European Journal of Operational Research, 140 (2), 266–280. https://doi.org/10.1016/S0377-2217(02)00069-3
Burman, D. Y., Smith, D. R., 1983. A light-traffic theorem for multi-server queues. Mathematics of Operations Research, 8 (1), 15–25. https://doi.org/10.1287/moor.8.1.15
Burney, N. A., Johnes, J., Al-Enezi, M., Al-Musallam, M., 2013. The efficiency of public schools: The case of Kuwait. Education Economics, 21 (4), 360–379. https://doi.org/10.1080/09645292.2011.595580
Büsing, C., Kadatz, D., Cleophas, C., 2019. Capacity uncertainty in airline revenue management: Models, algorithms, and computations. Transportation Science, 53 (2), 383–400. https://doi.org/10.1287/trsc.2018.0829
Bussieck, M. R., Lindner, T., Lubbecke, M. E., 2004. A fast algorithm for near cost optimal line plans. Mathematical Methods of Operations Research, 59, 205–220. https://doi.org/10.1007/s001860300332
Bussieck, M. R., Winter, T., Zimmerman, U. T., 1997. Discrete optimization in public rail trainsport. Mathematical Programming, 79, 415–444. https://doi.org/10.1007/BF02614327
Butcher, B., Huang, V. S., Robinson, C., Reffin, J., Sgaier, S. K., Charles, G., Quadrianto, N., 2021. Causal datasheet for datasets: An evaluation guide for Real-World data analysis and data collection design using bayesian networks. Frontiers in Artificial Intelligence, 4, 612551. https://doi.org/10.3389/frai.2021.612551
Büyüktahtakın, İ. E., Haight, R. G., 2018. A review of operations research models in invasive species management: State of the art, challenges, and future directions. Annals of Operations Research, 271 (2), 357–403. https://doi.org/10.1007/s10479-017-2670-5
Bykov, Y., Petrovic, S., 2016. A step counting hill climbing algorithm applied to university examination timetabling. Journal of Scheduling, 19, 479–492. https://doi.org/10.1007/s10951-016-0469-x
Büyüktahtakin, I. E., Feng, Z., Szidarovszky, F., 2014. A multi-objective optimization approach for invasive species control. Journal of the Operational Research Society, 65 (11), 1625–1635. https://doi.org/10.1057/jors.2013.104
Bynum, M. L., Hackebeil, G. A., Hart, W. E., Laird, C. D., Nicholson, B. L., Siirola, J. D., Watson, J.-P., Woodruff, D. L., 2021. Pyomo–optimization modeling in Python (3rd ed., Vol. 67). Springer Science & Business Media. http://www.pyomo.org/
Cabrera, D., Cabrera, L., Midgley, G., 2023. The four waves of systems thinking. In D.Cabrera, L.Cabrera, G.Midgley (Eds.), Routledge handbook of systems thinking. Routledge.
Cabrera, D., Cabrera, L., Powers, E., 2015. A unifying theory of systems thinking with psychosocial applications. Systems Research and Behavioral Science, 32 (5), 534–545. https://doi.org/10.1002/sres.2351
Cacchiani, V., Caprara, A., Galli, L., Kroon, L., Maróti, G., 2008a. Recoverable robustness for railway rolling stock planning. In M.Fischetti & P.Widmayer, P. (Eds.), 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’08). Vol. 9 of OpenAccess Series in Informatics (OASIcs) (pp. 9–10). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
Cacchiani, V., Caprara, A., Galli, L., Kroon, L., Maróti, G., Toth, P., 2012. Railway rolling stock planning: Robustness against large disruptions. Transportation Science, 46 (2), 217–232. https://doi.org/10.1287/trsc.1110.0388
Cacchiani, V., Caprara, A., Toth, P., 2008b. A column generation approach to train timetabling on a corridor. 4OR - A Quarterly Journal of Operations Research, 6 (2), 125–142. https://doi.org/10.1007/s10288-007-0037-5
Cacchiani, V., Caprara, A., Toth, P., 2010. Scheduling extra freight trains on railway networks. Transportation Research Part B: Methodological, 44 (2), 215–231. https://doi.org/10.1016/j.trb.2009.07.007
Cacchiani, V., Iori, M., Locatelli, A., Martello, S., 2022a. Knapsack problems–An overview of recent advances. Part I: Single knapsack problems. Computers & Operations Research, 143, 105692. https://doi.org/10.1016/j.cor.2021.105692
Cacchiani, V., Iori, M., Locatelli, A., Martello, S., 2022b. Knapsack problems–An overview of recent advances. Part II: Multiple, multidimensional, and quadratic knapsack problems. Computers & Operations Research, 143, 105693. https://doi.org/10.1016/j.cor.2021.105693
Cachon, G. P., Lariviere, M. A., 2005. Supply chain coordination with revenue-sharing contracts: Strengths and limitations. Management Science, 51 (1), 30–44. https://doi.org/10.1287/mnsc.1040.0215
Cadarso, L., Vaze, V., Barnhart, C., Marín, Á., 2017. Integrated airline scheduling: Considering competition effects and the entry of the high speed rail. Transportation Science, 51 (1), 132–154. https://doi.org/10.1287/trsc.2015.0617
Çalık, H., Labbé, M., Yaman, H., 2019. p-center problems. In G.Laporte, S.Nickel, F.Saldanha da Gama (Eds.), Location science (pp. 51–65). Springer.
Callon, M., 1981. Struggles and negotiations to define what is problematic and what is not. In K. D.Knorr, R.Krohn, R.Whitley (Eds.), The social process of scientific investigation (pp. 197–219). Springer Netherlands.
Calmon, A. P., Graves, S. C., 2017. Inventory management in a consumer electronics closed-loop supply chain. Manufacturing & Service Operations Management, 19 (4), 568–585. https://doi.org/10.1287/msom.2017.0622
Calmon, A. P., Graves, S. C., Lemmens, S., 2021. Warranty matching in a consumer electronics Closed-Loop supply chain. Manufacturing & Service Operations Management, 23 (5), 1314–1331. https://doi.org/10.1287/msom.2020.0889
Camacho, E. F., Bordons, C., 2013. Model predictive control. Springer.
Campbell, A. M., Savelsbergh, M., 2006. Incentive schemes for attended home delivery services. Transportation Science, 40 (3), 327–341. https://doi.org/10.1287/trsc.1050.0136
Campbell, A. M., Savelsbergh, M. W., 2005. Decision support for consumer direct grocery initiatives. Transportation Science, 39 (3), 313–327. https://doi.org/10.1287/trsc.1040.0105
Campbell, B. M., Sayer, J. A., 2003. Integrated natural resources management: Linking productivity, the environment and development.CABI Publishing.
Canca, D., Andrade-Pineda, J. L., De-los Santos, A., Calle, M., 2018. The railway rapid transit frequency setting problem with speed-dependent operation costs. Transportation Research Part B: Methodological, 117 (A), 494–519. https://doi.org/10.1016/j.trb.2018.09.013
Canca, D., Barrena, E., Algaba, E., Zarzo, A., 2014. Design and analysis of demand-adapted railway timetables. Journal of Advanced Transportation, 48 (2), 119–137. https://doi.org/10.1002/atr.1261
Canca, D., Barrena, E., De-Los-Santos, A., Andrade-Pineda, J. L., 2016. Setting lines frequency and capacity in dense railway rapid transit networks with simultaneous passenger assignment. Transportation Research Part B: Methodological, 93(A), 251–267. https://doi.org/10.1016/j.trb.2016.07.020
Canca, D., De-Los-Santos, A., Laporte, G., Mesa, J. A., 2017. An adaptive neighborhood search metaheuristic for the integrated railway rapid transit network design and line planning problem. Computers & Operations Research, 78, 1–14. https://doi.org/10.1016/j.cor.2016.08.008
Canca, D., De-Los-Santos, A., Laporte, G., Mesa, J. A., 2019. Integrated railway rapid transit network design and line-planning problem with maximum profit. Transportation Research Part E: Logistics and Transportation Review, 127, 1–30. https://doi.org/10.1016/j.tre.2019.04.007
Canca, D., Zarzo, A., 2017. Design of energy-efficient timetables in two-way railway rapid transit lines. Transportation Research Part B: Methodological, 102, 142–161. https://doi.org/10.1016/j.trb.2017.05.012
Cao, A., Lan, J., Xie, X., Chen, H., Zhang, X., Zhang, H., Wu, Y., 2022. Team-builder: Toward more effective lineup selection in soccer. IEEE Transactions on Visualization and Computer Graphics. https://doi.org/10.1109/TVCG.2022.3207147
Cappart, Q., Chételat, D., Khalil, E. B., Lodi, A., Morris, C., Veličković, P., 2021. Combinatorial optimization and reasoning with graph neural networks. In Z.-H. Zhou (Ed.),Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21. International Joint Conferences on Artificial Intelligence Organization (pp. 4348–4355). survey Track.
Caprara, A., Carvalho, M., Lodi, A., Woeginger, G. J., 2014. A study on the computational complexity of the bilevel knapsack problem. SIAM Journal on Optimization, 24 (2), 823–838. https://doi.org/10.1137/130906593
Caprara, A., Fischetti, M., Toth, P., 2002. Modeling and solving the train timetabling problem. Operations Research, 50 (5), 851–861. https://doi.org/10.1287/opre.50.5.851.362
Caprara, A., Kroon, L., Monaci, M., Peeters, M., Toth, P., 2007. Passenger railway optimization. In C.Barnhart & G.Laporte (Eds.), Handbooks in operations research and management science (Vol. 14). Transportation (pp. 129–187). Elsevier.
Caprara, A., Monaci, M., Toth, P., 2003. Models and algorithms for a staff scheduling problem. Mathematical Programming, 98 (1), 445–476. https://doi.org/10.1007/s10107-003-0413-7
Caprara, A., Toth, P., Vigo, D., Fischetti, M., 1998. Modeling and solving the crew rostering problem. Operations Research, 46 (6), 820–830. https://doi.org/10.1287/opre.46.6.820
Cardaliaguet, P., Lehalle, C.-A., 2018. Mean field game of controls and an application to trade crowding. Mathematics and Financial Economics, 12 (3), 335–363. https://doi.org/10.1007/s11579-017-0206-z
Cardoen, B., Demeulemeester, E., Beliën, J., 2010. Operating room planning and scheduling: A literature review. European Journal of Operational Research, 201 (3), 921–932. https://doi.org/10.1016/j.ejor.2009.04.011
Caro, F., Gallien, J., 2012. Clearance pricing optimization for a fast-fashion retailer. Operations Research, 60 (6), 1404–1422. https://doi.org/10.1287/opre.1120.1102
Carraro, C., Haurie, A., 1996. Operations research and environmental management. Kluwer Academic.
Carter, M. W., Laporte, G., Lee, S. Y., 1996. Examination timetabling: Algorithmic strategies and applications. Journal of the Operational Research Society, 74, 373–383. https://doi.org/10.2307/3010580
Cassady, R., 1967. Auctions and auctioneering. University of California Press.
Castelnovo, A., Crupi, R., Greco, G., Regoli, D., Penco, I. G., Cosentini, A. C., 2022. A clarification of the nuances in the fairness metrics landscape. Scientific Reports, 12, article 4209. https://doi.org/10.1038/s41598-022-07939-1
Castillo-Salazar, A. J., Landa-Silva, D., Qu, R., 2016. Workforce scheduling and routing problems: Literature survey and computational study. Annals of Operations Research, 239, 39–67. https://doi.org/10.1007/s10479-014-1687-2
Cataldo, A., Ferrer, J.-C., Miranda, J., Rey, P. A., Sauré, A., 2017. An integer programming approach to curriculum-based examination timetabling. Annals of Operations Research, 258 (2), 369–393. https://doi.org/10.1007/s10479-016-2321-2
Caulkins, J. P., Eelman, E., Ratnatunga, M., Schaarsmith, D., 2008. Operations research and public policy for Africa: Harnessing the revolution in management science instruction. International Transactions in Operational Research, 15, 151–171. https://doi.org/10.1111/j.1475-3995.2008.00628.x
Cavaliere, F., Bendotti, E., Fischetti, M., 2022. An integrated local-search/set-partitioning refinement heuristic for the capacitated vehicle routing problem. Mathematical Programming Computation, 14, 749–779. https://doi.org/10.1007/s12532-022-00224-2
Cavallo, B., Ishizaka, A., Olivieri, M. G., Squillante, M., 2019. Comparing inconsistency of pairwise comparison matrices depending on entries. Journal of the Operational Research Society, 70 (5), 842–850. https://doi.org/10.1080/01605682.2018.1464427
Ceder, A., Wilson, N. H., 1986. Bus network design. Transportation Research Part B: Methodological, 20 (4), 331–344. https://doi.org/10.1016/0191-2615(86)90047-0
Cegan, J. C., Filion, A. M., Keisler, J. M., Linkov, I., 2017. Trends and applications of multi-criteria decision analysis in environmental sciences: Literature review. Environment Systems and Decisions, 37 (2), 123–133. https://doi.org/10.1007/s10669-017-9642-9
Cela, E., 2013. The quadratic assignment problem: Theory and algorithms. Springer Science & Business Media.
Çelik, M., 2016. Network restoration and recovery in humanitarian operations: Framework, literature review, and research directions. Surveys in Operations Research and Management Science, 21 (2), 47–61. https://doi.org/10.1016/j.sorms.2016.12.001
Çelik, M., Ergun, Ö., Johnson, B., Keskinocak, P., Lorca, Á., Pekgün, P., Swann, J., 2012. Humanitarian logistics. In P. B.Mirchandani (Ed.), New directions in informatics, optimization, logistics, and production. INFORMS TutORials in operations research (pp. 18–49). INFORMS.
Celikbilek, C., Süer, G. A., 2015. Cellular design-based optimisation for manufacturing scheduling and transportation mode decisions. Asian Journal of Management Science and Applications, 2 (2), 107–129. https://doi.org/10.1504/AJMSA.2015.075321
Cervone, D., D’Amour, A., Bornn, L., Goldsberry, K., 2016. A multiresolution stochastic process model for predicting basketball possession outcomes. Journal of the American Statistical Association, 111 (514), 585–599. https://doi.org/10.1080/01621459.2016.1141685
Ceschia, S., Dang, N., De Causmaecker, P., Haspeslagh, S., Schaerf, A., 2019. The second international nurse rostering competition. Annals of Operations Research, 274 (1), 171–186. https://doi.org/10.1007/s10479-018-2816-0
Ceschia, S., Di Gaspero, L., Schaerf, A., 2022. Educational timetabling: Problems, benchmarks, and state-of-the-art results. European Journal of Operational Research,https://doi.org/10.1016/j.ejor.2022.07.011
Chae, Y., Horesh, R., Hwang, Y., Lee, Y., 2016. Artificial neural network model for forecasting sub-hourly electricity usage in commercial buildings. Energy and Buildings, 111, 184–194. https://doi.org/10.1016/j.enbuild.2015.11.045
Chambers, R. G., Färe, R., Grosskopf, S., 1996. Productivity growth in APEC countries. Pacific Economic Review, 1 (3), 181–190. https://doi.org/10.1111/j.1468-0106.1996.tb00184.x
Chang, H. S., Hu, J., Fu, M. C., Marcus, S. I., 2007. Simulation-based algorithms for Markov decision processes. Springer.
Chang, Y., Keblis, M. F., Li, R., Iakovou, E., White, C. C., 2022. Misinformation and disinformation in modern warfare. Operations Research, 70 (3), 1577–1597. https://doi.org/10.1287/opre.2021.2253
Chao, H.-P., Wilson, R., 2002. Multi-dimensional procurement auctions for power reserves: Robust incentive-compatible scoring and settlement rules. Journal of Regulatory Economics, 22 (2), 161–183.
Chao, X., Chen, B., Zhang, H., 2023. Online learning in inventory and pricing optimization. In J.-S.Song (Ed.), Research handbook on inventory management. Edward Elgar Publishing.
Charnes, A., Cooper, W. W., 1962. Programming with linear fractional functionals. Naval Research Logistics Quarterly, 9, 181–186. https://doi.org/10.1002/nav.3800090303
Charnes, A., Cooper, W. W., Rhodes, E., 1978. Measuring the efficiency of decision making units. European Journal of Operational Research, 2 (6), 429–444. https://doi.org/10.1016/0377-2217(78)90138-8
Charnes, A., Cooper, W. W., Symonds, G. H., 1958. Cost horizons and certainty equivalents: An approach to stochastic programming of heating oil. Management Science, 4 (3), 235–263. https://doi.org/10.1287/mnsc.4.3.235
Chazelle. 1983. The bottomn-left bin-packing heuristic: An efficient implementation. IEEE Transactions on Computers, C-32 (8), 697–707. https://doi.org/10.1109/TC.1983.1676307
Checkland, P., 1981. Systems thinking, systems practice. Wiley.
Checkland, P., 1983. O.R. and the systems movement: Mappings and conflicts. Journal of the Operational Research Society, 34 (8), 661–675. https://doi.org/10.2307/2581700
Checkland, P., 1985. From optimizing to learning: A development of systems thinking for the 1990s. Journal of the Operational Research Society, 36 (9), 757–767. https://doi.org/10.2307/2582164
Checkland, P., 1989. Soft systems methodology. In J.Rosenhead (Ed.), Rational analysis for a problematic world: Problem structuring methods for complexity, uncertainty, and conflict (pp. 71–100). Wiley.
Checkland, P., 2006. Reply to Eden and Ackermann: Any future for problem structuring methods?Journal of the Operational Research Society, 57 (7), 769–771. https://doi.org/10.1057/palgrave.jors.2602111
Checkland, P., Poulter, J., 2006. Learning for action: A short definitive account of soft systems methodology, and its use for practitioners, teachers and students. Wiley.
Checkland, P., Scholes, J., 1990. Soft systems methodology in action. Wiley.
Chekuri, C., Goldberg, A. V., Karger, D. R., Levine, M. S., Stein, C., 1997. Experimental study of minimum cut algorithms. InM. E.Saks (Ed.),Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, 5–7 January 1997, New Orleans, Louisiana, USA (pp. 324–333). ACM/SIAM.
Chen, F., Drezner, Z., Ryan, J. K., Simchi-Levi, D., 2000. Quantifying the bullwhip effect in a simple supply chain: The impact of forecasting, lead times, and information. Management Science, 46 (3), 436–443. https://doi.org/10.1287/mnsc.46.3.436.12069
Chen, F., Song, J.-S., 2001. Optimal policies for multiechelon inventory problems with markov-modulated demand. Operations Research, 49 (2), 226–234. https://doi.org/10.1287/opre.49.2.226.13528
Chen, H., 1995. Fluid approximations and stability of multiclass queueing networks: Work-conserving disciplines. The Annals of Applied Probability, 5 (3), 637–665. https://doi.org/10.1214/aoap/1177004699
Chen, H., Yao, D. D., 2001. Fundamentals of queueing networks: Performance, asymptotics, and optimization. Springer.
Chen, L., Wandelt, S., Dai, W., Sun, X., 2022. Scalable vertiport hub location selection for air taxi operations in a metropolitan region. INFORMS Journal on Computing, 34 (2), 834–856. https://doi.org/10.1287/ijoc.2021.1109
Chen, L., Wang, Y.-M., 2022. Data envelopment analysis cross-efficiency method of non-homogeneous decision-making units. Journal of the Operational Research Society,https://doi.org/10.1080/01605682.2022.2056535
Chen, L.-W., Sharma, P., Tseng, Y.-C., 2013. Dynamic traffic control with fairness and throughput optimization using vehicular communications. IEEE Journal on Selected Areas in Communications, 31, 504–512. https://doi.org/10.1109/JSAC.2013.SUP.0513045
Chen, T., Guestrin, C., 2016. XGBoost: A scalable tree boosting system. InProceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ‘16. ACM, New York, NY, USA (pp. 785–794).
Chen, V., Hooker, J. N., 2022a. Combining leximax fairness and efficiency in an optimization model. European Journal of Operational Research, 299, 235–248. https://doi.org/10.1016/j.ejor.2021.08.036
Chen, V., Hooker, J. N., 2022b. A guide to formulating fairness in optimization models. Annals of Operations Research.
Chen, Y. F., Disney, S. M., 2007. The myopic order-up-to policy with a proportional feedback controller. International Journal of Production Research, 45 (2), 351–368. https://doi.org/10.1080/00207540600579532
Cheung, W. C., Simchi-Levi, D., 2017. Thompson sampling for online personalized assortment optimization problems with multinomial logit choice models. SSRN Electronic Journal, 3075658. https://doi.org/10.2139/ssrn.3075658
Cheung, W. C., Simchi-Levi, D., 2023. Statistical learning in inventory management. In J.-S.Song (Ed.), Research handbook on inventory management. Edward Elgar Publishing.
Chi, E. H., 2000. A taxonomy of visualization techniques using the data state reference model. InProceedings of the IEEE Symposium on Information Vizualization 2000 (INFOVIS 2000). IEEE Computer Society, USA (pp. 69–75).
Chierici, A., Cordone, R., Maja, R., 2004. The demand-dependent optimization of regular train timetable. Electronic Notes in Discrete Mathematics, 17, 99–104. https://doi.org/10.1016/j.endm.2004.03.017
Childers, T. L., Houston, M. J., 1984. Conditions for a picture-superiority effect on consumer memory. The Journal of Consumer Research, 11 (2), 643–654. https://doi.org/10.1086/209001
Chintapalli, P., Disney, S. M., Tang, C. S., 2017. Coordinating supply chains via advance-order discounts, minimum order quantities, and delegations. Production and Operations Management, 26 (12), 2175–2186. https://doi.org/10.1111/poms.12751
Choi, T. M., 2020. Supply chain financing using blockchain: Impacts on supply chains selling fashionable products. Annals of Operations Research.https://doi.org/10.1007/s10479-020-03615-7
Choi, T.-M., Wen, X., Sun, X., Chung, S.-H., 2019. The mean-variance approach for global supply chain risk analysis with air logistics in the blockchain technology era. Transportation Research Part E: Logistics and Transportation Review, 127, 178–191. https://doi.org/10.1016/j.tre.2019.05.007
Chopra, S., Rao, M. R., 1994. The Steiner tree problem I: Formulations, compositions and extension of facets. Mathematical Programming, 64 (1), 209–229. https://doi.org/10.1007/BF01582573
Chothani, R. G., Patel, N. A., Dekavadiya, A. H., Patel, P. R., 2015. A review of online auction and its pros and cons. International Journal of Advance Engineering and Research Development, 2 (1), 8–11.
Chouldechova, A., 2017. Fair prediction with disparate impact: A study of bias in recidivism prediction instruments. Big data, 5 (2), 153–163. https://doi.org/10.1089/big.2016.0047
Chouman, M., Crainic, T. G., 2021. Freight railroad service network design. In T. G.Crainic, M.Gendreau, B.Gendron (Eds.), Network design with applications to transportation and logistics (pp. 383–426). Springer.
Chowdhury, R., Gregory, A. J., Queah, M., 2023. Creative and flexible deployment of systems methodologies for child rights and child protection through (the conceptual lens of) holistic flexibility. Systems Research and Behavioral Science, 40 (4). https://doi.org/10.1002/sres.2955
Christiansen, M., Fagerholt, K., Flatberg, T., Haugen, Ø., Kloster, O., Lund, E. H., 2011. Maritime inventory routing with multiple products: A case study from the cement industry. European Journal of Operational Research, 208 (1), 86–94. https://doi.org/10.1016/j.ejor.2010.08.023
Christiansen, M., Fagerholt, K., Nygreen, B., Ronen, D., 2013. Ship routing and scheduling in the new millennium. European Journal of Operational Research, 228 (3), 467–483. https://doi.org/10.1016/j.ejor.2012.12.002
Christiansen, M., Hellsten, E., Pisinger, D., Sacramento, D., Vilhelmsen, C., 2020. Liner shipping network design. European Journal of Operational Research, 286 (1), 1–20. https://doi.org/10.1016/j.ejor.2019.09.057
Christofides, N., 1975. Graph theory: An algorithmic approach. Academic Press.
Christofides, N., Mingozzi, A., Toth, P., Sandi, C. (Eds.), 1979. Combinatorial optimization. Wiley.
Christofides, N., Whitlock, C., 1981. Network synthesis with connectivity constraints —A survey. In J.Brans (Ed.), Operational research ’81 (pp. 705–723). North-Holland.
Chu, Z., Xu, Z., Li, H., 2019. New heuristics for the RCPSP with multiple overlapping modes. Computers & Industrial Engineering, 131, 146–156. https://doi.org/10.1016/j.cie.2019.03.044
Churchman, C., 1979. The systems approach (2nd ed.).
Churchman, C. W., 1970. Operations research as a profession. Management Science, 17 (2), B37–B53. https://doi.org/10.1287/mnsc.17.2.B37
Churchman, C. W., Ackoff, R., Arnoff, E. L., 1957. Introduction to operations research. Wiley.
Chvátal, V., 1973. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Mathematics, 4, 305–337. https://doi.org/10.1016/0012-365X(73)90167-2
Chvátal, V., 1983. Linear programming. W. H. Freeman.
Ciampi, A., Dyachenko, A., Cole, M., McCusker, J., 2011. Delirium superimposed on dementia: Defining disease states and course from longitudinal measurements of a multivariate index using latent class analysis and hidden Markov chains. International Psychogeriatrics, 23 (10), 1659–1670. https://doi.org/10.1017/S1041610211000871
Cinelli, M., Coles, S. R., Kirwan, K., 2014. Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment. Ecological Indicators, 46, 138–148. https://doi.org/10.1016/j.ecolind.2014.06.011
Cinelli, M., Kadziński, M., Gonzalez, M., Słowiński, R., 2020. How to support the application of multiple criteria decision analysis? Let us start with a comprehensive taxonomy. Omega, 96, 102261. https://doi.org/10.1016/j.omega.2020.102261
Cioppa, T. M., Lucas, T. W., Sanchez, S. M., 2004. Military applications of agent-based simulations. In R. G. Ingalis, M. D. Rossetti, J. S. Smith, & B. A. Peters (Eds.),Proceedings of the 2004 Winter Simulation Conference, 2004 (Vol. 1. p. 180).
Claeskens, G., Magnus, J. R., Vasnev, A. L., Wang, W., 2016. The forecast combination puzzle: A simple theoretical explanation. International Journal of Forecasting, 32 (3), 754–762. https://doi.org/10.1016/j.ijforecast.2015.12.005
Clark, A. J., Scarf, H., 1960. Optimal policies for a multi-echelon inventory problem. Management Science, 6 (4), 475–490. https://doi.org/10.1287/mnsc.6.4.475
Clarke, G., Wright, J., 1964. Scheduling of vehicles from a central depot to a number of delivery points. Operations Research, 12, 568–581. https://doi.org/10.1287/opre.12.4.568
Claβen, G., Koster, A. M. C. A., Coudert, D., Nepomuceno, N., 2014. Chance-Constrained optimization of reliable fixed broadband wireless networks. INFORMS Journal on Computing, 26 (4), 893–909. https://doi.org/10.1287/ijoc.2014.0605
Clautiaux, F., Carlier, J., Moukrim, A., 2007. A new exact method for the two-dimensional orthogonal packing problem. European Journal of Operational Research, 183 (3), 1196–1211. https://doi.org/10.1016/j.ejor.2005.12.048
Clemen, R., 1996. Making hard decisions: An Introduction to decision analysis.
Cleophas, C., Ehmke, J. F., 2014. When are deliveries profitable?Business & Information Systems Engineering, 6 (3), 153–163. https://doi.org/10.1007/s12599-014-0321-9
Coates, D., Parshakov, P., 2022. The wisdom of crowds and transfer market values. European Journal of Operational Research, 301 (2), 523–534. https://doi.org/10.1016/j.ejor.2021.10.046
Cobacho, B., Caballero, R., González, M., Molina, J., 2010. Planning federal public investment in mexico using multiobjective decision making. Journal of the Operational Research Society, 61 (9), 1328–1339. https://doi.org/10.1057/jors.2009.101
Cochrane, J., 2009. Asset pricing: Revised edition. Princeton University Press.
Coelho, L. C., Cordeau, J.-F., Laporte, G., 2014. Heuristics for dynamic and stochastic inventory-routing. Computers & Operations Research, 52, 55–67. https://doi.org/10.1016/j.cor.2014.07.001
CoffmanJr., G. E., Garey, M. R., Johnson, D. S., Tarjan, R. E., 1980. Performance bounds for level-oriented two-dimensional packing algorithms. SIAM Journal on Computing, 9 (4), 808–826. https://doi.org/10.1137/0209062
COIN-OR Foundation, Inc.,2022. The computational infrastructure for operations research. https://www.coin-or.org/
Colapinto, C., Jayaraman, R., Ben Abdelaziz, F., La Torre, D., 2020. Environmental sustainability and multifaceted development: Multi-criteria decision models with applications. Annals of Operations Research, 293 (2), 405–432. https://doi.org/10.1007/s10479-019-03403-y
Comi, A., Bischof, N., Eppler Martin, J., 2014. Beyond projection: Using collaborative visualization to conduct qualitative interviews. Qualitative Research in Organizations and Management: An International Journal, 9 (2), 110–133. https://doi.org/10.1108/QROM-05-2012-1074
Conforti, M., Cornuéjols, G., Zambelli, G., 2014. Integer programming. Springer.
Congram, R. K., Potts, C. N., van de Velde, S. L., 2002. An iterated dynasearch algorithm for the single-machine total weighted tardiness scheduling problem. INFORMS Journal on Computing, 14 (1), 52–67. https://doi.org/10.1287/ijoc.14.1.52.7712
Contreras, I., 2020. A review of the literature on DEA models under common set of weights. Journal of Modelling in Management, 15 (4), 1277–1300. https://doi.org/10.1108/JM2-02-2019-0043
Contreras, I., Fernández, E., 2012. General network design: A unified view of combined location and network design problems. European Journal of Operational Research, 219, 680–697. https://doi.org/10.1016/j.ejor.2011.11.009
Cook, S. A., 1971. The complexity of theorem-proving procedures. InProceedings of the 3rd ACM Symposium on the Theory of Computing (STOC)(pp. 151–158). https://doi.org/10.1145/800157.805047
Cook, S. L., 1973. Operational research, social well-being and the zero growth concept. Omega, 1 (6), 647–667. https://doi.org/10.1016/0305-0483(73)90084-4
Cook, S. L., 1984. Operational research, social well-being and the zero growth concept. In K.Bowen, A.Cook, M.Luck (Eds.), The writings of Steve Cook (pp. 34–51). Operational Research Society.
Cook, W., Cunningham, W., Pulleyblank, W., Schrijver, A., 1998. Combinatorial optimization. Wiley.
Cook, W., Held, S., Helsgaun, K., 2021. Constrained local search for last-mile routing. arXiv:2112.15192.
Cook, W. D., Liang, L., Zhu, J., 2010. Measuring performance of two-stage network structures by DEA: A review and future perspective. Omega, 38 (6), 423–430. https://doi.org/10.1016/j.omega.2009.12.001
Cook, W. D., Tone, K., Zhu, J., 2014. Data envelopment analysis: Prior to choosing a model. Omega, 44, 1–4. https://doi.org/10.1016/j.omega.2013.09.004
Cook, W. D., Zhu, J., 2014. Data envelopment analysis: A handbook of modeling internal structure and network. Springer.
Cook, W. J., 2011. In pursuit of the traveling salesman. Princeton University Press.
Cooper, R. B., 1972. Introduction to queueing theory. Macmillan.
Cooper, W. W., Seiford, L. M., Tone, K., 2007. Data envelopment analysis: A comprehensive text with models, applications, references and DEA-solver software. Springer.
Cooper, W. W., Seiford, L. M., Zhu, J., 2011. Handbook on data envelopment analysis. Springer.
Corbett-Davies, S., Pierson, E., Feller, A., Goel, S., Huq, A., 2017. Algorithmic decision making and the cost of fairness. InProceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ‘17. Association for Computing Machinery, New York, NY, USA (pp. 797–806). https://doi.org/10.1145/3097983.3098095
Cordeau, J.-F., Laporte, G., 2005. Tabu search heuristics for the vehicle routing problem. InR.Sharda, S.Voβ, C.Rego, & B.Alidaee, (Eds.), Metaheuristic optimization via memory and evolution: Tabu search and scatter search (pp. 145–163). Springer US.
Cordeau, J.-F., Soumis, F., Desrosiers, J., 2000. A Benders decomposition approach for the locomotive and car assignment problem. Transportation Science, 34 (2), 133–149. https://doi.org/10.1287/trsc.34.2.133.12308
Córdoba, J.-R., Midgley, G., 2006. Broadening the boundaries: An application of critical systems thinking to IS planning in Colombia. Journal of the Operational Research Society, 57 (9), 1064–1080. https://doi.org/10.1057/palgrave.jors.2602081
Corlu, C. G., Akcay, A., Xie, W., 2020. Stochastic simulation under input uncertainty: A review. Operations Research Perspectives, 7, 100162. https://doi.org/10.1016/j.orp.2020.100162
Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C., 2022. Introduction to algorithms (4th ed.). MIT Press.
Cormen, T. H., Stein, C., Leiserson, C. E., Rivest, R. L., 2009. Introduction to algorithms (3rd ed.). MIT Press.
Cornuéjols, G., 2008. Valid inequalities for mixed integer linear programs. Mathematical Programming, 112, 3–44. https://doi.org/10.1007/s10107-006-0086-0
Cornuéjols, G., Dawande, M., 1999. A class of hard small 0-1 programs. INFORMS Journal on Computing, 11, 205–210. https://doi.org/10.1287/ijoc.11.2.205
Cornuejols, G., Tütüncü, R., 2006. Optimization methods in finance. Cambridge University Press.
Cortazar, G., Schwartz, E. S., Salinas, M., 1998. Evaluating environmental investments: A real options approach. Management Science, 44 (8), 1059–1070. https://doi.org/10.1287/mnsc.44.8.1059
Costa, A. M., 2005. A survey on benders decomposition applied to fixed-charge network design problems. Computers & Operations Research, 32 (6), 1429–1450. https://doi.org/10.1016/j.cor.2003.11.012
Costa, M. T., Gomes, A. M., Oliveira, J. F., 2009. Heuristic approaches to large-scale periodic packing of irregular shapes on a rectangular sheet. European Journal of Operational Research, 192 (1), 29–40. https://doi.org/10.1016/j.ejor.2007.09.012
Council for Science and Technology. 2020. Achieving net zero carbon emissions through a whole systems approach. https://www.gov.uk/government/publications/achieving-net-zero-carbon-emissions-through-a-whole-systems-approach, Retrieved January 12, 2023.
Cowell, F. A., 2000. Measurement of inequality. In A. B.Atkinson & F.Bourguignon (Eds.), Handbook of income distribution (Vol. 1, pp. 89–166). Elsevier.
Cox, J. C., Ross, S. A., Rubinstein, M., 1979. Option pricing: A simplified approach. Journal of Financial Economics, 7 (3), 229–263. https://doi.org/10.1016/0304-405X(79)90015-1
Cox, Jr, L. A., 2020. Answerable and unanswerable questions in risk analysis with open-world novelty. Risk Analysis, 40 (S1), 2144–2177. https://doi.org/10.1111/risa.13553
Cox, Jr, L. A., Popken, D. A., Sun, R. X., 2018. Causal analytics for applied risk analysis. Springer.
Craig, J. D., Winchester, N., 2021. Predicting the national football league potential of college quarterbacks. European Journal of Operational Research, 295 (2), 733–743. https://doi.org/10.1016/j.ejor.2021.03.013
Crainic, T. G., Ferland, J.-A., Rousseau, J.-M., 1984. A tactical planning model for rail freigth transportation. Transportation Science, 18 (2), 165–184. https://doi.org/10.1287/trsc.18.2.165
Crainic, T. G., Florian, M., Léal, J. E., 1990. A model for the strategic planning of national freight transportation by rail. Transportation Science, 24 (1), 1–24. https://doi.org/10.1287/trsc.24.1.1
Crainic, T. G., Fu, X., Gendreau, M., Rei, W., Wallace, S. W., 2011. Progressive hedging-based metaheuristics for stochastic network design. Networks, 58 (2), 114–124. https://doi.org/10.1002/net.20456
Crainic, T. G., Gendreau, M., 2021. Heuristics and metaheuristics for fixed-charge network design. In T. G.Crainic, M.Gendreau, & B.Gendron (Eds.), Network design with applications to transportation and logistics (pp. 91–138). Springer.
Crainic, T. G., Gendreau, M., Gendron, B., 2021a. Fixed-charge network design problems. In T. G.Crainic, M.Gendreau, & B.Gendron (Eds.), Network design with applications to transportation and logistics (pp. 15–28). Springer.
Crainic, T. G., Gendreau, M., Gendron, B., 2021b. Network design with applications to transportation and logistics. Springer.
Crainic, T. G., Gendron, B., 2021. Exact methods for fixed-charge network design. In T. G.Crainic, M.Gendreau, & B.Gendron (Eds.), Network design with applications to transportation and logistics (pp. 29–89). Springer.
Crainic, T. G., Hewitt, M., Maggioni, F., Rei, W., 2021c. Partial benders decomposition: General methodology and application to stochastic network design. Transportation Science, 55 (2), 414–435. https://doi.org/10.1287/trsc.2020.1022
Crainic, T. G., Hewitt, M., Rei, W., 2014. Scenario grouping in a progressive hedging-based meta-heuristic for stochastic network design. Computers & Operations Research, 43, 90–99. https://doi.org/10.1016/j.cor.2013.08.020
Crainic, T. G., Hewitt, M., Toulouse, M., Vu, D. M., 2016. Service network design with resource constraints. Transportation Science, 50 (4), 1380–1393. https://doi.org/10.1287/trsc.2014.0525
Crainic, T. G., Hewitt, M., Toulouse, M., Vu, D. M., 2018. Scheduled service network design with resource acquisition and management. EURO Journal on Transportation and Logistics, 7 (3), 277–309. https://doi.org/10.1007/s13676-017-0103-x
Crama, Y., Rezaei, M., Savelsbergh, M., Van Woensel, T., 2022. Stochastic inventory routing for perishable products. Transportation Science, 52 (3), 526–546. https://doi.org/10.1287/trsc.2017.0799
Creemers, S., Demeulemeester, E., Van de Vonder, S., 2014. A new approach for quantitative risk analysis. Annals of Operations Research, 213 (1), 27–65. https://doi.org/10.1007/s10479-013-1355-y
Cressman, R., 2003. Evolutionary dynamics and extensive form games. MIT Press.
Crouhy, M., Galai, D., Mark, R., 2000. A comparative analysis of current credit risk models. Journal of Banking & Finance, 24 (1–2), 59–117. https://doi.org/10.1016/S0378-4266(99)00053-9
Crowder, H., Johnson, E., Padberg, M., 1983. Solving large-scale 0-1 linear programming problems. Discrete Mathematics, 31, 803–834. https://doi.org/10.1287/opre.31.5.803
Crowe, S., Utley, M., 2022. Praxis in healthcare OR: An empirical behavioural OR study. Journal of the Operational Research Society, 73 (7), 1444–1456. https://doi.org/10.1080/01605682.2021.1919036
Crowe, S., Vasilakis, C., Skeen, A., Storr, P., Grove, P., Gallivan, S., Utley, M., 2014. Examining the feasibility of using a modelling tool to assess resilience across a health-care system and assist with decisions concerning service reconfiguration. Journal of the Operational Research Society, 65 (10), 1522–1532. https://doi.org/10.1057/jors.2013.102
Cui, T. H., Wu, Y., 2018. Incorporating behavioral factors into operations theory. In The handbook of behavioral operations (pp. 89–119). Wiley.
Currie, C. S. M., Fowler, J. W., Kotiadis, K., Monks, T., Onggo, B. S., Robertson, D. A., Tako, A. A., 2020. How simulation modelling can help reduce the impact of COVID-19. Journal of Simulation, 14 (2), 83–97. https://doi.org/10.1080/17477778.2020.1751570
Daduna, H., 2001. Queueing networks with discrete time scaling. Springer-Verlag.
Dagkakis, G., Heavey, C., 2016. A review of open source discrete event simulation software for operations research. Journal of Simulation, 10 (3), 193–206. https://doi.org/10.1057/jos.2015.9
Dahl, H., Meeraus, A., Zenios, S. A., 1993a. Some financial optimization models: I. Risk Management. In S. A.Zenios (Ed.), Financial optimization (pp. 3–36). Cambridge University Press.
Dahl, H., Meeraus, A., Zenios, S. A., 1993b. Some financial optimization models: II. Financial Engineering. In S. A.Zenios (Ed.), Financial optimization (pp. 37–71). Cambridge University Press.
Dai, J. G., 1995. On positive Harris recurrence of multiclass queueing networks: A unified approach via fluid limit models. The Annals of Applied Probability, 5 (1), 49–77. https://doi.org/10.1214/aoap/1177004828
Dai, J. G., Meyn, S. P., 1995. Stability and convergence of moments for multiclass queueing networks via fluid limit models. IEEE Transactions on Automatic Control, 40 (11), 1889–1904. https://doi.org/10.1109/9.471210
Daley, D., Rolski, T., 1992. Light traffic approximations in many-server queues. Advances in Applied Probability, 24 (1), 202–218. https://doi.org/10.2307/1427736
Dammon, R. M., Spatt, C. S., Zhang, H. H., 2001. Optimal consumption and investment with capital gains taxes. The Review of Financial Studies, 14 (3), 583–616. https://doi.org/10.1093/rfs/14.3.583
Damodaran, S. K., Wagner, N., 2020. Modeling and simulation to support cyber defense. The Journal of Defense Modeling and Simulation, 17 (1), 3–4. https://doi.org/10.1177/1548512919856543
Dando, M. R., Bennett, P. G., 1981. A Kuhnian crisis in management science?Journal of the Operational Research Society, 32 (2), 91–103. https://doi.org/10.2307/2581256
Danna, E., Rothberg, E., Le Pape, C., 2005. Exploring relaxation induced neighborhoods to improve MIP solutions. Mathematical Programming, 102, 71–90. https://doi.org/10.1007/s10107-004-0518-7
Dantzig, G., 1960. On the significance of solving linear programming problems with some integer variables. Econometrica, 28, 30–44. https://doi.org/10.2307/1905292
Dantzig, G., Fulkerson, R., Johnson, S., 1954. Solution of a large-scale traveling-salesman problem. Journal of the Operations Research Society of America, 2 (4), 393–410. https://doi.org/10.1287/opre.2.4.393
Dantzig, G. B., 1951. Maximization of a linear function of variables subject to linear inequalities. In T. C.Koopmans (Ed.), Activity analysis of production and allocation (pp. 339–347). Wiley.
Dantzig, G. B., 1955. Linear programming under uncertainty. Management Science, 1 (3/4), 197–206. https://doi.org/10.1287/mnsc.1.3-4.197
Dantzig, G. B., 1963. Linear programming and extensions.Princeton University Press, Princeton.
Dantzig, G. B., 1982. Reminiscences about the origins of linear programming. Operations Research Letters, 1 (2), 43–48. https://doi.org/10.1016/0167-6377(82)90043-8
Dantzig, G. B., 1990. Origins of the simplex method. In S. G.Nash (Ed.), A history of scientific computing (pp. 141–151). Association for Computing Machinery.
Dantzig, G. B., 1991. Linear programming. In J. K.Lenstra, A. H.Rinnooy Kan, & A.Schrijver (Eds.), History of mathematical programming: A collection of personal reminiscences. CWI.
Dantzig, G. B., Fulkerson, D. R., 1955. On the max flow min cut theorem of networks. Tech. Rep., RAND Corporation.
Dantzig, G. B., Infanger, G., 1991. Large-scale stochastic linear programs: Importance sampling and benders decomposition. Tech. Rep. ADA234962, Systems Optimization Laboratoty, Stanford University.
Daraio, C., Simar, L., 2007. Conditional nonparametric frontier models for convex and nonconvex technologies: A unifying approach. Journal of Productivity Analysis, 28 (1), 13–32. https://doi.org/10.1007/s11123-007-0049-3
Daraio, C., Simar, L., Wilson, P. W., 2018. Central limit theorems for conditional efficiency measures and tests of the ‘separability’ condition in non-parametric, two-stage models of production. The Econometrics Journal, 21 (2), 170–191. https://doi.org/10.1111/ectj.12103
D’Ariano, A., Meng, L., Centulio, G., Corman, F., 2019. Integrated stochastic optimization approaches for tactical scheduling of trains and railway infrastructure maintenance. Computers & Industrial Engineering, 127, 1315–1335. https://doi.org/10.1016/j.cie.2017.12.010
Dasgupta, D., Akhtar, Z., Sen, S., 2022. Machine learning in cybersecurity: A comprehensive survey. The Journal of Defense Modeling and Simulation, 19 (1), 57–106. https://doi.org/10.1177/1548512920951275
Daskin, M., 1995. Network and discrete location: Models, algorithms, and applications. Wiley.
Datta, S., 1995. A decision support system for micro-watershed management in India. Journal of the Operational Research Society, 46 (5), 592–603. https://doi.org/10.2307/2584533
Davenport, T. H., 2013. Analytics 3.0.Harvard Business Review. https://hbr.org/2013/12/analytics-30
Davenport, T. H., Harris, J. G., 2007. Competing on analytics: The new science of winning. Harvard Business Press.
Davenport, T. H., Harris, J. G., Morison, R., 2010. Analytics at work: Smarter decisions, better results. Harvard Business Press.
Davies, J., Mabin, V. J., Balderstone, S. J., 2005. The theory of constraints: A methodology apart?—A comparison with selected OR/MS methodologies. Omega, 33 (6), 506–524. https://doi.org/10.1016/j.omega.2004.07.015
Davis, M. H., Panas, V. G., Zariphopoulou, T., 1993. European option pricing with transaction costs. SIAM Journal on Control and Optimization, 31 (2), 470–493. https://doi.org/10.1137/0331022
Davis, P. K., Bracken, P., 2022. Artificial intelligence for wargaming and modeling. The Journal of Defense Modeling and Simulation. https://doi.org/10.1177/15485129211073126
Davtalab-Olyaie, M., Mahmudi-Baram, H., Asgharian, M., 2023. Measuring individual efficiency and unit influence in centrally managed systems. Annals of Operations Research, 321, 139–164. https://doi.org/10.1007/s10479-022-04676-6
Davydenko, A., Fildes, R., 2013. Measuring forecasting accuracy: The case of judgmental adjustments to SKU-level demand forecasts. International Journal of Forecasting, 29 (3), 510–522. https://doi.org/10.1016/j.ijforecast.2012.09.002
Dayarian, I., Savelsbergh, M., 2020. Crowdshipping and same-day delivery: Employing in-store customers to deliver online orders. Production and Operations Management, 29 (9), 2153–2174. https://doi.org/10.1111/poms.13219
Dayarian, I., Savelsbergh, M., Clarke, J.-P., 2020. Same-day delivery with drone resupply. Transportation Science, 54 (1), 229–249. https://doi.org/10.1287/trsc.2019.0944
De Baets, S., Harvey, N., 2020. Using judgment to select and adjust forecasts from statistical models. European Journal of Operational Research, 284 (3), 882–895. https://doi.org/10.1016/j.ejor.2020.01.028
de Brito, M. M., Evers, M., 2016. Multi-criteria decision-making for flood risk management: A survey of the current state of the art. Natural Hazards and Earth System Sciences, 16, 1019–1033. https://doi.org/10.5194/nhess-16-1019-2016
De Causmaecker, P., Vanden Berghe, G., 2011. A categorisation of nurse rostering problems. Journal of Scheduling, 14, 3–16. https://doi.org/10.1007/s10951-010-0211-z
de Figueiredo, J. N., Mayerle, S. F., 2008. Designing minimum-cost recycling collection networks with required throughput. Transportation Research Part E: Logistics and Transportation Review, 44 (5), 731–752. https://doi.org/10.1016/j.tre.2007.04.002
de Finetti, B., 1937. La prévision: ses lois logiques, ses sources subjectives. In: Annales de l’Institut Henri Poincaré (Vol. 7. pp. 1–68).
de Gooyert, V., Rouwette, E., van Kranenburg, H., Freeman, E., 2017. Reviewing the role of stakeholders in operational research: A stakeholder theory perspective. European Journal of Operational Research, 262 (2), 402–410. https://doi.org/10.1016/j.ejor.2017.03.079
de Jomini, A.-H., 1862. The art of war. J.B. Lippincott.
de Keizer, M., Akkerman, R., Grunow, M., Bloemhof, J. M., Haijema, R., van der Vorst, J. G. A. J., 2017. Logistics network design for perishable products with heterogeneous quality decay. European Journal of Operational Research, 262 (2), 535–549. https://doi.org/10.1016/j.ejor.2017.03.049
de Kok, A. d., Graves, S. C., 2003. Supply chain management: Design, coordination and operation. Elsevier.
de Oliveira, L., de Souza, C. C., Yunes, T., 2015. On the complexity of the traveling umpire problem. Theoretical Computer Science, 562, 101–111. https://doi.org/10.1016/j.tcs.2014.09.037
De Reyck, B., Herroelen, W., 1998. A branch-and-bound procedure for the resource-constrained project scheduling problem with generalized precedence relations. European Journal of Operational Research, 111 (1), 152–174. https://doi.org/10.1016/S0377-2217(97)00305-6
De Reyck, B., Herroelen, W., 1999. The multi-mode resource-constrained project scheduling problem with generalized precedence relations. European Journal of Operational Research, 119 (2), 538–556. https://doi.org/10.1016/S0377-2217(99)00151-4
de Treville, S., Antonakis, J., 2006. Could lean production job design be intrinsically motivating? Contextual, configurational, and levels-of-analysis issues. Journal of Operations Management, 24 (2), 99–123. https://doi.org/10.1016/j.jom.2005.04.001
de Werra, D., Asratian, A. S., Durand, S., 2002. Complexity of some special types of timetabling problems. Journal of Scheduling, 5, 171–183. https://doi.org/10.1002/jos.97
De Witte, K., López-Torres, L., 2017. Efficiency in education: A review of literature and a way forward. Journal of the Operational Research Society, 68 (4), 339–363. https://doi.org/10.1057/jors.2015.92
Deb, K., 2001. Multi-objective optimization using evolutionary algorithms. John Wiley & Sons.
Debels, D., De Reyck, B., Leus, R., Vanhoucke, M., 2006. A hybrid scatter search/electromagnetism meta-heuristic for project scheduling. European Journal of Operational Research, 169 (2), 638–653. https://doi.org/10.1016/j.ejor.2004.08.020
Debo, L. G., Savaskan, R. C., Van Wassenhove, L. N., 2004. Coordination in Closed-Loop supply chains. In R.Dekker, M.Fleischmann, K.Inderfurth, L. N.Van Wassenhove (Eds.), Reverse logistics: Quantitative models for closed-loop supply chains (pp. 295–311). Springer.
Debo, L. G., Toktay, L. B., Van Wassenhove, L. N., 2005. Market segmentation and product technology selection for remanufacturable products. Management Science, 51 (8), 1193–1205. https://doi.org/10.1287/mnsc.1050.0369
Dejonckheere, J., Disney, S. M., Lambrecht, M. R., Towill, D. R., 2003. Measuring and avoiding the bullwhip effect: A control theoretic approach. European Journal of Operational Research, 147 (3), 567–590. https://doi.org/10.1016/S0377-2217(02)00369-7
Dejonckheere, J., Disney, S. M., Lambrecht, M. R., Towill, D. R., 2004. The impact of information enrichment on the bullwhip effect in supply chains: A control engineering perspective. European Journal of Operational Research, 153 (3), 727–750. https://doi.org/10.1016/S0377-2217(02)00808-1
Delen, D., Ram, S., 2018. Research challenges and opportunities in business analytics. Journal of Business Analytics, 1 (1), 2–12. https://doi.org/10.1080/2573234X.2018.1507324
Della Croce, F., Grosso, A., Salassa, F., 2014. A matheuristic approach for the two-machine total completion time flow shop problem. Annals of Operations Research, 213 (1), 67–78. https://doi.org/10.1007/s10479-011-0928-x
Dellnitz, A., 2022. Big data efficiency analysis: Improved algorithms for data envelopment analysis involving large datasets. Computers & Operations Research, 137, 105553. https://doi.org/10.1016/j.cor.2021.105553
Demassey, S., 2008. Mathematical programming formulations and lower bounds. In C.Artigues, S.Demassey, E.Néron (Eds.), Resource-constrained project scheduling–Models, algorithms, extensions and applications (pp. 49–62). ISTE.
Demeulemeester, E., 1995. Minimizing resource availability costs in time-limited project networks. Management Science, 41 (10), 1590–1598. https://doi.org/10.1287/mnsc.41.10.1590
Demeulemeester, E., Herroelen, W., 1992. A branch-and-bound procedure for the multiple resource-constrained project scheduling problem. Management Science, 38 (12), 1803–1818. https://doi.org/10.1287/mnsc.38.12.1803
Demeulemeester, E., Herroelen, W., 2011. Robust project scheduling. Foundations and Trends® in Technology, Information and Operations Management, 3 (3–4), 201–376. https://doi.org/10.1561/0200000021
Demeulemeester, E. L., Herroelen, W., 2002. Project scheduling: A research handbook. Springer Science & Business Media.
Demeulemeester, E. L., Herroelen, W. S., 1996. An efficient optimal solution procedure for the preemptive resource-constrained project scheduling problem. European Journal of Operational Research, 90 (2), 334–348. https://doi.org/10.1016/0377-2217(95)00358-4
Demeulemeester, E. L., Herroelen, W. S., 1997. A branch-and-bound procedure for the generalized resource-constrained project scheduling problem. Operations Research, 45 (2), 201–212. https://doi.org/10.1287/opre.45.2.201
den Boer, J., Lambrechts, W., Krikke, H., 2020. Additive manufacturing in military and humanitarian missions: Advantages and challenges in the spare parts supply chain. Journal of Cleaner Production, 257, 120301. https://doi.org/10.1016/j.jclepro.2020.120301
Department for Transport. 2022. Road goods vehicles travelling to europe (RORO). https://www.gov.uk/government/statistical-data-sets/road-goods-vehicles-travelling-to-europe.Retrieved January 12, 2023.
Desaulniers, G., Desrosiers, J., Dumas, Y., Solomon, M. M., Soumis, F., 1997. Daily aircraft routing and scheduling. Management Science, 43 (6), 841–855. https://doi.org/10.1287/mnsc.43.6.841
Desaulniers, G., Desrosiers, J., Solomon, M. M., 2002. Accelerating strategies in column generation methods for vehicle routing and crew scheduling problems. In C.Ribeiro & P.Hansen (Eds.), Essays and surveys in metaheuristics (pp. 309–324). Springer.
Desrosiers, J., Lübbecke, M., 2005. A primer in column generation. In: G.Desaulniers, J.Desrosiers, M.Solomon (Eds.), Column generation (pp. 1–32). Springer US.
Dettmer, H. W., 1997. Goldratt’s theory of constraints: A systems approach to continuous improvement. ASQC Quality Press.
Deutsch, A. R., Lustfield, R., Jalali, M. S., 2022. Community-based system dynamics modelling of stigmatized public health issues: Increasing diverse representation of individuals with personal experiences. Systems Research and Behavioral Science, 39 (4), 734–749. https://doi.org/10.1002/sres.2807
DeValve, L., Song, J.-S., Wei, Y., 2023. Assemble-to-order systems. In J.-S.Song (Ed.), Research handbook on inventory management. Edward Elgar Publishing.
Diaz-Balteiro, L., González-Pachón, J., Romero, C., 2017. Measuring systems sustainability with multi-criteria methods: A critical review. European Journal of Operational Research, 258 (2), 607–616. https://doi.org/10.1016/j.ejor.2016.08.075
Dieterich, W., Mendoza, C., Brennan, T., 2016. COMPAS risk scales: Demonstrating accuracy equity and predictive parity. Tech. Rep., Northpointe Inc. Research Department, 8 July.
Dignum, V., 2019. Responsible artificial intelligence: How to develop and use ai in a responsible way (1st ed.). Springer.
Dijkstra, E. W., 1959. A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269–271. https://doi.org/10.1007/BF01386390
Dillenburger, S. P., Jordan, J. D., Cochran, J. K., 2019. Pareto-optimality for lethality and collateral risk in the airstrike multi-objective problem. Journal of the Operational Research Society, 70 (7), 1051–1064. https://doi.org/10.1080/01605682.2018.1487818
DIMACS. 2021. Implementation challenge: Vehicle routing. Retrieved September 14, 2021, from http://dimacs.rutgers.edu/programs/challenge/vrp/.
Dimopoulou, M., Miliotis, P., 2001. Implementation of a university course and examination timetabling system. European Journal of Operational Research, 130 (1), 202–213. https://doi.org/10.1016/S0377-2217(00)00052-7
Ding, L., Glazebrook, K. D., Kirkbride, C., 2008. Allocation models and heuristics for the outsourcing of repairs for a dynamic warranty population. Management Science, 54 (3), 594–607. https://doi.org/10.1287/mnsc.1070.0750
Dinic, E., 1970. An algorithm for the solution of the max-flow problem with the polynomial estimation. Doklady Akademii Nauk SSSR, 194 (4), 1277–1280.
Dinitz, Y., 2006. Dinitz’ algorithm: The original version and Even’s version. In O.Goldreich, A. L.Rosenberg, & A. L.Selman (Eds.), Theoretical computer science, essays in memory of Shimon even Vol. 3895 of Lecture Notes in Computer Science (pp. 218–240). Springer.
Dixit, A. K., Pindyck, R. S., 2009. The options approach to capital investment. In T.Siesfeld, J.Cefola, D.Neef (Eds.), The economic impact of knowledge (pp. 325–340). Routledge.
Dixon, M. F., Halperin, I., Bilokon, P., 2020. Machine learning in finance. Springer.
Dixon, M. J., Coles, S. G., 1997. Modelling association football scores and inefficiencies in the football betting market. Journal of the Royal Statistical Society. Series C, Applied statistics, 46 (2), 265–280. https://doi.org/10.1111/1467-9876.00065
Dönmez, Z., Kara, B. Y., ÖzlemKarsu, da Gama, F. S., 2021. Humanitarian facility location under uncertainty: Critical review and future prospects. Omega, 102, 102393. https://doi.org/10.1016/j.omega.2021.102393
Doganis, P., Aggelogiannaki, E., Sarimveis, H., 2008. A combined model predictive control and time series forecasting framework for production-inventory systems. International Journal of Production Research, 46 (24), 6841–6853. https://doi.org/10.1080/00207540701523058
Dong, L., Shi, D., Zhang, F., 2016. 3D printing vs. traditional flexible technology: Implications for manufacturing strategy. Working Paper, St. Louis, MO: Washington University.
Dong, Y., Xu, K., 2002. A supply chain model of vendor managed inventory. Transportation Research Part E: Logistics and Transportation Review, 38 (2), 75–95. https://doi.org/10.1016/S1366-5545(01)00014-X
Donohue, K., Özer, Ö., Zheng, Y., 2020. Behavioral operations: Past, present, and future. Manufacturing & Service Operations Management, 22 (1), 191–202. https://doi.org/10.1287/msom.2019.0828
Douglas, M., Wildavsky, A., 1983. Risk and culture: An essay on the selection of technological and environmental dangers. University of California Press.
Doukas, H., Nikas, A., 2020. Decision support models in climate policy. European Journal of Operational Research, 280 (1), 1–24. https://doi.org/10.1016/j.ejor.2019.01.017
Downey, R. G., Fellows, M. R., 1999. Parameterized complexity. Springer.
Doyle, J., Green, R., 1994. Efficiency and cross-efficiency in DEA: Derivations, meanings and uses. The Journal of the Operational Research Society, 45 (5), 567–578. https://doi.org/10.2307/2584392
Drexl, A., Knust, S., 2007. Sports league scheduling: Graph- and resource-based models. Omega, 35 (5), 465–471. https://doi.org/10.1016/j.omega.2005.08.002
Drexl, M., 2012. Synchronization in vehicle routing—A survey of vrps with multiple synchronization constraints. Transportation Science, 46 (3), 297–316. https://doi.org/10.1287/trsc.1110.0400
Dreyfus, S. E., 1969. An appraisal of some shortest-path algorithms. Operations Research, 17 (3), 395–412. https://doi.org/10.1287/opre.17.3.395
Dreyfus, S. E., Law, A. M., 1977. The art and theory of dynamic programming. Academic Press.
Drezner, Z., Hamacher, H. (Eds.), 2004. Facility location: Applications and theory.Springer.
Duan, L., Xiong, Y., 2015. Big data analytics and business analytics. Journal of Management Analytics, 2 (1), 1–21. https://doi.org/10.1080/23270012.2015.1020891
Dubitzky, W., Lopes, P., Davis, J., Berrar, D., 2019. The open international soccer database for machine learning. Machine Learning, 108 (1), 9–28. https://doi.org/10.1007/s10994-018-5726-0
Duckworth, F. C., Lewis, A. J., 1998. A fair method for resetting the target in interrupted one-day cricket matches. Journal of the Operational Research Society, 49 (3), 220–227. https://doi.org/10.2307/3010471
Dunbar, M., Froyland, G., Wu, C.-L., 2012. Robust airline schedule planning: Minimizing propagated delay in an integrated routing and crewing framework. Transportation Science, 46 (2), 204–216. https://doi.org/10.1287/trsc.1110.0395
Dunning, I., Huchette, J., Lubin, M., 2017. JuMP: A modeling language for mathematical optimization. SIAM Review, 59 (2), 295–320. https://doi.org/10.1137/15M1020575
Durán, G., 2021. Sports scheduling and other topics in sports analytics: A survey with special reference to Latin America. Top, 29 (1), 125–155. https://doi.org/10.1007/s11750-020-00576-9
Duran, S., Gutierrez, M. A., Keskinocak, P., 2011. Pre-positioning of emergency items for CARE International. Interfaces, 41 (3), 223–237. https://doi.org/10.1287/inte.1100.0526
Dutta, P., 1995. A folk theorem for stochastic games. Journal of Economic Theory, 66, 1–32. https://doi.org/10.1006/jeth.1995.1030
Dutton, J. M., Walton, R. E., 1964. Operational research and the behavioural sciences. Operations Research Quarterly, 15 (3), 207–217. https://doi.org/10.2307/3007208
Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R., 2012. Fairness through awareness. InProceedings of the 3rd Innovations in Theoretical Computer Science Conference(pp. 214–226). https://doi.org/10.1145/2090236.2090255
Dyckhoff, H., 1990. A typology of cutting and packing problems. European Journal of Operational Research, 44 (2), 145–159. https://doi.org/10.1016/0377-2217(90)90350-K
Dyer, J. S., 1990. Remarks on the analytic hierarchy process. Management Science, 36 (3), 249–258. https://doi.org/10.1287/mnsc.36.3.249
Dyson, R. G., 2000. Strategy, performance and operational research. Journal of the Operational Research Society, 51 (1), 5–11. https://doi.org/10.2307/253942
Dyson, R. G., O’Brien, F. A., Shah, D. B., 2021. Soft OR and practice: The contribution of the founders of operations research. Operations Research, 69 (3), 727–738. https://doi.org/10.1287/opre.2020.2051
Dzidonu, C. K., Foster, F. G., 1993. Prolegomena to or modelling of the global environment-development problem. Journal of the Operational Research Society, 44 (4), 321–331. https://doi.org/10.2307/2584410
Easton, K., Nemhauser, G., Trick, M., 2001. The traveling tournament problem description and benchmarks. In T.Walsh (Ed.), Principles and practice of constraint programming—CP 2001: 7th International Conference, CP 2001 Paphos, Cyprus, 2001 Proceedings (pp. 580–584). Springer.
Eden, C., 1989. Using cognitive mapping for strategic options development and analysis (SODA). In J.Rosenhead (Ed.), Rational analysis for a problematic world: Problem structuring methods for complexity, uncertainty, and conflict (pp. 21–42). Wiley.
Eden, C., Ackermann, F., 2004. Cognitive mapping expert views for policy analysis in the public sector. European Journal of Operational Research, 152 (3), 615–630. https://doi.org/10.1016/S0377-2217(03)00061-4
Eden, C., Ackermann, F., 2006. Where next for problem structuring methods. Journal of the Operational Research Society, 57 (7), 766–768. https://doi.org/10.1057/palgrave.jors.2602090
Ederer, N., 2015. Evaluating capital and operating cost efficiency of offshore wind farms: A DEA approach. Renewable and Sustainable Energy Reviews, 42 (1), 1034–1046. https://doi.org/10.1016/j.rser.2014.10.071
Edgeworth, F. Y., 1888. The mathematical theory of banking. Journal of the Royal Statistical Society, 51 (1), 113–127.
Edmonds, J., 1965a. Maximum matching and a polyhedron with 0,1-vertices. Journal of Research of the National Bureau of Standards, 69B (1 and 2), 125. https://doi.org/10.6028/jres.069B.013
Edmonds, J., 1965b. Paths, trees, and flowers. Canadian Journal of Mathematics. Journal Canadien de Mathematiques, 17, 449–467. https://doi.org/10.4153/CJM-1965-045-4
Edmonds, J., Karp, R. M., 1972. Theoretical improvements in algorithmic efficiency for network flow problems. Journal of the ACM, 19 (2), 248–264. https://doi.org/10.1145/321694.321699
Edwards, W., Barron, F., 1994. SMARTS and SMARTER: Improved simple methods for multiattribute utility measurement. Organizational Behavior and Human Decision Processes, 60 (3), 306–325. https://doi.org/10.1006/obhd.1994.1087
Edwards, W., Miles, R., von Winterfeldt, D., 2007. Advances in decision analysis: From foundations to applications. Cambridge University Press,.
Egerváry, E., 1931. Matrixok kombinatorius tulajdonságairol. Matematikai és Fizikai Lapok, 38, 16–28.
Ehmke, J. F., Campbell, A. M., 2014. Customer acceptance mechanisms for home deliveries in metropolitan areas. European Journal of Operational Research, 233 (1), 193–207. https://doi.org/10.1016/j.ejor.2013.08.028
Ehrgott, M., 2005. Multicriteria optimization (2nd ed.). Springer Verlag.
Ehrhardt, R., 1984. (s, s) policies for a dynamic inventory model with stochastic lead times. Operations Research, 32 (1), 121–132. https://doi.org/10.1287/opre.32.1.121
Eiselt, H., Marianov, V. (Eds.), 2011. Foundations of location analysis. In International series in operations research & management science. Springer.
Eiselt, H., Marianov, V. (Eds.), 2015. Applications of location analysis. In International series in operations research & management science. Springer.
Eisenbrand, F., Grandoni, F., Rothvoβ, T., Schäfer, G., 2010. Connected facility location via random facility sampling and core detouring. Journal of Computer and System Sciences, 76, 709–726. https://doi.org/10.1016/j.jcss.2010.02.001
El-Taha, M., Stidham, >Jr, S., 1999. Sample-path analysis of queueing systems. Kluwer Academic Publishers.
Elçi, Ö., Hooker, J. N., Zhang, P., 2022. Structural properties of equitable and efficient distributions. Tech. Rep., Carnegie Mellon University, submitted.
Eliashberg, J., Winkler, R. L., 1981. Risk sharing and group decision making. Management Science, 27 (11), 1221–1235. https://doi.org/10.1287/mnsc.27.11.1221
Emeç, U., Çatay, B., Bozkaya, B., 2016. An adaptive large neighborhood search for an e-grocery delivery routing problem. Computers & Operations Research, 69, 109–125. https://doi.org/10.1016/j.cor.2015.11.008
Emmeche, C., Køppe, S., Stjernfelt, F., 1997. Explaining emergence: Towards an ontology of levels. Journal for General Philosophy of Science, 28 (1), 83–117. https://doi.org/10.1023/A:1008216127933
Engwerda, J., 2005. LQ dynamic optimization and differential games. John Wiley & Sons.
Eppen, G. D., 1979. Note—effects of centralization on expected costs in a multi-location newsboy problem. Management Science, 25 (5), 498–501. https://doi.org/10.1287/mnsc.25.5.498
Eppler, M. J., Aeschimann, M., 2009. A systematic framework for risk visualization in risk management and communication. Risk Management: An International Journal, 11 (2), 67–89. https://doi.org/10.1057/rm.2009.4
Eppler, M. J., Burkhard, R., 2008. Knowledge visualization. In E.Jennex (Ed.), Knowledge management: concepts, methodologies, tools, and applications (pp. 987–999). IGI Global.
Eppler, M. J., Kernbach, S., 2016. Dynagrams: Enhancing design thinking through dynamic diagrams. Design Studies, 47, 91–117. https://doi.org/10.1016/j.destud.2016.09.001
Eppler, M. J., Platts, K. W., 2009. Visual strategizing: The systematic use of visualization in the strategic-planning process. Long Range Planning, 42 (1), 42–74. https://doi.org/10.1016/j.lrp.2008.11.005
Epure, M., Kerstens, K., Prior, D., 2011. Bank productivity and performance groups: A decomposition approach based upon the Luenberger productivity indicator. European Journal of Operational Research, 211 (3), 630–641. https://doi.org/10.1016/j.ejor.2011.01.041
Erdoğan, G., Stylianou, N., Vasilakis, C., 2019. An open source decision support system for facility location analysis. Decision Support Systems, 125, 113116. https://doi.org/10.1016/j.dss.2019.113116
Erdoğan, G., 2017. An open source spreadsheet solver for vehicle routing problems. Computers & Operations Research, 84, 62–72. https://doi.org/10.1016/j.cor.2017.02.022
Erera, A., Hewitt, M., Savelsbergh, M., Zhang, Y., 2013. Improved load plan design through integer programming based local search. Transportation Science, 47 (3), 412–427. https://doi.org/10.1287/trsc.1120.0441
Erkut, E., Neuman, S., 1989. Analytical models for locating undesirable facilities. European Journal of Operational Research, 40 (3), 275–291. https://doi.org/10.1016/0377-2217(89)90420-7
Erlang, A. K., 1909. The theory of probabilities and telephone conversations. Nyt Tidsskrift for Matematik B, 20, 33–39.
Ernst, A. T., Jiang, H., Krishnamoorthy, M., Sier, D., 2004. Staff scheduling and rostering: A review of applications, methods and models. European Journal of Operational Research, 153, 3–27. https://doi.org/10.1016/S0377-2217(03)00095-X
Esmail, B. A., Geneletti, D., 2018. Multi-criteria decision analysis for nature conservation: A review of 20 years of applications. Methods in Ecology and Evolution, 9 (1), 42–53. https://doi.org/10.1111/2041-210X.12899
Espejo, R., Harnden, R., 1989. The viable system model: Interpretations and applications of Stafford Beer’s VSM. Wiley.
Essid, H., Ouellette, P., Vigeant, S., 2010. Measuring efficiency of Tunisian schools in the presence of quasi-fixed inputs: A bootstrap data envelopment analysis approach. Economics of Education Review, 29 (4), 589–596. https://doi.org/10.1016/j.econedurev.2009.10.014
Esteve, M., Aparicio, J., Rabasa, A., Rodriguez-Sala, J. J., 2020. Efficiency analysis trees: A new methodology for estimating production frontiers through decision trees. Expert Systems with Applications, 162, 113783. https://doi.org/10.1016/j.eswa.2020.113783
EURO Meets NeurIPS 2022. 2022. Vehicle routing competition. Retrieved September 14, 2021. http://www.verolog.eu/.
Eveborn, P., Rönnqvist, M., Einarsdóttir, H., Eklund, M., Lidén, K., Almroth, M., 2009. Operations research improves quality and efficiency in home care. Interfaces, 39 (1), 18–34. https://doi.org/10.1287/inte.1080.0411
EWG PATAT. 1996. EURO working group on automated timetabling. Retrieved October 9, 2022. https://patat.cs.kuleuven.be
Ewing, P. L., Tarantino, W., Parnell, G. S., 2006. Use of decision analysis in the army base realignment and closure (BRAC) 2005 military value analysis. Decision Analysis, 3 (1), 33–49. https://doi.org/10.1287/deca.1060.0062
Fagerholt, K., Laporte, G., Norstad, I., 2010. Reducing fuel emissions by optimizing speed on shipping routes. Journal of the Operational Research Society, 61 (3), 523–529. https://doi.org/10.1057/jors.2009.77
Fagerholt, K., Ronen, D., 2013. Bulk ship routing and scheduling: Solving practical problems may provide better results. Maritime Policy & Management, 40 (1), 48–64. https://doi.org/10.1080/03088839.2012.744481
Fairbrother, J., Zografos, K. G., Glazebrook, K. D., 2020. A slot-scheduling mechanism at congested airports that incorporates efficiency, fairness, and airline preferences. Transportation Science, 54 (1), 115–138. https://doi.org/10.1287/trsc.2019.0926
Fairley, M., Scheinker, D., Brandeau, M. L., 2019. Improving the efficiency of the operating room environment with an optimization and machine learning model. Health Care Management Science, 22 (4), 756–767. https://doi.org/10.1007/s10729-018-9457-3
Fan, H., Sundaresan, S. M., 2000. Debt valuation, renegotiation, and optimal dividend policy. The Review of Financial Studies, 13 (4), 1057–1099. https://doi.org/10.1093/rfs/13.4.1057
Fang, S.-C., Puthenpura, S., 1993. Linear optimization and extensions: Theory and algorithms. Prentice Hall.
Farahani, R. Z., Miandoabchi, E., Szeto, W. Y., Rashidi, H., 2013. A review of urban transportation network design problems. European Journal of Operational Research, 229 (2), 281–302. https://doi.org/10.1016/j.ejor.2013.01.001
Farahani, R. Z., Ruiz, R., Van Wassenhove, L. N., 2023. Introduction to the special issue on the role of operational research in future epidemics/pandemics. European Journal of Operational Research, 304 (1), 1–8. https://doi.org/10.1016/j.ejor.2022.07.019[PMC] URL https://www.sciencedirect.com/science/article/pii/S0377221722005720
Färe, R., Grosskopf, S., Lindgren, B., Roos, P., 1992. Productivity changes in Swedish pharamacies 1980–1989: A non-parametric Malmquist approach. Journal of Productivity Analysis, 3 (1), 85–101. https://doi.org/10.1007/BF00158770
Fasolo, B., Bana e Costa, C. A., 2014. Tailoring value elicitation to decision makers’ numeracy and fluency: Expressing value judgments in numbers or words. Omega, 44, 83–90. https://doi.org/10.1016/j.omega.2013.09.006
Fatnassi, E., Chaouachi, J., Klibi, W., 2015. Planning and operating a shared goods and passengers on-demand rapid transit system for sustainable city-logistics. Transportation Research Part B: Methodological, 81, 440–460. https://doi.org/10.1016/j.trb.2015.07.016
Fauske, M. F., Hoff, E. Ø., 2016. From F-16 to F-35: Optimizing the training of pilots in the Royal Norwegian Air Force. Interfaces, 46 (4), 326–333. https://doi.org/10.1287/inte.2016.0850
Federgruen, A., 1993. Centralized planning models for multi-echelon inventory systems under uncertainty. Handbooks in Operations Research and Management Science, 4, 133–173.
Federgruen, A., Prastacos, G., Zipkin, P. H., 1986. An allocation and distribution model for perishable products. Operations Research, 34 (1), 75–82. https://doi.org/10.1287/opre.34.1.75
Federgruen, A., Zipkin, P., 1984a. A combined vehicle routing and inventory allocation problem. Operations Research, 32 (5), 1019–1037. https://doi.org/10.1287/opre.32.5.1019
Federgruen, A., Zipkin, P., 1984b. Computational issues in an infinite-horizon, multiechelon inventory model. Operations Research, 32 (4), 818–836. https://doi.org/10.1287/opre.32.4.818
Federgruen, A., Zipkin, P., 1986a. An inventory model with limited production capacity and uncertain demands I. The average-cost criterion. Mathematics of Operations Research, 11 (2), 193–207. https://doi.org/10.1287/moor.11.2.193
Federgruen, A., Zipkin, P., 1986b. An inventory model with limited production capacity and uncertain demands II. The discounted-cost criterion. Mathematics of Operations Research, 11 (2), 208–215. https://doi.org/10.1287/moor.11.2.208
Feitzinger, E., Lee, H. L., 1997. Mass customization at Hewlett-Packard: The power of postponement. Harvard Business Review, 75 (1), 116–121.
Feller, W., 1957a. An introduction to probability theory and its applications (Vol. I). Wiley.
Feller, W., 1957b. An introduction to probability theory and its applications (Vol. II). Wiley.
Feng, Y., Gallego, G., 1995. Optimal starting times for end-of-season sales and optimal stopping times for promotional fares. Management Science, 41 (8), 1371–1391. https://doi.org/10.1287/mnsc.41.8.1371
Fenger, J., Halsnaes, K., Larsen, H., Schroll, H., Vidal, V., 1991. Environment, energy and natural resources management in the Baltic Sea region. Nordic Council of Ministers.
Ferguson, M., Guide, Jr, V. D., Koca, E., Souza, G. C., 2009. The value of quality grading in remanufacturing. Production and Operations Management, 18 (3), 300–314. https://doi.org/10.1111/j.1937-5956.2009.01033.x
Ferguson, M. E., Souza, G. C., 2010. Closed-loop supply chains: New developments to improve the sustainability of business practices. CRC Press.
Ferguson, N., Laydon, D., NedjatiGilani, GImai, N., Ainslie, K., Baguelin, M., Bhatia, S., Boonyasiri, A., Cucunuba Perez, Z., Cuomo-Dannenburg, G., Dighe, A., Dorigatti, I., Fu, H., Gaythorpe, K., Green, W., Hamlet, A., Hinsley, W., Okell, L., Van Elsland, S., Thompson, H., Verity, R., Volz, E., Wang, H., Wang, Y., Walker, P., Walters, C., Winskill, P., Whittaker, C., Donnelly, C., Riley, S., Ghani, A., 2020. Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand. Tech. Rep., Imperial College London.
Fernández, E., Landete, M., 2019. Fixed-charge facility location problems. In G.Laporte, S.Nickel, F.Saldanha da Gama (Eds.), Location science (pp. 67–98). Springer.
Fernández, J., Bornn, L., Cervone, D., 2021. A framework for the fine-grained evaluation of the instantaneous expected value of soccer possessions. Machine Learning, 110 (6), 1389–1427. https://doi.org/10.1007/s10994-021-05989-6
Ferrer, G., Whybark, D. C., 2001. Material planning for a remanufacturing facility. Production and Operations Management, 10 (2), 112–124. https://doi.org/10.1111/j.1937-5956.2001.tb00073.x
Ferrer, J. M., Martín-Campo, F. J., Ortuño, M. T., Pedraza-Martínez, A. J., Tirado, G., Vitoriano, B., 2018. Multi-criteria optimization for last mile distribution of disaster relief aid_ Test cases and applications. European Journal of Operational Research, 269 (2), 501–515. https://doi.org/10.1016/j.ejor.2018.02.043
Ferretti, V., Montibeller, G., 2019. An integrated framework for environmental Multi-Impact spatial risk analysis. Risk Analysis, 39 (1), 257–273. https://doi.org/10.1111/risa.12942
Ferretti, V., Pluchinotta, I., Tsoukiàs, A., 2019. Studying the generation of alternatives in public policy making processes. European Journal of Operational Research, 273 (1), 353–363. https://doi.org/10.1016/j.ejor.2018.07.054
Fiacco, A. V., McCormick, G. P., 1968. Nonlinear programming: Sequential unconstrained minimization technique. Wiley.
Figueira, J., Greco, S., Roy, B., Słowiński, R., 2013. An overview of ELECTRE methods and their recent extensions. Journal of Multi-Criteria Decision Analysis, 20 (1–2), 61–85. https://doi.org/10.1002/mcda.1482
Fildes, R., Goodwin, P., Lawrence, M., Nikolopoulos, K., 2009. Effective forecasting and judgmental adjustments: An empirical evaluation and strategies for improvement in supply-chain planning. International Journal of Forecasting, 25 (1), 3–23. https://doi.org/10.1016/j.ijforecast.2008.11.010
Fildes, R., Goodwin, P., Önkal, D., 2019. Use and misuse of information in supply chain forecasting of promotion effects. International Journal of Forecasting, 35 (1), 144–156. https://doi.org/10.1016/j.ijforecast.2017.12.006
Fildes, R., Ranyard, J. C., 1997. Success and survival of operational research Groups-A review. Journal of the Operational Research Society, 48 (4), 336–360. https://doi.org/10.2307/3010262
Fioole, P.-J., Kroon, L., Maróti, G., Schrijver, A., 2006. A rolling stock circulation model for combining and splitting of passenger trains. European Journal of Operational Research, 174 (2), 1281–1297. https://doi.org/10.1016/j.ejor.2005.03.032
Firoozi, D., Caines, P. E., 2017. The execution problem in finance with major and minor traders: A mean field game formulation. In J.Apaloo & B.Viscolani (Eds.), Annals of the international society of dynamic games (ISDG): Advances in dynamic and mean field games (Vol. 15, pp. 107–130). Birkhäuser.
Fischetti, M., Glover, F., Lodi, A., 2005. The feasibility pump. Mathematical Programming, 104, 91–104. https://doi.org/10.1007/s10107-004-0570-3
Fischetti, M., Leitner, M., Ljubić, I., Luipersbeck, M., Monaci, M., Resch, M., Salvagnin, D., Sinnl, M., 2017a. Thinning out Steiner trees: A node-based model for uniform edge costs. Mathematical Programming Computation, 9 (2), 203–229. https://doi.org/10.1007/s12532-016-0111-0
Fischetti, M., Ljubić, I., Sinnl, M., 2017b. Redesigning benders decomposition for large-scale facility location. Management Science, 63 (7), 2146–2162. https://doi.org/10.1287/mnsc.2016.2461
Fischetti, M., Lodi, A., 2003. Local branching. Mathematical Programming, 98, 23–47. https://doi.org/10.1007/s10107-003-0395-5
Fisher, M., 1997. What is the right supply chain for your product?Harvard Business Review March–April, 105–116.
Fisher, M., Gallino, S., Li, J., 2018. Competition-based dynamic pricing in online retailing: A methodology validated with field experiments. Management Science, 64 (6), 2496–2514. https://doi.org/10.1287/mnsc.2017.2753
Fisher, M. L., 1981. The Lagrangian relaxation method for solving integer programming problems. Management Science, 27 (1), 1–18. https://doi.org/10.1287/mnsc.27.1.1
Fleckenstein, D., Klein, R., Steinhardt, C., 2022. Recent advances in integrating demand management and vehicle routing: A methodological review. European Journal of Operational Research.
Fleischmann, M., 2003. Reverse logistics network structures and design. In V. D. R.Guide & L. N.Van Wassenhove (Eds.), Business aspects of closed-loop supply chains. Carnegie Mellon University Press.
Fleischmann, M., Bloemhof-Ruwaard, J. M., Beullens, P., Dekker, R., 2004. Reverse logistics network design. In R.Dekker, M.Fleischmann, K.Inderfurth, L. N.Van Wassenhove (Eds.), Reverse logistics: Quantitative models for closed-loop supply chains (pp. 65–94). Springer-Verlag.
Flood, M., 1956. The traveling-salesman problem. Operations Research, 4 (1), 61–75. https://doi.org/10.1287/opre.4.1.61
Flood, R. L., Jackson, M. C., 1991a. Creative problem solving: Total systems intervention. Wiley.
Flood, R. L., Jackson, M. C. (Eds.), 1991b. Critical systems thinking: directed readings. Wiley.
Flood, R. L., Romm, N. R. A., 1996. Critical systems thinking: Current research and practice. Plenum.
Fone, D., Hollinghurst, S., Temple, M., Round, A., Lester, N., Weightman, A., Roberts, K., Coyle, E., Bevan, G., Palmer, S., 2003. Systematic review of the use and value of computer simulation modelling in population health and health care delivery. Journal of Public Health Medicine, 25 (4), 325–335. https://doi.org/10.1093/pubmed/fdg075
Ford, L. R., Fulkerson, D. R., 1957. A simple algorithm for finding the maximum network flows and an application to the hitchcock problem. Canadian Journal of Mathematics, 9, 210–218. https://doi.org/10.4153/CJM-1957-024-0
Ford, L. R., Fulkerson, D. R., 1962. Flows in networks. Princeton University Press.
Forest, J., Vigerske, S., Ralphs, T., Hafer, L., Gambini, H., Matthew Saltzman, S., Kristjansson, B., King, A., 2022. CLP. https://projects.coin-or.org/Clp
Forrest, D., Simmons, R., 2002. Outcome uncertainty and attendance demand in sport: The case of English soccer. Journal of the Royal Statistical Society. Series D (The Statistician), 51 (2), 229–241. https://doi.org/10.1111/1467-9884.00314
Forrest, J., Ralphs, T., Santos, H., Vigerske, S., Hafer, L., Kristjansson, B., Straver, E., Lubin, M., Brito, S., Saltzman, M., Pitrus, B., Matsushima, H., 2022. CBC. https://projects.coin-or.org/Bcp
Forrester, J. W., 1958. Industrial dynamics—A major breakthrough for decision makers. Harvard Business Review, 36 (4), 37–66.
Forrester, J. W., 1961. Industrial dynamics. MIT Press.
Fortz, B., 2011. Applications of meta-heuristics to traffic engineering in IP networks. International Transactions in Operational Research, 18 (2), 131–147. https://doi.org/10.1111/j.1475-3995.2010.00776.x
Fortz, B., 2015. Location problems in telecommunications. In G.Laporte, S.Nickel, & F.Saldanha da Gama (Eds.), Location science (pp. 537–554). Springer.
Fortz, B., 2021. Topology-constrained network design. In T. G.Crainic, M.Gendreau, & B.Gendron (Eds.), Network design with applications to transportation and logistics (pp. 187–208). Springer.
Fortz, B., Labbé, M., 2006. Design of survivable networks. In M.Resende & P.Pardalos (Eds.), Handbook of optimization in telecommunications (pp. 367–389). Springer.
Fortz, B., Labbé, M., Maffioli, F., 2000. Solving the two-connected network with bounded meshes problem. Operations Research, 48 (6), 866–877. https://doi.org/10.1287/opre.48.6.866.12390
Fortz, B., Thorup, M., 2000. Internet traffic engineering by optimizing OSPF weights. InProceedings of the 19th IEEE Conference on Computer Communications (INFOCOM)(pp. 519–528).
Foss, S., Korshunov, D., 2012. On large delays in multi-server queues with heavy tails. Mathematics of Operations Research, 37 (2), 201–218. https://doi.org/10.1287/moor.1120.0539
Foulds, L. R., 1983. The heuristic problem-solving approach. Journal of the Operational Research Society, 34 (10), 927–934. https://doi.org/10.2307/2580891
Fourier, J. B. J., 1826a. Analyse des travaux de l’Académie Royale des Sciences, pendant l’année 1823. Partie mathématique, Histoire de l’Académie Royale des Sciences de l’Institut de France, 6, xxix–xli.
Fourier, J. B. J., 1826b. Solution d’une question particuliére du calcul des inégalités. Nouveau Bulletin des Sciences par la Société Philomatique de Paris, 99–100.
Fox, W. P., Burks, R., 2019. Applications of operations research and management science for military decision making. Springer.
Fragapane, G., De Koster, R., Sgarbossa, F., Strandhagen, J. O., 2021. Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda. European Journal of Operational Research, 294 (2), 405–426. https://doi.org/10.1016/j.ejor.2021.01.019
Francis, R., McGinnis, L., White, J., 2004. Facility layout and location: An analytical approach. In Prentice-Hall international series in industrial and systems engineering. Prentice Hall.
Franco, C., Herazo-Padilla, N., Castañeda, J. A., 2022. A queueing network approach for capacity planning and patient scheduling: A case study for the COVID-19 vaccination process in colombia. Vaccine, 40 (49), 7073–7086. https://doi.org/10.1016/j.vaccine.2022.09.079
Franco, L. A., Hämäläinen, R. P., 2016a. Feature cluster: Behavioural operational research. European Journal of Operational Research, 249 (3), 791–1073. https://doi.org/10.1016/j.ejor.2015.10.034
Franco, L. A., 2013. Rethinking soft OR interventions: Models as boundary objects. European Journal of Operational Research, 231 (3), 720–733.
Franco, L. A., Cushman, M., Rosenhead, J., 2004. Project review and learning in the construction industry: Embedding a problem structuring method within a partnership context. European Journal of Operational Research, 152 (3), 586–601. https://doi.org/10.1016/S0377-2217(03)00059-6
Franco, L. A., Greiffenhagen, C., 2018. Making OR practice visible: Using ethnomethodology to analyse facilitated modelling workshops. European Journal of Operational Research, 265 (2), 673–684. https://doi.org/10.1016/j.ejor.2017.08.016
Franco, L. A., Hämäläinen, R. P., 2016. Behavioural operational research: Returning to the roots of the OR profession. European Journal of Operational Research, 249 (3), 791–795. https://doi.org/10.1016/j.ejor.2015.10.034
Franco, L. A., Hämäläinen, R. P., Rouwette, E. A. J. A., Leppänen, I., 2021. Taking stock of behavioural OR: A review of behavioural studies with an intervention focus. European Journal of Operational Research, 293 (2), 401–418. https://doi.org/10.1016/j.ejor.2020.11.031
Franco, L. A., Montibeller, G., 2010. Facilitated modelling in operational research. European Journal of Operational Research, 205 (3), 489–500. https://doi.org/10.1016/j.ejor.2009.09.030
Franco, L. A., Rouwette, E. A. J. A., 2022. Problem structuring methods: Taking stock and looking ahead. In S.Salhi & J.Boylan (Eds.), The Palgrave handbook of operations research (pp. 735–780). Springer.
Franco, L. A., Rouwette, E. A. J. A., Korzilius, H., 2016b. Different paths to consensus? The impact of need for closure on model-supported group conflict management. European Journal of Operational Research, 249 (3), 878–889. https://doi.org/10.1016/j.ejor.2015.06.056
Frangioni, A., Gendron, B., 2021. Piecewise linear cost network design. In T. G.Crainic, M.Gendreau, & B.Gendron (Eds.), Network design with applications to transportation and logistics (pp. 167–185). Springer.
Franke, M., 2017. Network design strategies. In P. J.Bruce, Y.Gao, & J. M. C.King (Eds.), Airline operations (pp. 44–60). Routledge.
Franses, P. H., van Dijk, D., Opschoor, A., 2014. Time series models for business and economic forecasting. Cambridge University Press.
Fraunholz, C., Kraft, E., Keles, D., Fichtner, W., 2021. Advanced price forecasting in agent-based electricity market simulation. Applied Energy, 290, 116688. https://doi.org/10.1016/j.apenergy.2021.116688
Färe, R., Grosskopf, S., Logan, J., 1983. The relative efficiency of Illinois electric utilities. Resources and Energy, 5 (4), 349–367. https://doi.org/10.1016/0165-0572(83)90033-6
Färe, R., Grosskopf, S., Tyteca, D., 1996. An activity analysis model of the environmental performance of firms—Application to fossil-fuel-fired electric utilities. Ecological Economics, 18 (2), 161–175. https://doi.org/10.1016/0921-8009(96)00019-5
Freeman, S. (Ed.), 2003. The Cambridge companion to rawls. Cambridge University Press.
Fregonara, E., Curto, R., Grosso, M., Mellano, P., Rolando, D., Tulliani, J.-M., 2013. Environmental technology, materials science, architectural design, and real estate market evaluation: A multidisciplinary approach for energy-efficient buildings. Journal of Urban Technology, 20 (4), 57–80. https://doi.org/10.1080/10630732.2013.855512
French, S., 2022. From soft to hard elicitation. Journal of the Operational Research Society, 73 (6), 1181–1197. https://doi.org/10.1080/01605682.2021.1907244
French, S., Geldermann, J., 2005. The varied contexts of environmental decision problems and their implications for decision support. Environmental Science & Policy, 8 (4), 378–391. https://doi.org/10.1016/j.envsci.2005.04.008
Friend, J., 1989. The strategic choice approach. In J.Rosenhead (Ed.), Rational analysis for a problematic world: Problem structuring methods for complexity, uncertainty, and conflict (pp. 121–158). Wiley.
Friesl, M., Lenten, L. J. A., Libich, J., Stehlík, P., 2017. In search of goals: Increasing ice hockey’s attractiveness by a sides swap. Journal of the Operational Research Society, 68 (9), 1006–1018. https://doi.org/10.1057/s41274-017-0243-2
Fritzson, P., Pop, A., Abdelhak, K., Ashgar, A., Bachmann, B., Braun, W., Bouskela, D., Braun, R., Buffoni, L., Casella, F., Castro, R., Franke, R., Fritzson, D., Gebremedhin, M., Heuermann, A., Lie, B., Mengist, A., Mikelsons, L., Moudgalya, K., Ochel, L., Palanisamy, A., Ruge, V., Schamai, W., Sjölund, M., Thiele, B., Tinnerholm, J., Östlund, P., 2020. The OpenModelica integrated environment for modeling, simulation, and model-based development. Modeling, Identification and Control, 41 (4), 241–295. https://doi.org/10.4173/mic.2020.4.1
Fu, M. C., Glover, F. W., April, J., 2005. Simulation optimization: A review, new developments, and applications. In M. E. Kuhl, N. M. Steiger, F. B. Armstrong, J. A. Joines (Eds.),Proceedings of the Winter Simulation Conference, 2005 (pp. 1–13).
Fügener, A., Hans, E. W., Kolisch, R., Kortbeek, N., Vanberkel, P. T., 2014. Master surgery scheduling with consideration of multiple downstream units. European Journal of Operational Research, 239 (1), 227–236. https://doi.org/10.1016/j.ejor.2014.05.009
Fukasawa, R., Longo, H., Lysgaard, J., Poggi, M., 2006. Robust branch-and-cut-and-price for the capacitated vehicle routing problem. Mathematical Programming, 106 (3), 491–511. https://doi.org/10.1007/s10107-005-0644-x
Fukuda, Y., 1964. Optimal policies for the inventory problem with negotiable leadtime. Management Science, 10 (4), 690–708. https://doi.org/10.1287/mnsc.10.4.690
Fukuyama, H., Weber, W. L., 2009. A directional slacks-based measure of technical inefficiency. Socio-Economic Planning Sciences, 43 (4), 274–287. https://doi.org/10.1016/j.seps.2008.12.001
Gaalman, G., 2006. Bullwhip reduction for ARMA demand: The proportional order-up-to policy versus the full-state-feedback policy. Automatica, 42 (8), 1283–1290. https://doi.org/10.1016/j.automatica.2006.04.017
Gaalman, G., Disney, S. M., Wang, X., 2022. When bullwhip increases in the lead time: An eigenvalue analysis of ARMA demand. International Journal of Production Economics, 250, 108623. https://doi.org/10.1016/j.ijpe.2022.108623
Gács, P., Lovász, L., 1981. Khachiyan’s algorithm for linear programming. In H.König, B.Korte, & K.Ritter (Eds.), Mathematical programming at Oberwolfach (pp. 61–68). Springer Berlin Heidelberg.
Gaillard, P., Goude, Y., Nedellec, R., 2016. Additive models and robust aggregation for GEFCom2014 probabilistic electric load and electricity price forecasting. International Journal of Forecasting, 32 (3), 1038–1050. https://doi.org/10.1016/j.ijforecast.2015.12.001
Galán, J. J., Carrasco, R. A., LaTorre, A., 2022. Military applications of machine learning: A bibliometric perspective. Science in China, Series A: Mathematics, 10 (9), 1397.
Galbreth, M. R., Blackburn, J. D., 2006. Optimal acquisition and sorting policies for remanufacturing. Production and Operations Management, 15 (3), 384–392. https://doi.org/10.1111/j.1937-5956.2006.tb00252.x
Galiullina, A., Mutlu, N., Kinable, J., Van Woensel, T., 2022. Demand steering in a last-mile delivery problem with multiple delivery channels. Working paper.
Gallego, G., Moon, I., 1993. The distribution free newsboy problem: Review and extensions. Journal of the Operational Research Society, 44 (8), 825–834. https://doi.org/10.2307/2583894
Gallego, G., Topaloğlu, H., 2019. Revenue management and pricing analytics. In International series in operations research & management science (Vol. 279). Springer.
Gallego, G., van Ryzin, G., 1994. Optimal dynamic pricing of inventories with stochastic demand over finite horizons. Management Science, 40 (8), 999–1020. https://doi.org/10.1287/mnsc.40.8.999
Gallego, G., van Ryzin, G., 1997. A multiproduct dynamic pricing problem and its applications to network yield management. Operations Research, 45 (1), 24–41. https://doi.org/10.1287/opre.45.1.24
Gamrath, G., Koch, T., Maher, S. J., Rehfeldt, D., Shinano, Y., 2017. SCIP-Jack—A solver for STP and variants with parallelization extensions. Mathematical Programming Computation, 9 (2), 231–296. https://doi.org/10.1007/s12532-016-0114-x
Gan, G., Lee, H.-S., 2022. Measuring group performance based on metafrontier. Journal of the Operational Research Society, 73 (10), 2261–2274. https://doi.org/10.1080/01605682.2021.1973351
Gao, W., Darvishan, A., Toghani, M., Mohammadi, M., Abedinia, O., Ghadimi, N., 2019. Different states of multi-block based forecast engine for price and load prediction. International Journal of Electrical Power and Energy Systems, 104, 423–435. https://doi.org/10.1016/j.ijepes.2018.07.014
García, S., Marín, A., 2019. Covering location problems. In G.Laporte, S.Nickel, & F.Saldanha da Gama (Eds.), Location science (pp. 99–119). Springer.
Gardner, E. S., 2006. Exponential smoothing: The state of the art–Part II. International Journal of Forecasting, 22 (4), 637–666. https://doi.org/10.1016/j.ijforecast.2006.03.005
Gardner, K., Righter, R., 2020. Product forms for FCFS queueing models with arbitrary server-job compatibilities: An overview. Queueing Systems, 96 (1), 3–51. https://doi.org/10.1007/s11134-020-09668-6
Garey, M., Johnson, D., 1979. Computers and intractability: A guide to the theory of NP-completeness. W.H. Freeman and Company.
Garfinkel, R., Nemhauser, G., 1972. Integer programming. John Wiley&Sons.
Garrett, B., 2014. 3D printing: New economic paradigms and strategic shifts. Global Policy, 5 (1), 70–75. https://doi.org/10.1111/1758-5899.12119
Gary, M. S., Kunc, M., Morecroft, J. D. W., Rockart, S. F., 2008. System dynamics and strategy. System Dynamics Review, 24 (4), 407–429. https://doi.org/10.1002/sdr.402
Gasse, M., Chetelat, D., Ferroni, N., Charlin, L., Lodi, A., 2019. Exact combinatorial optimization with graph convolutional neural networks. In H.Wallach, H.Larochelle, A.Beygelzimer, F.d’ Alché-Buc, E.Fox, & R.Garnett (Eds.), Advances in neural information processing systems (Vol. 32). Curran Associates, Inc.
Gaur, V., Fisher, M. L., 2004. A periodic inventory routing problem at a supermarket chain. Operations Research, 52 (6), 813–822. https://doi.org/10.1287/opre.1040.0150
Gautam, N., 2012. Analysis of queues: Methods and applications. CRC Press.
Gauthier, D., 1983. Morals by agreement. Oxford University Press.
Geis, J. P., Parnell, G. S., Newton, H., Bresnick, T., 2011. Blue horizons study assesses future capabilities and technologies for the United States Air Force. Interfaces, 41 (4), 338–353. https://doi.org/10.1287/inte.1110.0556
Geldermann, J., Bertsch, V., Treitz, M., French, S., Papamichail, K. N., Hämäläinen, R. P., 2009. Multi-criteria decision support and evaluation of strategies for nuclear remediation management. Omega, 37 (1), 238–251. https://doi.org/10.1016/j.omega.2006.11.006
Gendreau, M., Ghiani, G., Guerriero, E., 2015. Time-dependent routing problems: A review. Computers & Operations Research, 64, 189–197. https://doi.org/10.1016/j.cor.2015.06.001
Gendreau, M., Jabali, O., Rei, W., 2016. 50th anniversary invited article—Future research directions in stochastic vehicle routing. Transportation Science, 50 (4), 1163–1173. https://doi.org/10.1287/trsc.2016.0709
Gendreau, M., Potvin, J.-Y., 2010. Handbook of metaheuristics (Vol. 2). Springer.
Geng, X., Xie, L., 2019. Data-driven decision making in power systems with probabilistic guarantees: Theory and applications of chance-constrained optimization. Annual Reviews in Control, 47, 341–363. https://doi.org/10.1016/j.arcontrol.2019.05.005
Gentili, M., Mirchandani, P. B., Agnetis, A., Ghelichi, Z., 2022. Locating platforms and scheduling a fleet of drones for emergency delivery of perishable items. Computers & Industrial Engineering, 168, 108057. https://www.sciencedirect.com/science/article/pii/S0360835222001279https://doi.org/10.1016/j.cie.2022.108057
Georgantas, A., Doumpos, M., Zopounidis, C., 2021. Robust optimization approaches for portfolio selection: A comparative analysis. Annals of Operations Research.https://doi.org/10.1007/s10479-021-04177-y
Gettinger, J., Kiesling, E., Stummer, C., Vetschera, R., 2013. A comparison of representations for discrete multi-criteria decision problems. Decision Support Systems, 54 (2), 976–985. https://doi.org/10.1016/j.dss.2012.10.023
Ghamlouche, I., Crainic, T. G., Gendreau, M., 2003. Cycle-based neighbourhoods for fixed-charge capacitated multicommodity network design. Operations Research, 51 (4), 655–667. https://doi.org/10.1287/opre.51.4.655.16098
Ghelichi, Z., Gentili, M., Mirchandani, P. B., 2021. Logistics for a fleet of drones for medical item delivery: A case study for louisville, ky. Computers & Operations Research, 135, 105443. https://www.sciencedirect.com/science/article/pii/S0305054821001970https://doi.org/10.1016/j.cor.2021.105443
Giacco, G. L., Carillo, D., D’Ariano, A., Pacciarelli, D., Marín, A., 2014. Short-term rail rolling stock rostering and maintenance scheduling. Transportation Research Procedia, 3, 651–659. https://doi.org/10.1016/j.trpro.2014.10.044
Gilbert, E. G., 1963. Controllability and observability in multivariable control systems. Journal of the Society for Industrial and Applied Mathematics, Series A: Control, 1 (2), 128–151. https://doi.org/10.1137/0301009
Gilboa, I., Minardi, S., Samuelson, L., 2017. Cases and scenarios in decisions under uncertainty. HEC Paris Research Paper No. ECO/SCD-2017-1200, 1–49.
Gilbreth, F. B., 1911. Motion study: A method for increasing the efficiency of the workman. D. Van Nostrand Company.
Gillies, D., 1953. Some theorems on n-person games [Ph.D. thesis]. Princeton University.
Gilmore, P. C., Gomory, R. E., 1965. Multistage cutting stock problems of two and more dimensions. Operations Research, 13 (1), 94–120. https://doi.org/10.1287/opre.13.1.94
Gini, C., 1912. Variabilità e mutabilità. P. Cuppini, reprinted 1955. In E.Pizetti abd& T.Salvemini (Eds.), Memorie di metodologica statistica. Libreria Eredi Virgilio Veschi.
Giovannini, M., Psaraftis, H. N., 2019. The profit maximizing liner shipping problem with flexible frequencies: Logistical and environmental considerations. Flexible Services and Manufacturing Journal, 31 (3), 567–597. https://doi.org/10.1007/s10696-018-9308-z
Glaize, A., Duenas, A., Di Martinelly, C., Fagnot, I., 2019. Healthcare decision-making applications using multicriteria decision analysis: A scoping review. Journal of Multi-criteria Decision Analysis, 26 (1–2), 62–83. https://doi.org/10.1002/mcda.1659
Glasgow, S. M., Perkins, Z. B., Tai, N. R. M., Brohi, K., Vasilakis, C., 2018. Development of a discrete event simulation model for evaluating strategies of red blood cell provision following mass casualty events. European Journal of Operational Research, 270 (1), 362–374. https://doi.org/10.1016/j.ejor.2018.03.008
Glazebrook, K. D., Hodge, D. J., Kirkbride, C., Minty, R., 2014. Stochastic scheduling: A short history of index policies and new approaches to index generation for dynamic resource allocation. Journal of Scheduling, 17 (5), 407–425. https://doi.org/10.1007/s10951-013-0325-1
Gleixner, A., Hendel, G., Gamrath, G., et al., 2021. MIPLIB 2017: Data-driven compilation of the 6th mixed-integer programming library. Mathematical Programming Computation, 13, 443–490. https://doi.org/10.1007/s12532-020-00194-3
Glen, J. J., 1997. An infinite horizon mathematical programming model of a multicohort single species fishery. Journal of the Operational Research Society, 48 (11), 1095–1104. https://doi.org/10.2307/3010305
Glickman, M. E., 2001. Dynamic paired comparison models with stochastic variances. Journal of Applied Statistics, 28 (6), 673–689. https://doi.org/10.1080/02664760120059219
Glover, F., 1977. Heuristics for integer programming using surrogate constraints. Decision Sciences, 8 (1), 156–166. https://doi.org/10.1111/j.1540-5915.1977.tb01074.x
Glover, F., 1986. Future paths for integer programming and links to artificial intelligence. Computers & Operations Research, 13 (5), 533–549. https://doi.org/10.1016/0305-0548(86)90048-1
Glover, F., 1998. A template for scatter search and path relinking. In J. K.Hao, E.Lutton, E.Ronald, M.Schoenauer, D.Snyers (Eds.), Lecture notes in computer science. Vol. 1363 of Lecture notes in computer science (pp. 1–51). Springer.
Glover, F., Laguna, M., 1997. Tabu search. Springer US.
Glover, F. W., Kochenberger, G. A., 2003. Handbook of metaheuristics. Springer Science & Business Media.
Gneiting, T., Raftery, A. E., 2007. Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association, 102 (477), 359–378. https://doi.org/10.1198/016214506000001437
Goemans, M. X., 1994. The Steiner tree polytope and related polyhedra. Mathematical Programming, 63 (1), 157–182. https://doi.org/10.1007/BF01582064
Goemans, M. X., Olver, N., Rothvoβ, T., Zenklusen, R., 2012. Matroids and integrality gaps for hypergraphic Steiner tree relaxations. In H. J. Karloff & T. Pitassi (Eds.),Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, May 19–22, 2012. ACM, New York, USA (pp. 1161–1176). https://doi.org/10.1145/2213977.2214081
Goldberg, A. V., Hed, S., Kaplan, H., Kohli, P., Tarjan, R. E., Werneck, R. F., 2015. Faster and more dynamic maximum flow by incremental breadth-first search. In N. Bansal & I. Finocchi (Eds.), Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece, September 14–16, 2015, Proceedings. Vol. 9294 of Lecture Notes in Computer Science. Springer (pp. 619–630).
Goldberg, A. V., Tarjan, R. E., 1988. A new approach to the maximum-flow problem. Journal of the ACM, 35 (4), 921–940. https://doi.org/10.1145/48014.61051
Goldberg, A. V., Tarjan, R. E., 2014. Efficient maximum flow algorithms. Communications of the ACM, 57 (8), 82–89. https://doi.org/10.1145/2628036
Golden, B., Raghavan, S., Wasil, E. (Eds.), 2008. The vehicle routing problem: Latest advances and new challenges. Springer.
Goldfarb, D., Todd, M. J., 1989. Chapter II linear programming. In G. L.Nemhauser, A. H. G.Rinnooy Kan, & M. J.Todd (Eds.), Handbooks in operations research and management science (Vol. 1, pp. 73–170). Elsevier.
Goldratt, E. M., 1997. Critical chain.North River Press.
Gollowitzer, S., Ljubić, I., 2011. MIP models for connected facility location: A theoretical and computational study. Computers & Operations Research, 38, 435–449. https://doi.org/10.1016/j.cor.2010.07.002
Gomes, D., Saúde, J., 2014. Mean field games models—A brief survey. Dynamic Games and Applications, 4, 110–154. https://doi.org/10.1007/s13235-013-0099-2
Gomes, L. F. A. M., Lima, M. M. P. P.1991. Todim: Basics and application to multicriteria ranking of projects with environmental impact. Foundations of Computing and Decision Sciences, 16 (3–4), 1–16.
Gómez-Rocha, J. E., Hernández-Gress, E. S., 2022. A stochastic programming model for multi-product aggregate production planning using valid inequalities. NATO Advanced Science Institutes series E: Applied sciences, 12 (19), 9903. https://doi.org/10.3390/app12199903
Gomory, R., 1958. Outline of an algorithm for integer solutions to linear programs. Bulletin of the American Mathematical Society, 64, 275–278. https://doi.org/10.1090/S0002-9904-1958-10224-4
Gomory, R., 1960. An algorithm for the mixed integer problem. Tech. Rep. RM-2597, RAND Corporation.
Gomory, R., 1969. Some polyhedra related to combinatorial problems. Linear Algebra and its Applications, 2, 451–558. https://doi.org/10.1016/0024-3795(69)90017-2
Gomory, R. E., Hu, T. C., 1961. Multi-terminal network flows. Journal of the Society for Industrial and Applied Mathematics, 9 (4), 551–570. https://doi.org/10.1137/0109047
Goodchild, A. V., Daganzo, C. F., 2007. Crane double cycling in container ports: Planning methods and evaluation. Transportation Research Part B: Methodological, 41 (8), 875–891. https://doi.org/10.1016/j.trb.2007.02.006
Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep learning.MIT Press.
Goodson, J. C., Ohlmann, J. W., Thomas, B. W., 2013. Rollout policies for dynamic solutions to the multivehicle routing problem with stochastic demand and duration limits. Operations Research, 61 (1), 138–154. https://doi.org/10.1287/opre.1120.1127
Goossens, J.-W., van Hoesel, S., Kroon, L., 2006. On solving multi-type railway line planning problems. European Journal of Operational Research, 168 (2), 403–424. https://doi.org/10.1016/j.ejor.2004.04.036
Gopalan, R., Talluri, K. T., 1998. The aircraft maintenance routing problem. Operations Research, 46 (2), 260–271. https://doi.org/10.1287/opre.46.2.260
Gordon, W. J., Newell, G. F., 1967. Cyclic queuing systems with restricted length queues. Operations Research, 15 (2), 266–277. https://doi.org/10.1287/opre.15.2.266
Gorissen, B. L., Yanıkoğlu, İ., den Hertog, D., 2015. A practical guide to robust optimization. Omega, 53, 124–137. https://doi.org/10.1016/j.omega.2014.12.006
Gouveia, L., 1998. Using variable redefinition for computing lower bounds for minimum spanning and Steiner trees with hop constraints. INFORMS Journal on Computing, 10, 180–188. https://doi.org/10.1287/ijoc.10.2.180
Govindan, K., Jafarian, A., Khodaverdi, R., Devika, K., 2014. Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food. International Journal of Production Economics, 152, 9–28. https://doi.org/10.1016/j.ijpe.2013.12.028
Graefe, A., Armstrong, J. S., 2011. Comparing face-to-face meetings, nominal groups, Delphi and prediction markets on an estimation task. International Journal of Forecasting, 27 (1), 183–195. https://doi.org/10.1016/j.ijforecast.2010.05.004
Grass, E., Fischer, K., 2016. Two-stage stochastic programming in disaster management: A literature survey. Surveys in Operations Research and Management Science, 21 (2), 85–100. https://doi.org/10.1016/j.sorms.2016.11.002
Graves, G. W., McBride, R. D., Gershkoff, I., Anderson, D., Mahidhara, D., 1993a. Flight crew scheduling. Management Science, 39 (6), 736–745. https://doi.org/10.1287/mnsc.39.6.736
Graves, S. C., Kan, A. R., Zipkin, P. H., 1993b. Logistics of production and inventory (Vol. 4). Elsevier.
Greco, S., Matarazzo, B., Slowinski, R., 2001. Rough sets theory for multicriteria decision analysis. European Journal of Operational Research, 129 (1), 1–47. https://doi.org/10.1016/S0377-2217(00)00167-3
Greco, S., Ehrgott, M., Figueira, J. (Eds.), 2016. Multiple criteria decision analysis: State of the art surveys. In International series in operations research and management science (Vol. 233). Springer-Verlag.
Green, K. C., Armstrong, J. S., 2007. Structured analogies for forecasting. International Journal of Forecasting, 23 (3), 365–376. https://doi.org/10.1016/j.ijforecast.2007.05.005
Green, T. R. G., Blandford, A. E., Church, L., Roast, C. R., Clarke, S., 2006. Cognitive dimensions: Achievements, new directions, and open questions. Journal of Visual Languages & Computing, 17 (4), 328–365. https://doi.org/10.1016/j.jvlc.2006.04.004
Greenberg, M., Cox, A., Bier, V., Lambert, J., Lowrie, K., North, W., Siegrist, M., Wu, F., 2020. Risk analysis: Celebrating the accomplishments and embracing ongoing challenges. Risk Analysis, 40 (S1), 2113–2127. https://doi.org/10.1111/risa.13487
Greenberg, M., Cox, Jr, L. A., 2021. Plutonium disposition: Using and explaining complex risk-related methods. Risk Analysis, 41 (12), 2186–2195. https://doi.org/10.1111/risa.13734
Gregory, A., Ronan, M., 2015. Insights into the development of strategy from a complexity perspective. Journal of the Operational Research Society, 66 (4), 627–636. https://doi.org/10.1057/jors.2014.27
Gregory, A. J., Atkins, J. P., Midgley, G., Hodgson, A. M., 2020. Stakeholder identification and engagement in problem structuring interventions. European Journal of Operational Research, 283 (1), 321–340. https://doi.org/10.1016/j.ejor.2019.10.044
Gregory, A. J., Jackson, M. C., 1992a. Evaluating organizations: A systems and contingency approach. Systems Practice, 5 (1), 37–60. https://doi.org/10.1007/BF01060046
Gregory, A. J., Jackson, M. C., 1992b. Evaluation methodologies: A system for use. Journal of the Operational Research Society, 43 (1), 19–28. https://doi.org/10.2307/2583695
Gregory, R., Failing, L., Harstone, M., Long, G., McDaniels, T., Ohlson, D., 2012. Structured decision making: A practical guide to environmental management choices. Wiley.
Gregory, W. J., 2000. Transforming self and society: A “critical appreciation” model. Systemic Practice and Action Research, 13 (4), 475–501. https://doi.org/10.1023/A:1009541430809
Grieco, L., Utley, M., Crowe, S., 2021. Operational research applied to decisions in home health care: A systematic literature review. Journal of the Operational Research Society, 72 (9), 1960–1991. https://doi.org/10.1080/01605682.2020.1750311
Grinsztajn, L., Oyallon, E., Gaël, V., 2022. Why do tree-based models still outperform deep learning on typical tabular data? In: Advances in neural information processing systems (Vol. 35). Curran Associates, Inc.
Groop, J., Ketokivi, M., Gupta, M., Holmström, J., 2017. Improving home care: Knowledge creation through engagement and design. Journal of Operations Management, 53–56, 9–22. https://doi.org/10.1016/j.jom.2017.11.001
Gross, C. N., Brunner, J. O., Blobner, M., 2019. Hospital physicians can’t get no long-term satisfaction–An indicator for fairness in preference fulfillment on duty schedules. Health Care Management Science, 22 (4), 691–708. https://doi.org/10.1007/s10729-018-9452-8
Gross, D., Harris, C. M., 1974. Fundamentals of queueing theory. Wiley.
Grötschel, M., Lovász, L., Schrijver, A., 1981. The ellipsoid method and its consequences in combinatorial optimization. Combinatorica, 1, 169–197. https://doi.org/10.1007/BF02579273
Grötschel, M., Lovász, L., Schrijver, A., 1988. Geometric algorithms and combinatorial optimization. Springer.
Grötschel, M., Monma, C., 1990. Integer polyhedra arising from certain design problems with connectivity constraints. SIAM Journal on Discrete Mathematics, 3, 502–523. https://doi.org/10.1137/0403043
Grubbström, R. W., 1967. On the application of the Laplace transform to certain economic problems. Management Science, 13 (7), 558–567. https://doi.org/10.1287/mnsc.13.7.558
Grus, J., 2019. Data science from scratch: First principles with Python. O’Reilly Media.
Gschwind, T., Irnich, S., 2016. Dual inequalities for stabilized column generation revisited. INFORMS Journal on Computing, 28 (1), 175–194. https://doi.org/10.1287/ijoc.2015.0670
Gu, S., Kelly, B., Xiu, D., 2020. Empirical asset pricing via machine learning. The Review of Financial Studies, 33 (5), 2223–2273. https://doi.org/10.1093/rfs/hhaa009
Gu, Z., Nemhauser, G., Savelsbergh, M., 1998. Lifted cover inequalities for 0-1 integer programs: Computation. INFORMS Journal on Computing, 10, 427–437. https://doi.org/10.1287/ijoc.10.4.427
Gu, Z., Nemhauser, G. L., Savelsbergh, M. W., 1999. Lifted flow cover inequalities for mixed 0-1 integer programs. Mathematical Programming, 85 (3), 439–467. https://doi.org/10.1007/s101070050067
Guide, V. D. R., Souza, G. C., Van Wassenhove, L. N., Blackburn, J., 2006. Time value of commercial product returns. Management Science, 52 (8), 1200–1214. https://doi.org/10.1287/mnsc.1060.0522
Guide, V. D. R., Teunter, R. H., Van Wassenhove, L. N., 2003. Matching demand and supply to maximize profits from remanufacturing. Manufacturing & Service Operations Management, 5 (4), 303–316. https://doi.org/10.1287/msom.5.4.303.24883
Guide, V. D. R., Van Wassenhove, L. N., 2003. Business aspects of closed-loop supply chains. Carnegie Mellon University Press.
Guide, Jr, V. D. R., Li, J., 2010. The potential for cannibalization of new products sales by remanufactured products. Decision Sciences, 41 (3), 547–572. https://doi.org/10.1111/j.1540-5915.2010.00280.x
Guihaire, V., Hao, J.-K., 2008. Transit network design and scheduling: A global review. Transportation Research Part A: Policy and Practice, 42 (10), 1251–1273.
Guikema, S., 2020. Artificial intelligence for natural hazards risk analysis: Potential, challenges, and research needs. Risk Analysis, 40 (6), 1117–1123. https://doi.org/10.1111/risa.13476
Guo, P., Xiao, B., Li, J., 2012. Unconstraining methods in revenue management systems: Research overview and prospects. Advances in Operations Research, 2012. https://doi.org/10.1155/2012/270910
Gurobi. 2022. Gurobi. https://www.gurobi.com/
Gusfield, D., 1990. Very simple methods for all pairs network flow analysis. SIAM Journal on Computing, 19 (1), 143–155. https://doi.org/10.1137/0219009
Gutin, G., Punnen, A. (Eds.), 2006. The traveling salesman problem and its variations. Kluwer.
Haase, K., Müller, S., 2013. Management of school locations allowing for free school choice. Omega, 41 (5), 847–855. https://doi.org/10.1016/j.omega.2012.10.008
Habermas, J., 1972. Knowledge and human interests(J. J. Shapiro, Tran.). Heinemann.
Hadley, G., Within, T., 1963. Analysis of inventory systems. Prentice-Hall.
Haeringer, G., 2018. Market design: Auctions and matching. MIT Press.
Hahler, S., Fleischmann, M., 2017. Strategic grading in the product acquisition process of a reverse supply chain. Production and Operations Management, 26 (8), 1498–1511. https://doi.org/10.1111/poms.12699
Hakes, J. K., Sauer, R. D., 2006. An economic evaluation of the moneyball hypothesis. The Journal of Economic Perspectives, 20 (3), 173–186. https://doi.org/10.1257/jep.20.3.173
Hakimi, S. L., 1965. Optimum distribution of switching centers in a communication network and some related graph theoretic problems. Operations Research, 13 (3), 462–475. https://doi.org/10.1287/opre.13.3.462
Halfin, S., Whitt, W., 1981. Heavy-traffic limits for queues with many exponential servers. Operations Research, 29 (3), 567–588. https://doi.org/10.1287/opre.29.3.567
Halkos, G. E., Tzeremes, N. G., Kourtzidis, S. A., 2014. A unified classification of two-stage DEA models. Surveys in Operations Research and Management Science, 19 (1), 1–16. https://doi.org/10.1016/j.sorms.2013.10.001
Hall, A. D., 1962. A methodology for systems engineering. Van Nostrand.
Halvorsen-Weare, E. E., Fagerholt, K., 2011. Robust supply vessel planning. In Network optimization (pp. 559–573). Springer.
Hämäläinen, R. P., 2015. Behavioural issues in environmental modelling–The missing perspective. Environmental Modelling & Software, 73, 244–253. https://doi.org/10.1016/j.envsoft.2015.08.019
Hämäläinen, R. P., Lahtinen, T. J., 2016. Path dependence in operational research–How the modeling process can influence the results. Operations Research Perspectives, 3, 14–20. https://doi.org/10.1016/j.orp.2016.03.001
Hämäläinen, R. P., Luoma, J., Saarinen, E., 2013. On the importance of behavioral operational research: The case of understanding and communicating about dynamic systems. European Journal of Operational Research, 228 (3), 623–634. https://doi.org/10.1016/j.ejor.2013.02.001
Hammant, J., Disney, S. M., Childerhouse, P., Naim, M. M., 1999. Modelling the consequences of a strategic supply chain initiative of an automotive aftermarket operation. International Journal of Physical Distribution & Logistics Management, 29 (9), 535–550. https://doi.org/10.1108/09600039910287501
Hammond, P. J., 1992. Harsanyi’s utilitarian theorem: A simpler proof and some ethical connotations. In R.Selten (Ed.), Rational interaction: Essays in honor of John C. Harsanyi (pp. 305–319). Springer.
Hane, C. A., Barnhart, C., Johnson, E. L., Marsten, R. E., Nemhauser, G. L., Sigismondi, G., 1995. The fleet assignment problem: Solving a large-scale integer program. Mathematical Programming, 70 (1), 211–232. https://doi.org/10.1007/BF01585938
Hanea, A. M., Christophersen, A., Alday, S., 2022. Bayesian networks for risk analysis and decision support. Risk Analysis, 42 (6), 1149–1154. https://doi.org/10.1111/risa.13938
Hansen, P., Mladenović, N., 1999. An introduction to variable neighborhood search. In S.Voβ, S.Martello, I. H.Osman, C.Roucairol (Eds.), Meta-Heuristics: Advances and trends in local search paradigms for optimization (pp. 433–458). Springer. https://doi.org/10.1007/978-1-4615-5775-3_30
Hao, J., Orlin, J. B., 1994. A faster algorithm for finding the minimum cut in a directed graph. Journal of Algorithms, 17 (3), 424–446. https://doi.org/10.1006/jagm.1994.1043
Harchol-Balter, M., 2013. Performance modeling and design of computer systems: Queueing theory in action. Cambridge University Press.
Hardt, M., Price, E., Srebro, N.2016. Equality of opportunity in supervised learning. InProceedings of 30th International Conference on Neural Information Processing(pp. 3323–3331).
Hargreaves, J. R., Langan, S. M., Oswald, W. E., Halliday, K. E., Sturgess, J., Phelan, J., Nguipdop-Djomo, P., Ford, B., Allen, E., Sundaram, N., Ireland, G., Poh, J., Ijaz, S., Diamond, I., Rourke, E., Dawe, F., Judd, A., Warren-Gash, C., Clark, T. G., Glynn, J. R., Edmunds, W. J., Bonell, C., Mangtani, P., Ladhani, S. N.2022. Epidemiology of SARS-CoV-2 infection among staff and students in a cohort of english primary and secondary schools during 2020-2021. The Lancet regional health. Europe, 21, 100471. https://doi.org/10.1016/j.lanepe.2022.100471
Harju, M., Liesiö, J., Virtanen, K., 2019. Spatial multi-attribute decision analysis: Axiomatic foundations and incomplete preference information. European Journal of Operational Research, 275 (1), 167–181. https://doi.org/10.1016/j.ejor.2018.11.013
Harper, A., Pitt, M., De Prez, M., Dumlu, Z. Ö., Vasilakis, C., Forte, P., Wood, R., 2021. A demand and capacity model for home-based intermediate care: Optimizing the ‘step down’ pathway. In2021 Winter Simulation Conference (WSC)(pp. 1–12). https://doi.org/10.1109/WSC52266.2021.9715468
Harris, F. W., 1913. How many parts to make at once. Factory, The Magazine of Management, 10 (2), 135–136, 152.
Harris, F. W., 1990. How many parts to make at once. Operations Research, 38 (6), 947–950. https://doi.org/10.1287/opre.38.6.947
Harrison, J. M., 1985. Brownian motion and stochastic flow systems. Wiley.
Harsanyi, J., 1967. Games with incomplete information played by “Bayesian” players, Part I. Management Science, 14 (3), 159–182. https://doi.org/10.1287/mnsc.14.3.159
Harsanyi, J., 1968a. Games with incomplete information played by “Bayesian” players, Part II. Management Science, 14 (5), 320–334. https://doi.org/10.1287/mnsc.14.5.320
Harsanyi, J., 1968b. Games with incomplete information played by “Bayesian” players, Part III. Management Science, 14 (7), 486–502. https://doi.org/10.1287/mnsc.14.7.486
Harsanyi, J. C., 1977. Rational behavior and bargaining equilibrium in games and social situations. Cambridge University Press.
Hartert, R., Vissicchio, S., Schaus, P., Bonaventure, O., Filsfils, C., Telkamp, T., Francois, P., 2015. A declarative and expressive approach to control forwarding paths in carrier-grade networks. ACM SIGCOMM Computer Communication Review, 45 (4), 15–28. https://doi.org/10.1145/2829988.2787495
Hartmann, S., 2001. Project scheduling with multiple modes: A genetic algorithm. Annals of Operations Research, 102 (1), 111–135. https://doi.org/10.1023/A:1010902015091
Hartmann, S., 2002. A self-adapting genetic algorithm for project scheduling under resource constraints. Naval Research Logistics, 49 (5), 433–448. https://doi.org/10.1002/nav.10029
Hartmann, S., Briskorn, D., 2010. A survey of variants and extensions of the resource-constrained project scheduling problem. European Journal of Operational Research, 207 (1), 1–14. https://doi.org/10.1016/j.ejor.2009.11.005
Hartmann, S., Drexl, A., 1998. Project scheduling with multiple modes: A comparison of exact algorithms. Networks. An International Journal, 32 (4), 283–297. https://doi.org/10.1002/(SICI)1097-0037(199812)32:4<283::AID-NET5>3.0.CO;2-I
Harwood, S., 2019. Whither is problem structuring methods (PSMs)?Journal of the Operational Research Society, 70 (8), 1391–1392. https://doi.org/10.1080/01605682.2018.1502628
Hasbrouck, J., 1995. One security, many markets: Determining the contributions to price discovery. Journal of Finance, 50 (4), 1175–1199. https://doi.org/10.1111/j.1540-6261.1995.tb04054.x
Haspeslagh, S., De Causmaecker, P., Schaerf, A., Stølevik, M., 2014. The first international nurse rostering competition 2010. Annals of Operations Research, 218, 221–236. https://doi.org/10.1007/s10479-012-1062-0
Hastie, T., Tibshirani, R., Wainwright, M., 2015. Statistical learning with sparsity: The lasso and generalizations. CRC Press.
Hattori, T., Jamasb, T., Pollitt, M., 2005. Electricity distribution in the UK and Japan: A comparative efficiency analysis 1985–1998. The Energy Journal, 26 (2), 23–47. https://doi.org/10.5547/ISSN0195-6574-EJ-Vol26-No2-2
Haug, A. A., Blackburn, V. C., 2017. Government secondary school finances in New South Wales: Accounting for students’ prior achievements in a two-stage DEA at the school level. Journal of Productivity Analysis, 48 (1), 69–83. https://doi.org/10.1007/s11123-017-0502-x
Haurie, A., Pohjola, M., 1987. Efficient equilibria in a differential game of capitalism. Journal of Economic Dynamics and Control, 11 (1), 65–78. https://doi.org/10.1016/0165-1889(87)90024-8
Haurie, A., Tolwinski, B., 1985. Definition and properties of cooperative equilibria in a two-player game of infinite duration. Journal of Optimization Theory and Applications, 46, 525–534. https://doi.org/10.1007/BF00939157
Hausken, K., 2018. A cost–benefit analysis of terrorist attacks. Defence and Peace Economics, 29 (2), 111–129. https://doi.org/10.1080/10242694.2016.1158440
Hax, A. C., Meal, H. C., 1973. Hierarchical integration of production planning and scheduling. Massachusetts Institute of Technology, Sloan School of Management 656–673.
He, F., Yang, J., Li, M., 2018. Vehicle scheduling under stochastic trip times: An approximate dynamic programming approach. Transportation Research Part C: Emerging Technologies, 96, 144–159. https://doi.org/10.1016/j.trc.2018.09.010
Helsgaun, K., 2000. An effective implementation of the Lin-Kernighan traveling salesman heuristic. European Journal of Operational Research, 126 (1), 106–130. https://doi.org/10.1016/S0377-2217(99)00284-2
Hemmelmayr, V., Doerner, K. F., Hartl, R. F., Savelsbergh, M. W. P., 2009. Delivery strategies for blood product supplies. OR Spectrum, 31, 707–725. https://doi.org/10.1007/s00291-008-0134-7
Hermans, L. M., Thissen, W. A. H., 2009. Actor analysis methods and their use for public policy analysts. European Journal of Operational Research, 196 (2), 808–818. https://doi.org/10.1016/j.ejor.2008.03.040
Herrmann, J., 2012. Handbook of operations research for homeland security. Springer.
Herroelen, W., 2007. Generating robust project baseline schedules. In T.Klastorin (Ed.), OR tools and applications: Glimpses of future technologies. INFORMS TutORials in Operations Research. INFORMS (pp. 124–144).
Herroelen, W., Leus, R., 2001. On the merits and pitfalls of critical chain scheduling. Journal of Operations Management, 19 (5), 559–577. https://doi.org/10.1016/S0272-6963(01)00054-7
Herroelen, W., Leus, R., 2005. Project scheduling under uncertainty: Survey and research potentials. European Journal of Operational Research, 165 (2), 289–306. https://doi.org/10.1016/j.ejor.2004.04.002
Herron, R., Mendiwelso-Bendek, Z., 2018. Supporting self-organised community research through informal learning. European Journal of Operational Research, 268 (3), 825–835. https://doi.org/10.1016/j.ejor.2017.08.009
Hewitt, M., 2019. Enhanced dynamic discretization discovery for the continuous time load plan design problem. Transportation Science, 53 (6), 1731–1750. https://doi.org/10.1287/trsc.2019.0890
Hewitt, M., Crainic, T. G., Nowak, M., Rei, W., 2019. Scheduled service network design with resource acquisition and management under uncertainty. Transportation Research Part B: Methodological, 128, 324–343. https://doi.org/10.1016/j.trb.2019.08.008
Hewitt, M., Nemhauser, G. L., Savelsbergh, M. W., 2010. Combining exact and heuristic approaches for the capacitated fixed-charge network flow problem. INFORMS Journal on Computing, 22 (2), 314–325. https://doi.org/10.1287/ijoc.1090.0348
Hewitt, M., Rei, W., Wallace, S. W., 2021. Stochastic network design. In T. G.Crainic, M.Gendreau, B.Gendron (Eds.), Network design with applications to transportation and logistics (pp. 283–315). Springer.
Heydenreich, B., Müller, R., Uetz, M., Vohra, R. V., 2009. Characterization of revenue equivalence. Econometrica, 77 (1), 307–316.
Hickman, B. R., 2010. On the pricing rule in electronic auctions. International Journal of Industrial Organization, 28 (5), 423–433. https://doi.org/10.1016/j.ijindorg.2009.10.006
Hifi, M., M’Hallah, R., 2009. A literature review on circle and sphere packing problems: Models and methodologies. Advances in Operations Research, 2009, 150624. https://doi.org/10.1155/2009/150624
Higgins, A. J., Miller, C. J., Archer, A. A., Ton, T., Fletcher, C. S., McAllister, R. R., 2010. Challenges of operations research practice in agricultural value chains. Journal of the Operational Research Society, 61 (6), 964–973. https://doi.org/10.1057/jors.2009.57
Higle, J. L., Sen, S., 1991. Stochastic decomposition: An algorithm for two-stage linear programs with recourse. Mathematics of Operations Research, 16 (3), 650–669. https://doi.org/10.1287/moor.16.3.650
Hill, R. R., 2020. Modern data analytics for the military operational researcher. In N.Scala & J.Howard (Eds.), Handbook of military and defense operations research (pp. 3–18). CRC Press.
Hindle, G. A., Vidgen, R., 2018. Developing a business analytics methodology: A case study in the foodbank sector. European Journal of Operational Research, 268 (3), 836–851. https://doi.org/10.1016/j.ejor.2017.06.031
Hines, P., Holweg, M., Rich, N., 2004. Learning to evolve: A review of contemporary lean thinking. International Journal of Operations & Production Management, 24 (10), 994–1011. https://doi.org/10.1108/01443570410558049
Hines, P., Rich, N., 1997. The seven value stream mapping tools. International Journal of Operations & Production Management, 17, 46–64. https://doi.org/10.1108/01443579710157989
Hitchcock, F. L., 1941. The distribution of a product from several sources to numerous localities. Journal of Mathematics and Physics, 20 (1-4), 224–230. https://doi.org/10.1002/sapm1941201224
Hjortsø, C. N., 2004. Enhancing public participation in natural resource management using soft OR—An application of strategic option development and analysis in tactical forest planning. European Journal of Operational Research, 152 (3), 667–683. https://doi.org/10.1016/S0377-2217(03)00065-1
Hochbaum, D. S. (Ed.), 1997. Approximation algorithms for NP-hard problems. PWS Publishing Co.
Hochbaum, D. S., 2008. The pseudoflow algorithm: A new algorithm for the maximum-flow problem. Operations Research, 56 (4), 992–1009. https://doi.org/10.1287/opre.1080.0524
Hochbaum, D. S., Orlin, J. B., 2013. Simplifications and speedups of the pseudoflow algorithm. Networks, 61 (1), 40–57. https://doi.org/10.1002/net.21467
Hodson, D. D., Hill, R. R., 2014. The art and science of live, virtual, and constructive simulation for test and analysis. The Journal of Defense Modeling and Simulation, 11 (2), 77–89. https://doi.org/10.1177/1548512913506620
Hofbauer, J., Sigmund, K., 1998. Evolutionary games and population dynamics. Cambridge University Press.
Hoffman, K., Padberg, M., 1991. Improving LP-representations of zero-one linear programs for branch-and-cut. ORSA Journal on Computing, 3, 121–134. https://doi.org/10.1287/ijoc.3.2.121
Hoffman, M. D., Blei, D. M., Wang, C., Paisley, J., 2013. Stochastic variational inference. Journal of Machine Learning Research, 14 (1), 1303–1347.
Holguín-Veras, J., Pérez, N., Jaller, M., Van Wassenhove, L. N., Aros-Vera, F., 2013. On the appropriate objective function for post-disaster humanitarian logistics models. Journal of Operations Management, 31 (5), 262–280. https://doi.org/10.1016/j.jom.2013.06.002
Holland, J. H., 1975. Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press.
Hollyman, R., Petropoulos, F., Tipping, M. E., 2021. Understanding forecast reconciliation. European Journal of Operational Research, 294 (1), 149–160. https://doi.org/10.1016/j.ejor.2021.01.017
Holmström, J., Brax, S., Ala-Risku, T., 2010. Comparing provider-customer constellations of visibility-based service. Journal of Service Management, 21 (5), 675–692. https://doi.org/10.1108/09564231011079093
Holmström, J., Ketokivi, M., Hameri, A.-P., 2009. Bridging practice and theory: A design science approach. Decision Sciences, 40 (1), 65–87. https://doi.org/10.1111/j.1540-5915.2008.00221.x
Holsapple, C., Lee-Post, A., Pakath, R., 2014. A unified foundation for business analytics. Decision Support Systems, 64, 130–141. https://doi.org/10.1016/j.dss.2014.05.013
Holt, C. C., 2004. Forecasting seasonals and trends by exponentially weighted moving averages. International Journal of Forecasting, 20 (1), 5–10. https://doi.org/10.1016/j.ijforecast.2003.09.015
Holweg, M., 2007. The genealogy of lean production. Journal of Operations Management, 25 (2), 420–437. https://doi.org/10.1016/j.jom.2006.04.001
Holweg, M., Disney, S. M., Holmström, J., Småros, J., 2005. Supply chain collaboration: Making sense of the strategy continuum. European Management Journal, 23 (2), 170–181. https://doi.org/10.1016/j.emj.2005.02.008
Holzmann, T., Smith, J. C., 2021. The shortest path interdiction problem with randomized interdiction strategies: Complexity and algorithms. Operations Research, 69 (1), 82–99. https://doi.org/10.1287/opre.2020.2023
Hong, L. J., Nelson, B. L., 2009. A brief introduction to optimization via simulation. In M. D.Rossetti, R. R.Hill, B.Johansson, A.Dunkin, R. G.Ingalls (Eds.), Proceedings of the 2009 Winter Simulation Conference (pp. 75–85). IEEE Piscataway.
Hong, T., 2014. Energy forecasting: Past, present, and future. Foresight, 32, 43–48.
Hong, T., Fan, S., 2016. Probabilistic electric load forecasting: A tutorial review. International Journal of Forecasting, 32, 914–938. https://doi.org/10.1016/j.ijforecast.2015.11.011
Hong, T., Pinson, P., Wang, Y., Weron, R., Yang, D., Zareipour, H., 2020. Energy forecasting: A review and outlook. IEEE Open Access Journal of Power and Energy, 7, 376–388. https://doi.org/10.1109/OAJPE.2020.3029979
Hooghiemstra, J. S., Kroon, L. G., Odijk, M. A., Salomon, M., Zwaneveld, P. J., 1999. Decision support systems support the search for win-win solutions in railway network design. Interfaces, 29 (2), 15–32. https://doi.org/10.1287/inte.29.2.15
Hooker, J. N., Williams, H. P., 2012. Combining equity and utilitarianism in a mathematical programming model. Management Science, 58, 1682–1693. https://doi.org/10.1287/mnsc.1120.1515
Hoos, I. R., 1972. Systems analysis in public policy: A critique. University of California Press.
Hoot, N. R., LeBlanc, L. J., Jones, I., Levin, S. R., Zhou, C., Gadd, C. S., Aronsky, D., 2008. Forecasting emergency department crowding: A discrete event simulation. Annals of Emergency Medicine, 52 (2), 116–125. https://doi.org/10.1016/j.annemergmed.2007.12.011
Hoover, E. M., 1936. The measurement of industrial localization. Review of Economics and Statistics, 18, 162–171. https://doi.org/10.2307/1927875
Hopper, E., Turton, B. C. H., 2001. An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem. European Journal of Operational Research, 128 (1), 34–57. https://doi.org/10.1016/S0377-2217(99)00357-4
Howard, R., 1966. Decision analysis: Applied decision theory. In D. B.Hertz & J.Melese (Ed.), Proceedings of the Fourth International Conference on Operational Research (pp. 55–71). John Wiley & Sons.
Howick, S., Ackermann, F., Walls, L., Quigley, J., Houghton, T., 2017. Learning from mixed OR method practice: The NINES case study. Omega, 69, 70–81. https://doi.org/10.1016/j.omega.2016.08.003
Hu, W., Toriello, A., Dessouky, M., 2018. Integrated inventory routing and freight consolidation for perishable goods. European Journal of Operational Research, 271 (2), 548–560. https://doi.org/10.1016/j.ejor.2018.05.034
Huang, I. B., Keisler, J., Linkov, I., 2011. Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends. The Science of The Total Environment, 409 (19), 3578–3594. https://doi.org/10.1016/j.scitotenv.2011.06.022
Huang, M., Caines, P., Malhamé, R., 2003. Individual and mass behaviour in large population stochastic wireless power control problems: Centralized and Nash equilibrium solutions. InProceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii (pp. 98–103).
Huang, M., Caines, P., Malhamé, R., 2007. Large-population cost coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized epsilon-Nash equilibria. IEEE Transactions on Automatic Control, 52, 1560–1571. https://doi.org/10.1109/TAC.2007.904450
Huang, M., Malhamé, R., Caines, P., 2006. Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Communications in Information & Systems, 6, 221–252. https://doi.org/10.4310/CIS.2006.v6.n3.a5
Huang, M., Smilowitz, K., Balcik, B., 2012. Models for relief routing: Equity, efficiency and efficacy. Transportation Research Part E: Logistics and Transportation Review, 48 (1), 2–18. https://doi.org/10.1016/j.tre.2011.05.004
Huang, X., Jaimungal, S., Nourian, M., 2019. Mean-field game strategies for optimal execution. Applied Mathematical Finance, 26 (2), 153–185. https://doi.org/10.1080/1350486X.2019.1603183
Huangfu, Q., Hall, J. A. J., 2018. Parallelizing the dual revised simplex method. Mathematical Programming Computation, 10, 119–142. https://doi.org/10.1007/s12532-017-0130-5
Hubicka, K., Marcjasz, G., Weron, R., 2019. A note on averaging day-ahead electricity price forecasts across calibration windows. IEEE Transactions on Sustainable Energy, 10 (1), 321–323. https://doi.org/10.1109/TSTE.2018.2869557
Hughes, L., Dwivedi, Y. K., Misra, S. K., Rana, N. P., Raghavan, V., Akella, V., 2019. Blockchain research, practice and policy: Applications, benefits, limitations, emerging research themes and research agenda. International Journal of Information Management, 49, 114–129. https://doi.org/10.1016/j.ijinfomgt.2019.02.005
Hughes, L., Dwivedi, Y. K., Rana, N. P., Williams, M. D., Raghavan, V., 2022. Perspectives on the future of manufacturing within the industry 4.0 era. Production Planning & Control, 33 (2–3), 138–158. https://doi.org/10.1080/09537287.2020.1810762
Hughes, W. P., 1995. A salvo model of warships in missile combat used to evaluate their staying power. Naval Research Logistics, 42 (2), 267–289. https://doi.org/10.1002/1520-6750(199503)42:2<267::AID-NAV3220420209>3.0.CO;2-Y
Huisman, D., Kroon, L. G., Lentink, R. M., Vromans, M. J. C. M., 2005. Operations research in passenger railway transportation. Statistica Neerlandica, 59 (4), 467–497. https://doi.org/10.1111/j.1467-9574.2005.00303.x
Hunt, V. M., Jacobi, S. K., Gannon, J. J., Zorn, J. E., Moore, C. T., Lonsdorf, E. V., 2016. A decision support tool for adaptive management of native prairie ecosystems. Interfaces, 46 (4), 334–344. https://doi.org/10.1287/inte.2015.0822
Hunter, J. D., 2007. Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9 (3), 90–95. https://doi.org/10.1109/MCSE.2007.55
Hunter, S. R., Applegate, E. A., Arora, V., Chong, B., Cooper, K., Rincón-Guevara, O., Vivas-Valencia, C., 2019. An introduction to multiobjective simulation optimization. ACM Transactions on Modeling and Computer Simulation, 29 (1). https://doi.org/10.1145/3299872
Hussain, K., Mohd Salleh, M. N., Cheng, S., Shi, Y., 2019. Metaheuristic research: A comprehensive survey. Artificial Intelligence Review, 52 (4), 2191–2233. https://doi.org/10.1007/s10462-017-9605-z
Hussein, A., Gaber, M. M., Elyan, E., Jayne, C., 2017. Imitation learning: A survey of learning methods. ACM Computing Surveys, 50 (2), 1–35. https://doi.org/10.1145/3054912
Hvattum, L. M., Arntzen, H., 2010. Using ELO ratings for match result prediction in association football. International Journal of Forecasting, 26 (3), 460–470. https://doi.org/10.1016/j.ijforecast.2009.10.002
Hwang, C., Yoon, K., 1981. Multiple attribute decision making: Methods and applications. Springer-Verlag.
Hwang, F., Richards, D., Winter, P., 1992. The Steiner tree problem. No. 53 in annals of discrete mathematics. North-Holland.
Hyndman, R., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., Kuroptevand, K.O’Hara-Wild, M., Petropoulos, F., Razbash, S., Wang, E., Yasmeen, F., Reid, D., Shaub, D., Carza, F., Team, R. C., Ihaka, R., Wang, X., Tang, Y., Zhou, Z., 2022. forecast: Forecasting functions for time series and linear models. R package version 8.17.
Hyndman, R. J., Athanasopoulos, G., 2021. Forecasting: Principles and practice (3rd ed.). OTexts.
Hyndman, R. J., Khandakar, Y., 2008. Automatic time series forecasting: The forecast package for R. Journal of Statistical Software, 27 (3), 1–22. https://doi.org/10.18637/jss.v027.i03
Hyndman, R. J., Koehler, A. B., 2006. Another look at measures of forecast accuracy. International Journal of Forecasting, 22 (4), 679–688. https://doi.org/10.1016/j.ijforecast.2006.03.001
Hyndman, R. J., Koehler, A. B., Ord, J. K., Snyder, R. D., 2008. Forecasting with exponential smoothing: The state space approach. Springer Verlag.
Hyndman, R. J., Koehler, A. B., Snyder, R., Grose, S., 2002. A state space framework for automatic forecasting using exponential smoothing methods. International Journal of Forecasting, 18 (3), 439–454. https://doi.org/10.1016/S0169-2070(01)00110-8
Ibarra-Rojas, O. J., Delgado, F., Giesen, R., Muñoz, J. C., 2015. Planning, operation, and control of bus transport systems: A literature review. Transportation Research Part B: Methodological, 77, 38–75. https://doi.org/10.1016/j.trb.2015.03.002
Iglehart, D., Karlin, S., 1960. Optimal policy for dynamic inventory process with non-stationary stochastic demands. Tech. Rep., Stanford University, Applied Mathematics and Statistics Labs.
Iglehart, D. L., 1965. Limiting diffusion approximations for the many server queue and the repairman problem. Journal of Applied Probability, 2 (2), 429–441. https://doi.org/10.2307/3212203
IMO. 2018. Resolution MEPC.304(72), Initial IMO Strategy on reduction of GHG emissions from ships. Tech. Rep. MEPC 72/17/Add.1, Annex 11, International Maritime Organization.
Inderfurth, K., de Kok, A. G., Flapper, S. D. P., 2001. Product recovery in stochastic remanufacturing systems with multiple reuse options. European Journal of Operational Research, 133 (1), 130–152. https://doi.org/10.1016/S0377-2217(00)00188-0
Inderfurth, K., Flapper, S. D. P., Lambert, A. J. D., Pappis, C. P., Voutsinas, T. G., 2004. Production planning for product recovery management. In R.Dekker, M.Fleischmann, K.Inderfurth, & L. N.Van Wassenhove (Eds.), Reverse logistics: Quantitative models for closed-loop supply chains (pp. 249–274). Springer.
Inderfurth, K., Jensen, T., 1999. Analysis of MRP policies with recovery options. In U.Leopold-Wildburger, G.Feichtinger, and K.-P.Kistner (Eds.), Modelling and decisions in economics: Essays in honor of Franz Ferschl. (pp. 189–228). Physica-Verlag HD.
INFORMS. 2022. Certified analytics professional (CAP). www.certifiedanalytics.org, Retrieved November 1, 2022, from
Institute for Apprenticeships & Technical Education. 2021. Operational research specialist. Retrieved December 9, 2021, from https://www.instituteforapprenticeships.org/apprenticeship-standards/operational-research-specialist-v1-0
Iori, M., de Lima, V. L., Martello, S., Miyazawa, F. K., Monaci, M., 2021. Exact solution techniques for two-dimensional cutting and packing. European Journal of Operational Research, 289 (2), 399–415. https://doi.org/10.1016/j.ejor.2020.06.050
Irohara, T., Kuo, Y.-H., Leung, J. M. Y., 2013. From preparedness to recovery: A tri-level programming model for disaster relief planning. In D.Pacino, S.Voβ, R. M.Jensen (Eds.), Computational logistics (pp. 213–228). Springer.
Isaacs, R., 1975. Differential games (2nd ed.). Kruger.
Ismail, A., Pham, H., 2019. Robust Markowitz mean-variance portfolio selection under ambiguous covariance matrix. Mathematical Finance, 29 (1), 174–207. https://doi.org/10.1111/mafi.12169
Israr, A., Ali, Z. A., Alkhammash, E. H., Jussila, J. J., 2022. Optimization methods applied to motion planning of unmanned aerial vehicles: A review. Drones, 6 (5), 126. https://doi.org/10.3390/drones6050126
Ivan, S., Yin, Y., 2017. The benefits of 3D printing for supply chains in the context of industry 4.0: Cases from automotive industry. Working Paper, Kyoto: Doshisha University.
Ivanov, D., Dolgui, A., Sokolov, B., 2017. A dynamic approach to multi-stage job shop scheduling in an industry 4.0-based flexible assembly system. In H.Lödding, R.Riedel, K.-D.Thoben, G.von Cieminski, D.Kiritsis, D. (Eds.), Advances in production management systems. The path to intelligent, collaborative and sustainable manufacturing (pp. 475–482). Springer.
Ivanov, D., Dolgui, A., Sokolov, B., Werner, F., Ivanova, M., 2016. A dynamic model and an algorithm for short-term supply chain scheduling in the smart factory industry 4.0. International Journal of Production Research, 54 (2), 386–402. https://doi.org/10.1080/00207543.2014.999958
JaamSim Development Team. 2016. JaamSim: Discrete-event simulation software. http://jaamsim.com
Jackson, J. R., 1957. Networks of waiting lines. Operations Research, 5 (4), 518–521. https://doi.org/10.1287/opre.5.4.518
Jackson, J. R., 1963. Jobshop-like queueing systems. Management Science, 10 (1), 131–142. https://doi.org/10.1287/mnsc.10.1.131
Jackson, M. C., 1982. The nature of soft systems thinking: The work of Churchman, Ackoff and Checkland. Journal of Applied Systems Analysis, 9, 17–29.
Jackson, M. C., 1985. Social systems theory and practice: The nees for a critical approach. International Journal of General Systems, 10 (2–3), 135–151. https://doi.org/10.1080/03081078508934877
Jackson, M. C., 1991. Systems methodology for the management sciences. Plenum.
Jackson, M. C., 2000. Systems approaches to management. Kluwer/Plenum.
Jackson, M. C., 2003. Systems thinking: Creative holism for managers. Wiley.
Jackson, M. C., 2004. Community operational research: Purposes, theory and practice. In G.Midgley & A. E.Ochoa-Arias (Eds.), Community operational research: OR and systems thinking for community development (pp. 57–74). Springer.
Jackson, M. C., 2006. Beyond problem structuring methods: Reinventing the future of OR/MS. Journal of the Operational Research Society57 (7), 868–878. https://doi.org/10.1057/palgrave.jors.2602093
Jackson, M. C., 2019. Critical systems thinking and the management of complexity. John Wiley & Sons.
Jackson, M. C., Keys, P., 1984. Towards a system of systems methodologies. Journal of the Operational Research Society, 35 (6), 473–486. https://doi.org/10.2307/2581795
Jackson, M. C., Keys, P., Cropper, S. A. (Eds.), 1989. OR and the social sciences. Plenum Press.
Jacquet-Lagreze, E., Siskos, J., 1982. Assessing a set of additive utility functions for multicriteria decision-making, the UTA method. European Journal of Operational Research, 10 (2), 151–164. https://doi.org/10.1016/0377-2217(82)90155-2
Jacquillat, A., Odoni, A. R., 2015. An integrated scheduling and operations approach to airport congestion mitigation. Operations Research, 63 (6), 1390–1410. https://doi.org/10.1287/opre.2015.1428
Jadin, M., Aubry, F., Schaus, P., Bonaventure, O., 2019. CG4SR: Near optimal traffic engineering for segment routing with column generation. InIEEE INFOCOM 2019 - IEEE Conference on Computer Communications(pp. 1333–1341). https://doi.org/10.1109/INFOCOM.2019.8737424
Jaehn, F., Michaelis, S., 2016. Shunting of trains in succeeding yards. Computers & Industrial Engineering, 102, 1–9. https://doi.org/10.1016/j.cie.2016.10.006
Jaehn, F., Rieder, J., Wiehl, A., 2015. Minimizing delays in a shunting yard. OR Spectrum, 37, 407–429. https://doi.org/10.1007/s00291-015-0391-1
Jain, R., Chiu, D. M., Hawe, W., 1984. A quantitative measure of fairness and discrimination for resource allocation in shared computer systems. Tech. Rep. TR–301, Eastern Research Laboratory, DEC, Hudson, MA.
Jaiswal, N. K., 2012. Military operations research: Quantitative decision making. Springer.
Janczura, J., Wójcik, E., 2022. Dynamic short-term risk management strategies for the choice of electricity market based on probabilistic forecasts of profit and risk measures. The German and the Polish market case study. Energy Economics, 110, 106015. https://doi.org/10.1016/j.eneco.2022.106015
Jarník, V., 1930. O jistém problému minimálním (z dopisupanu O. Borůvkovi). Práce Moravsk’e Přírodovědecké Společnosti, VI (4), 57–63.
Jaśkiewicz, A., Nowak, A., 2018a. Nonzero-sum stochastic games. In T.Başar & G.Zaccour (Eds.), Handbook of dynamic game theory (pp. 281–344). Springer.
Jaśkiewicz, A., Nowak, A., 2018b. Zero-sum stochastic games. In T.Başar & G.Zaccour (Eds.), Handbook of dynamic game theory (pp. 1–65). Springer.
Jauch, L. R., Glueck, W. F., 1975. Evaluation of university professors’ research performance. Management Science, 22 (1), 66–75. https://doi.org/10.1287/mnsc.22.1.66
Jenkins, G., 1969. The systems approach. Journal of Systems Engineering, 1, 3–49.
Jenkins, P. R., Robbins, M. J., Lunday, B. J., 2021. Approximate dynamic programming for military medical evacuation dispatching policies. INFORMS Journal on Computing, 33 (1), 2–26. https://doi.org/10.1287/ijoc.2019.0930
Jenkins, S. P., Van Kerm, P., 2011. The measurement of economic inequality. In B.Nolan, W.Salverda, & T. M.Smeeding (Eds.), The Oxford handbook of economic inequality (pp. 40–68). Oxford University Press.
Jepsen, M., Petersen, B., Spoorendonk, S., Pisinger, D., 2008. Subset-row inequalities applied to the vehicle-routing problem with time windows. Operations Research, 56 (2), 497–511. https://doi.org/10.1287/opre.1070.0449
Jia, J., Xu, S. H., Guide, Jr, V. D. R., 2016. Addressing supply–demand imbalance: Designing efficient remanufacturing strategies. Production and Operations Management, 25 (11), 1958–1967. https://doi.org/10.1111/poms.12598
Jünger, M., Thienel, S., 2000. The ABACUS system for branch-and-cut-and-price algorithms in integer programming and combinatorial optimization. Software: Practice and Experience, 30 (11), 1325–1352. https://doi.org/10.1002/1097-024X(200009)30:11<1325::AID-SPE342>3.0.CO;2-T
Jnitova, V., Elsawah, S., Ryan, M., 2017. Review of simulation models in military workforce planning and management context. The Journal of Defense Modeling and Simulation, 14 (4), 447–463. https://doi.org/10.1177/1548512917704525
John, S., Naim, M. M., Towill, D. R., 1994. Dynamic analysis of a WIP compensated decision support system. International Journal of Manufacturing Systems Design, 1, 283–297.
Johnes, G., Johnes, J., 2016. Costs, efficiency, and economies of scale and scope in the english higher education sector. Oxford Review of Economic Policy, 32 (4), 596–614. https://doi.org/10.1093/oxrep/grw023
Johnes, G., Johnes, J., Thanassoulis, E., Lenton, P., Emrouznejad, A., 2005. An exploratory analysis of the cost structure of higher education in England. Tech. Rep. 641, Department for Education and Skills, London.
Johnes, G., Schwarzenberger, A., 2011. Differences in cost structure and the evaluation of efficiency: The case of German universities. Education Economics, 19 (5), 487–499. https://doi.org/10.1080/09645291003726442
Johnes, J., 1996. Performance assessment in higher education in Britain. European Journal of Operational Research, 89 (1), 18–33. https://doi.org/10.1016/S0377-2217(96)90048-X
Johnes, J., 2006. Data envelopment analysis and its application to the measurement of efficiency in higher education. Economics of Education Review, 25 (3), 273–288. https://doi.org/10.1016/j.econedurev.2005.02.005
Johnes, J., 2014. Efficiency and mergers in english higher education 1996/97 to 2008/9: Parametric and non-parametric estimation of the multi-input multi-output distance function. Manchester School, 82 (4), 465–487. https://doi.org/10.1111/manc.12030
Johnes, J., 2022. Applications of production economics in education. In S. C.Ray, R.Chambers, & S. C.Kumbhakar (Eds.), Handbook of production economics: Survey of applications (pp. 1193–1239). Springer.
Johnes, J., Johnes, G., 2013. Efficiency in the higher education sector: A technical exploration. Department for Business Innovation and Skills–BIS Research Paper 113.
Johnes, J., Taylor, J., 1990. Performance indicators in higher education: UK universities. Society for Research into Higher Education.
Johnson, D. S., Lenstra, J. K., Rinnooy Kan, A. H. G., 1978. The complexity of the network design problem. Networks, 8 (4), 279–285. https://doi.org/10.1002/net.3230080402
Johnson, M. P. (Ed.), 2012a. Community-based operations research: Decision modeling for local impact and diverse populations. In International series in operations research & management science (Vol. 167). Springer.
Johnson, M. P., 2012b. Community-based operations research: Introduction, theory, and applications. In M. P.Johnson (Ed.), Community-based operations research: Decision modeling for local impact and diverse populations. Vol. 167 of International Series in Operations Research & Management Science (pp. 3–36). Springer.
Johnson, M. P., Midgley, G., Wright, J., Chichirau, G., 2018. Community operational research: Innovations, internationalization and agenda-setting applications. European Journal of Operational Research, 268 (3), 761–770. https://doi.org/10.1016/j.ejor.2018.03.004
Johnson, M. P., Smilowitz, K., 2012. What is community-based OR? In M. P.Johnson (Ed.), Community-based operations research: decision modeling for local impact and diverse populations. Vol. 167 of International Series in Operations Research & Management Science (pp. 37–65). Springer.
Jondrow, J., Knox Lovell, C. A., Materov, I. S., Schmidt, P., 1982. On the estimation of technical inefficiency in the stochastic frontier production function model. Journal of Econometrics, 19 (2), 233–238. https://doi.org/10.1016/0304-4076(82)90004-5
Jones, S., Eden, C., 1981. O.R. in the community. Journal of the Operational Research Society, 32 (5), 335–345. https://doi.org/10.2307/2581551
Jotrao, S., Batta, R., 2021. Time-constrained UAV path planning in 3D network for maximim information gain. Military Operations Research, 26 (3), 5–25. https://doi.org/10.5711/1082598326305
Jun, J. B., Jacobson, S. H., Swisher, J. R., 1999. Application of discrete-event simulation in health care clinics: A survey. Journal of the Operational Research Society, 50 (2), 109–123. https://doi.org/10.2307/3010560
Jung, K. S., Pinedo, M., Sriskandarajah, C., Tiwari, V., 2019. Scheduling elective surgeries with emergency patients at shared operating rooms. Production and Operations Management, 28 (6), 1407–1430. https://doi.org/10.1111/poms.12993
Jünger, M., Reinelt, G., Rinaldi, G., 1995. The traveling salesman problem. In M. O.Ball, T. L.Magnanti, C. L.Monma, & G. L.Nemhauser (Eds.), Handbooks in operations research and management science (Vol. 7, pp. 225–330). Elsevier.
Jünger, M., Rinaldi, G., Thienel, S., 2000. Practical performance of efficient minimum cut algorithms. Algorithmica, 26 (1), 172–195. https://doi.org/10.1007/s004539910009
Jury, E. I., Paynter, H., 1975. Inners and stability of dynamic systems. The American Society of Mechanical Engineers (ASME).
Kaelbling, L. P., Littman, M. L., Cassandra, A. R., 1998. Planning and acting in partially observable stochastic domains. Artificial Intelligence, 101 (1), 99–134. https://doi.org/10.1016/S0004-3702(98)00023-X
Kagel, J. H., 2020. Auctions: A survey of experimental research. In J. H.Kagel & A. E.Roth (Eds.), The handbook of experimental economics (pp. 501–586). Princeton University Press.
Kahneman, D., 2011. Thinking, fast and slow. Penguin.
Kaipia, R., Holmström, J., Småros, J., Rajala, R., 2017. Information sharing for sales and operations planning: Contextualized solutions and mechanisms. Journal of Operations Management, 52, 15–29. https://doi.org/10.1016/j.jom.2017.04.001
Käki, A., Kemppainen, K., Liesiö, J., 2019. What to do when decision-makers deviate from model recommendations? empirical evidence from hydropower industry. European Journal of Operational Research, 278 (3), 869–882. https://doi.org/10.1016/j.ejor.2019.04.021
Kalai, E., Smorodinsky, M., 1975. Other solutions to Nash’s bargaining problem. Econometrica, 43, 513–518. https://doi.org/10.2307/1914280
Kalman, R. E., 1960. A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82, 35–45. https://doi.org/10.1115/1.3662552
Kandakoglu, A., Frini, A., Ben Amor, S., 2019. Multicriteria decision making for sustainable development: A systematic review. Journal of Multi-Criteria Decision Analysis, 26 (5–6), 202–251. https://doi.org/10.1002/mcda.1682
Kantorovich, L. V., 1960. Mathematical methods of organizing and planning production. Management Science, 6 (4), 366–422. https://doi.org/10.1287/mnsc.6.4.366
Kantorovitch, L., 1958. On the translocation of masses. Management Science, 5 (1), 1–4. https://doi.org/10.1287/mnsc.5.1.1
Kao, C., 2014. Network data envelopment analysis: A review. European Journal of Operational Research, 239 (1), 1–16. https://doi.org/10.1016/j.ejor.2014.02.039
Kao, C., 2016. Efficiency decomposition and aggregation in network data envelopment analysis. European Journal of Operational Research, 255 (3), 778–786. https://doi.org/10.1016/j.ejor.2016.05.019
Kao, C., Liu, S.-T., 2014. Multi-period efficiency measurement in data envelopment analysis: The case of Taiwanese commercial banks. Omega, 47, 90–98. https://doi.org/10.1016/j.omega.2013.09.001
Kapelko, M., Horta, I. M., Camanho, A. S., Oude Lansink, A., 2015. Measurement of input-specific productivity growth with an application to the construction industry in Spain and Portugal. International Journal of Production Economics, 166, 64–71. https://doi.org/10.1016/j.ijpe.2015.03.030
Kaplan, E. H., 2010. Terror queues. Operations Research, 58 (4), 773–784. https://doi.org/10.1287/opre.1100.0831
Kaplan, R. S., 1970. A dynamic inventory model with stochastic lead times. Management Science, 16 (7), 491–507. https://doi.org/10.1287/mnsc.16.7.491
Kaplan, S., Garrick, B. J., 1981. On the quantitative definition of risk. Risk Analysis, 1 (1), 11–27. https://doi.org/10.1111/j.1539-6924.1981.tb01350.x
Kapuściński, R., Parker, R. P., 2023. Capacitated inventory systems. In J.-S.Song (Ed.), Research handbook on inventory management. Edward Elgar Publishing.
Kara, B. Y., Savaşer, S., 2017. Humanitarian logistics. In R.Batta & J.Peng (Eds.), Leading developments from INFORMS communities. INFORMS TutORials in Operations Research (pp. 263–303). INFORMS.
Karelahti, J., Virtanen, K., Raivio, T., 2007. Near-Optimal missile avoidance trajectories via receding horizon control. Journal of Guidance, Control, and Dynamics, 30 (5), 1287–1298. https://doi.org/10.2514/1.26024
Karger, D. R., 2000. Minimum cuts in near-linear time. Journal of the ACM, 47 (1), 46–76. https://doi.org/10.1145/331605.331608
Karger, D. R., Stein, C., 1996. A new approach to the minimum cut problem. Journal of the ACM, 43 (4), 601–640. https://doi.org/10.1145/234533.234534
Karmarkar, N., 1984. A new polynomial-time algorithm for linear programming. InProceedings of the Sixteenth Annual ACM Symposium on Theory of Computing. STOC ‘84. Association for Computing Machinery (pp. 302–311). https://doi.org/10.1145/800057.808695
Karp, R. M., 1972a. Reducibility among combinatorial problems. In R. E.Miller, J. W.Thatcher, & J. D.Bohlinger (Eds.), Complexity of Computer Computations: Proceedings of a Symposium on the Complexity of Computer Computations. The IBM Research Symposia Series (pp. 85–103). Plenum Press.
Karp, R. M., 1972b. Reducibility among combinatorial problems. In Complexity of computer computations (pp. 85–103). Springer US.
Karras, T., Laine, S., Aila, T., 2021. A style-based generator architecture for generative adversarial networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43 (12), 4217–4228. https://doi.org/10.1109/TPAMI.2020.2970919
Karsu, O., Kara, B. Y., Selvi, B., 2019. The refugee camp management: A general framework and a unifying decision-making model. Journal of Humanitarian Logistics and Supply Chain Management, 9 (2), 131–150. https://doi.org/10.1108/JHLSCM-01-2018-0007
Karsu, Ö., Morton, A., 2015. Inequity averse optimization in operational research. European Journal of Operational Research, 245 (2), 343–359. https://doi.org/10.1016/j.ejor.2015.02.035
Karvetski, C. W., Lambert, J. H., Keisler, J. M., Linkov, I., 2011. Integration of decision analysis and scenario planning for coastal engineering and climate change. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 41 (1), 63–73. https://doi.org/10.1109/TSMCA.2010.2055154
Karzanov, A. V., 1974. Determining the maximal flow in a network by the method of preflows. Soviet Mathematics Doklady, 15, 434–437.
Kasperson, R. E., Webler, T., Ram, B., Sutton, J., 2022. The social amplification of risk framework: New perspectives. Risk Analysis, 42 (7), 1367–1380. https://doi.org/10.1111/risa.13926
Katsaliaki, K., Mustafee, N., Dwivedi, Y. K., Williams, T., Wilson, J. M., 2010. A profile of OR research and practice published in Journal of the Operational Research Society. Journal of the Operational Research Society, 61 (1), 82–94. https://doi.org/10.1057/jors.2009.137
Kavadias, S., Loch, C. H., 2004. Project selection under uncertainty: Dynamically allocating resources to maximize value. Springer Science & Business Media.
Kazemi Matin, R., Kuosmanen, T., 2009. Theory of integer-valued data envelopment analysis under alternative returns to scale axioms. Omega, 37 (5), 988–995. https://doi.org/10.1016/j.omega.2008.11.002
Keenan, P. B., Jankowski, P., 2019. Spatial decision support systems: Three decades on. Decision Support Systems, 116, 64–76. https://doi.org/10.1016/j.dss.2018.10.010
Keeney, R., 1982. Decision analysis: An overview. Operations Research, 30 (5), 803–838. https://doi.org/10.1287/opre.30.5.803
Keeney, R., 1996a. Value-focused thinking: A path to creative decisionmaking. Harvard University Press.
Keeney, R., 1996b. Value-focused thinking: Identifying decision opportunities and creating alternatives. European Journal of Operational Research, 92 (3), 537–549. https://doi.org/10.1016/0377-2217(96)00004-5
Keeney, R., Raiffa, H., 1976. Decisions with multiple objectives: Preferences and value tradeoffs. John Wiley & Sons.
Kellenbrink, C., Helber, S., 2015. Scheduling resource-constrained projects with a flexible project structure. European Journal of Operational Research, 246 (2), 379–391. https://doi.org/10.1016/j.ejor.2015.05.003
Keller, L. R., Simon, J., 2019. Preference functions for spatial risk analysis. Risk Analysis, 39 (1), 244–256. https://doi.org/10.1111/risa.12892
Kellerer, H., Pferschy, U., Pisinger, D., 2004. Knapsack problems. Springer.
Kelley, J. E., 1961. Critical-path planning and scheduling: Mathematical basis. Operations Research, 9 (3), 296–320. https://doi.org/10.1287/opre.9.3.296
Kelly, F. P., 1979. Reversibility and stochastic networks. Wiley.
Kelly, F. P., Maulloo, A. K., Tan, D. K. H., 1998. Rate control for communication networks: Shadow prices, proportional fairness and stability. Journal of the Operational Research Society, 49 (3), 237–252. https://doi.org/10.2307/3010473
Kemball-Cook, D., Vaughan, J. P., 1983. Operational research in primary health care planning: A theoretical model for estimating the coverage achieved by different distributions of staff and facilities. Bulletin of the World Health Organization, 61 (2), 361–369.
Kemmer, P., Strauss, A. K., Winter, T., 2012. Dynamic simultaneous fare proration for large-scale network revenue management. Journal of the Operational Research Society, 63 (10), 1336–1350. https://doi.org/10.1057/jors.2011.143
Keränen, J.-P., 2018. Capability assessment finds a multirole fighter suitable for Finland’s defence. Tech. Rep., Finnish Air Force.
Kerivin, H., Mahjoub, A. R., 2005. Design of survivable networks: A survey. Networks, 46 (1), 1–21. https://doi.org/10.1002/net.20072
Kerkhove, L.-P., Vanhoucke, M., Maenhout, B., 2017. On the resource renting problem with overtime. Computers & Industrial Engineering, 111, 303–319. https://doi.org/10.1016/j.cie.2017.07.024
Kersten, W., Schröder, M., Indorf, M., 2017. Potentials of digitalization for supply chain risk management: An empirical analysis. Betriebswirtschaftliche Aspekte Von Industrie 4.0, 71 (17), 47–74.
Ketzenberg, M. E., Souza, G. C., Guide, Jr, V. D. R., 2003. Mixed assembly and disassembly operations for remanufacturing. Production and Operations Management, 12 (3), 320–335. https://doi.org/10.1111/j.1937-5956.2003.tb00206.x
Keys, P., 1998. OR as technology revisited. Journal of the Operational Research Society, 49 (2), 99–108. https://doi.org/10.2307/3009976
Kharrat, T., McHale, I. G., Peña, J. L., 2020. Plus–minus player ratings for soccer. European Journal of Operational Research, 283 (2), 726–736. https://doi.org/10.1016/j.ejor.2019.11.026
Kiesel, R., Kusterman, M., 2016. Structural models for coupled electricity markets. Journal of Commodity Markets, 3 (1), 16–38. https://doi.org/10.1016/j.jcomm.2016.07.007
Kınay, Ö. B., Gzara, F., Alumur, S. A., 2021. Full cover charging station location problem with routing. Transportation Research Part B: Methodological, 144, 1–22. https://doi.org/10.1016/j.trb.2020.12.001
King, A., 2022. SMI. https://projects.coin-or.org/Smi
King, V., Rao, S., Tarjan, R., 1994. A faster deterministic maximum flow algorithm. Journal of Algorithms, 17 (3), 447–474. https://doi.org/10.1006/jagm.1994.1044
Kingman, J. F. C., 1961. The single server queue in heavy traffic. In B. J.Green (Ed.), Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 57, pp. 902–904). Cambridge University Press. https://doi.org/10.1017/S0305004100036094
Kingman, J. F. C., 1962. On queues in heavy traffic. Journal of the Royal Statistical Society: Series B (Methodological), 24 (2), 383–392. https://doi.org/10.1111/j.2517-6161.1962.tb00465.x
Kingman, J. F. C., 1965. The heavy traffic approximation in the theory of queues. In W. L.Smith & W. E.Wilkinson (Eds.), Proceedings of the Symposium on Congestion Theory (Vol. 2). University of North Carolina Press.
Kingston, A., Comas-Herrera, A., Jagger, C., 2018a. Forecasting the care needs of the older population in England over the next 20 years: Estimates from the population ageing and care simulation (PACSim) modelling study. The Lancet Public Health, 3 (9), e447–e455. https://doi.org/10.1016/S2468-2667(18)30118-X
Kingston, J. H., Post, G., Vanden Berghe, G., 2018b. A unifed nurse rostering model based on XHSTT. InProceedings of the 12th International Conference of the Practice and Theory of Automated Timetabling(Vol. 12. pp. 81–96).
Kirby, M. W., 2003. Operational research in war and peace: The British experience from 1930s to 1970. Imperial College Press and The Operational Research Society.
Kirjavainen, T., 2012. Efficiency of Finnish general upper secondary schools: An application of stochastic frontier analysis with panel data. Education Economics, 20 (4), 343–364. https://doi.org/10.1080/09645292.2010.510862
Kirkpatrick, S., GelattJr, C. D., Vecchi, M. P., 1983. Optimization by simulated annealing. Science, 220 (4598), 671–680. https://doi.org/10.1126/science.220.4598.671
Klapp, M. A., Erera, A. L., Toriello, A., 2020. Request acceptance in same-day delivery. Transportation Research Part E: Logistics and Transportation Review, 143, 102083. https://doi.org/10.1016/j.tre.2020.102083
Klee, V., Minty, G. J., 1972. How good is the simplex algorithm? In O.Shisha (Ed.), Inequalities III (pp. 159–175). Academic Press.
Klein, J. H., Connell, N. A. D., Meyer, E., 2007. Operational research practice as storytelling. Journal of the Operational Research Society, 58 (12), 1535–1542. https://doi.org/10.1057/palgrave.jors.2602277
Klein, R., Koch, S., Steinhardt, C., Strauss, A. K., 2020. A review of revenue management: Recent generalizations and advances in industry applications. European Journal of Operational Research, 284 (2), 397–412. https://doi.org/10.1016/j.ejor.2019.06.034
Klein, R., Mackert, J., Neugebauer, M., Steinhardt, C., 2018. A model-based approximation of opportunity cost for dynamic pricing in attended home delivery. OR Spectrum, 40 (4), 969–996. https://doi.org/10.1007/s00291-017-0501-3
Klein, R., Neugebauer, M., Ratkovitch, D., Steinhardt, C., 2019. Differentiated time slot pricing under routing considerations in attended home delivery. Transportation Science, 53 (1), 236–255. https://doi.org/10.1287/trsc.2017.0738
Kleinberg, J., Tardos, E., 2006. Algorithm design. Addison Wesley.
Kleywegt, A. J., Shapiro, A., Homem-de Mello, T., 2002. The sample average approximation method for stochastic discrete optimization. SIAM Journal on Optimization, 12 (2), 479–502. https://doi.org/10.1137/S1052623499363220
Kline, A., Ahner, D., Hill, R., 2019. The weapon-target assignment problem. Computers & Operations Research, 105, 226–236. https://doi.org/10.1016/j.cor.2018.10.015
Klinke, A., Renn, O., 2021. The coming of age of risk governance. Risk Analysis, 41 (3), 544–557. https://doi.org/10.1111/risa.13383
Ko, T., Lee, J., Ryu, D., 2018. Blockchain technology and manufacturing industry: Real-time transparency and cost savings. Sustainability, 10 (11), 4274. https://doi.org/10.3390/su10114274
Koch, S., Klein, R., 2020. Route-based approximate dynamic programming for dynamic pricing in attended home delivery. European Journal of Operational Research, 287 (2), 633–652. https://doi.org/10.1016/j.ejor.2020.04.002
Kohavi, R., Rothleder, N. J., Simoudis, E., 2002. Emerging trends in business analytics. Communications of the ACM, 45 (8), 45–48. https://doi.org/10.1145/545151.545177
Köhler, C., Campbell, A. M., Ehmke, J. F., 2022. Data-driven customer acceptance for attended home delivery. Working paper.
Köhler, C., Ehmke, J. F., Campbell, A. M., 2020. Flexible time window management for attended home deliveries. Omega, 91, 102023. https://doi.org/10.1016/j.omega.2019.01.001
Köhler, C., Haferkamp, J., 2019. Evaluation of delivery cost approximation for attended home deliveries. Transportation Research Procedia, 37, 67–74. https://doi.org/10.1016/j.trpro.2018.12.167
Kohtamäki, M., Baines, T., Rabetino, R., Bigdeli, A. Z., 2018. Practices in servitization. In M.Kohtamäki, T.Baines, R.Rabetino, A. Z.Bigdeli (Eds.), Practices and tools for servitization: Managing service transition (1–21). Springer.
Kolassa, S., 2011. Combining exponential smoothing forecasts using Akaike weights. International Journal of Forecasting, 27 (2), 238–251. https://doi.org/10.1016/j.ijforecast.2010.04.006
Kolassa, S., 2020. Why the “best” point forecast depends on the error or accuracy measure. International Journal of Forecasting, 36 (1), 208–211. https://doi.org/10.1016/j.ijforecast.2019.02.017
Köllerström, J., 1974. Heavy traffic theory for queues with several servers. I. Journal of Applied Probability, 11 (3), 544–552. https://doi.org/10.2307/3212698
Komarudin, De Feyter, T., Guerry, M.-A., Vanden Berghe, G., 2020. The extended roster quality staffing problem: Addressing roster quality variation within a staffing planning period. Journal of Scheduling, 23, 253–264. https://doi.org/10.1007/s10951-020-00654-7
König, D., 1916. Über graphen und ihre anwendungen (in German). Mathematische Annalen, 77, 453–465. https://doi.org/10.1007/BF01456961
Konings, R., 2003. Network design for intermodal barge transport. Transportation Research Record, 1820 (1), 17–25. https://doi.org/10.3141/1820-03
Koopmans, T. C., 1949. Optimum utilization of the transportation system. Econometrica, 17, 136–146. https://doi.org/10.2307/1907301
Kordzadeh, N., Ghasemaghaei, M., 2022. Algorithmic bias: Review, synthesis, and future research directions. European Journal of Information Systems, 31 (3), 388–409. https://doi.org/10.1080/0960085X.2021.1927212
Korte, B., Vygen, J., 2008. Combinatorial optimization: Theory and algorithms (3rd ed.). Springer.
Koster, A. M. C. A., Schmidt, D. R., 2021. Robust network design. In T. G.Crainic, M.Gendreau, B.Gendron (Eds.), Network design with applications to transportation and logistics (pp. 317–343). Springer.
Kotary, J., Fioretto, F., Hentenryck, P. V., Wilder, B., 2021. End-to-end constrained optimization learning: A survey. In Z. Zhou (Ed.),Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event/Montreal, Canada, 19–27 August 2021. ijcai.org (pp. 4475–4482).
Kotiadis, K., Mingers, J., 2006. Combining PSMs with hard OR methods: The philosophical and practical challenges. Journal of the Operational Research Society, 57 (7), 856–867. https://doi.org/10.1057/palgrave.jors.2602147
Koutsandreas, D., Spiliotis, E., Petropoulos, F., Assimakopoulos, V., 2022. On the selection of forecasting accuracy measures. Journal of the Operational Research Society, 73 (5), 937–954. https://doi.org/10.1080/01605682.2021.1892464
Kovács, G., Falagara Sigala, I., 2021. Lessons learned from humanitarian logistics to manage supply chain disruptions. Journal of Supply Chain Management, 57 (1), 41–49. https://doi.org/10.1111/jscm.12253
Kovács, P., 2015. Minimum-cost flow algorithms: An experimental evaluation. Optimization Methods and Software, 30 (1), 94–127. https://doi.org/10.1080/10556788.2014.895828
Krawczyk, J., Petkov, V., 2018. Multistage games. In T.Başar & G.Zaccour (Eds.), Handbook of dynamic game theory (pp. 157–213). Springer.
Kress, G. R., Van Leeuwen, T., 2006. Reading images: The grammar of visual design. Routledge.
Krijkamp, E. M., Alarid-Escudero, F., Enns, E. A., Jalal, H. J., Hunink, M. G. M., Pechlivanoglou, P., 2018. Microsimulation modeling for health decision sciences using R: A tutorial. Medical Decision Making, 38 (3), 400–422. https://doi.org/10.1177/0272989X18754513
Krishna, V., 2010. Auction theory. Elsevier.
Kristiansen, O. S., Sandberg, U., Hansen, C., Jensen, M. S., Friederich, J., Lazarova-Molnar, S. (Eds.). 2022. Experimental comparison of open source discrete-event simulation frameworks. In Simulation tools and techniques. SIMUtools 2021. Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering (Vol. 424, pp. 315–330). Springer.
Król, K., Zdonek, D., 2020. Analytics maturity models: An overview. Information. An International Interdisciplinary Journal, 11 (3), 142. https://doi.org/10.3390/info11030142
Kronqvist, J., Bernal, D., Lundell, A., Grossmann, I., 2019. A review and comparison of solvers for convex MINLP. Optimization and Engineering, 20, 397–455. https://doi.org/10.1007/s11081-018-9411-8
Kroon, L., Huisman, D., Abbink, E., Fioole, P. J., Fischetti, M., Maróti, G., Schrijver, A., Steenbeek, A., Ybema, R., 2009. The new Dutch timetable: The OR revolution. Interfaces, 39 (1), 6–17. https://doi.org/10.1287/inte.1080.0409
Kroon, L. G., Lentink, R. M., Schrijver, A., 2008. Shunting of passenger train units: An integrated approach. Transportation Science, 42, 436–449. https://doi.org/10.1287/trsc.1080.0243
Kruskal, J., 1957. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society, 7, 48–50. https://doi.org/10.1090/S0002-9939-1956-0078686-7
Küçükyavuz, S., Sen, S., 2017. An introduction to two-stage stochastic mixed-integer programming. In R.Batta & J.Peng (Eds.), Leading developments from INFORMS communities. INFORMS TutORials in operations research (pp. 1–27). INFORMS.
Kuhn, H., 1955. The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2, 83–97. https://doi.org/10.1002/nav.3800020109
Kuhn, H., 1956. Variants of the Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 3, 253–258. https://doi.org/10.1002/nav.3800030404
Kumar, S., Swaminathan, J. M., 2003. Diffusion of innovations under supply constraints. Operations Research, 51 (6), 866–879. https://doi.org/10.1287/opre.51.6.866.24918
Kunc, M., 2017a. System dynamics: A soft and hard approach to modelling. InW. K. V.Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, & E. Page (Eds.), Proceedings of the 2017 Winter Simulation Conference, Las Vegas, NV (pp. 597–606).
Kunc, M., 2017b. System dynamics: Soft and hard operational research. Springer.
Kunc, M., Harper, P., Katsikopoulos, K., 2020. A review of implementation of behavioural aspects in the application of OR in healthcare. Journal of the Operational Research Society, 71 (7), 1055–1072. https://doi.org/10.1080/01605682.2018.1489355
Kunc, M., Malpass, J., White, L., 2016. Behavioral operational research: Theory, methodology and practice. Springer.
Kunc, M., Mortenson, M. J., Vidgen, R., 2018. A computational literature review of the field of system dynamics from 1974 to 2017. Journal of Simulation, 12 (2), 115–127. https://doi.org/10.1080/17477778.2018.1468950
Künnen, J. R., Strauss, A. K., 2022. The value of flexible flight-to-route assignments in pre-tactical air traffic management. Transportation Research Part B: Methodological, 160, 76–96. https://doi.org/10.1016/j.trb.2022.04.004
Kunnumkal, S., Topaloglu, H., 2009. A stochastic approximation method for the single-leg revenue management problem with discrete demand distributions. Mathematical Methods of Operations Research, 70 (3), 477–504. https://doi.org/10.1007/s00186-008-0278-x
Kunnumkal, S., Topaloglu, H., 2010. A new dynamic programming decomposition method for the network revenue management problem with customer choice behavior. Production and Operations Management, 19 (5), 575–590. https://doi.org/10.1111/j.1937-5956.2009.01118.x
Kunz, N., Van Wassenhove, L. N., Besiou, M., Hambye, C., Kovacs, G., 2017. Relevance of humanitarian logistics research: Best practices and way forward. International Journal of Operations & Production Management, 37 (11), 1585–1599. https://doi.org/10.1108/IJOPM-04-2016-0202
Kuosmanen, T., 2005. Weak disposability in nonparametric production analysis with undesirable outputs. American Journal of Agricultural Economics, 87 (4), 1077–1082. https://doi.org/10.1111/j.1467-8276.2005.00788.x
Kusner, M. J., Loftus, J., Russell, C., Silva, R., 2017. Counterfactual fairness. In I.Guyon, U.Von Luxburg, S.Bengio, H.Wallach, R.Fergus, S.Vishwanathan, R.Garnett (Eds.), Proceedings of Advances in Neural Information Processing Systems 30 (NIPS 2017). Curran Associates, Inc.
Labbé, M., Violin, A., 2016. Bilevel programming and price setting problems. Annals of Operations Research, 240, 141–169. https://doi.org/10.1007/s10479-015-2016-0
Laborie, P., Nuijten, W., 2008. Constraint programming formulations and propagation algorithms. In C.Artigues, S.Demassey, E.Néron (Eds.), Resource-constrained project scheduling (pp. 63–72). ISTE.
Lago, J., De Ridder, F., De Schutter, B., 2018. Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms. Applied Energy, 221, 386–405. https://doi.org/10.1016/j.apenergy.2018.02.069
Lago, J., Marcjasz, G., De Schutter, B., Weron, R., 2021. Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark. Applied Energy, 293, 116983. https://doi.org/10.1016/j.apenergy.2021.116983
Laguna, M., Martí, R., 2013. Heuristics. In S. I.Gass & M. C.Fu (Eds.), Encyclopedia of operations research and management science (pp. 695–703). Springer.
Lahtinen, T. J., Hämäläinen, R. P., Liesiö, J., 2017. Portfolio decision analysis methods in environmental decision making. Environmental Modelling & Software, 94, 73–86. https://doi.org/10.1016/j.envsoft.2017.04.001
Lai, X., Wu, L., Wang, K., Wang, F., 2022. Robust ship fleet deployment with shipping revenue management. Transportation Research Part B: Methodological, 161, 169–196. https://doi.org/10.1016/j.trb.2022.05.005
Lai, Y.-C., Fan, D.-C., Huang, K.-L., 2015. Optimizing rolling stock assignment and maintenance plan for passenger railway operations. Computers & Industrial Engineering, 85, 284–295. https://doi.org/10.1016/j.cie.2015.03.016
Lamas-Fernandez, C., Bennell, J. A., Martinez-Sykora, A., 2022. Voxel-based solution approaches to the three-dimensional irregular packing problem. Operations Research,https://doi.org/10.1287/opre.2022.2260
Lambert, A. J. D., 2003. Disassembly sequencing: A survey. International Journal of Production Research, 41 (16), 3721–3759. https://doi.org/10.1080/0020754031000120078
Lambrechts, O., Demeulemeester, E., Herroelen, W., 2008. A tabu search procedure for developing robust predictive project schedules. International Journal of Production Economics, 111 (2), 493–508. https://doi.org/10.1016/j.ijpe.2007.02.003
Lan, S., Clarke, J.-P., Barnhart, C., 2006. Planning for robust airline operations: Optimizing aircraft routings and flight departure times to minimize passenger disruptions. Transportation Science, 40 (1), 15–28. https://doi.org/10.1287/trsc.1050.0134
Lan, T., Chiang, M., 2011. An axiomatic theory of fairness in resource allocation. Tech. Rep. Princeton University.
Lan, T., Kao, D., Chiang, M., 2010. An axiomatic theory of fairness in network resource allocation. In2010 Proceedings of the 30th IEEE International Conference on Computer Communications (INFOCOM)(pp. 1–9).
Land, A., Doig, A., 1960. An automatic method of solving discrete programming problems. Econometrica, 28, 497–520. https://doi.org/10.2307/1910129
Lane, D. C., Monefeldt, C., Rosenhead, J. V., 2000. Looking in the wrong place for healthcare improvements: A system dynamics study of an accident and emergency department. Journal of the Operational Research Society, 51 (5), 518–531. https://doi.org/10.2307/254183
Lane, D. C., Oliva, R., 1998. The greater whole: Towards a synthesis of system dynamics and soft systems methodology. European Journal of Operational Research, 107 (1), 214–235. https://doi.org/10.1016/S0377-2217(97)00205-1
Lane, D. C., Rouwette, E. A. J. A., 2023. Towards a behavioural system dynamics: Exploring its scope and delineating its promise. European Journal of Operational Research, 306 (2), 777–794. https://doi.org/10.1016/j.ejor.2022.08.017
Lang, M. A., Cleophas, C., Ehmke, J. F., 2021a. Anticipative dynamic slotting for attended home deliveries. In Operations research forum (Vol. 2, pp. 1–39). Springer. https://doi.org/10.1007/s43069-021-00086-9
Lang, S., Reggelin, T., Müller, M., Nahhas, A., 2021b. Open-source discrete-event simulation software for applications in production and logistics: An alternative to commercial tools?Procedia Computer Science, 180, 978–987. https://doi.org/10.1016/j.procs.2021.01.349
Langville, A. N., Meyer, C. D., 2013. Who’s #1?: The science of rating and ranking. Princeton University Press.
Laporte, G., 1992. The vehicle routing problem: An overview of exact and approximate algorithms. European Journal of Operational Research, 59 (3), 345–358. https://doi.org/10.1016/0377-2217(92)90192-C
Laporte, G., 2009. Fifty years of vehicle routing. Transportation Science, 43 (4), 408–416. https://doi.org/10.1287/trsc.1090.0301
Laporte, G., Marín, A., Mesa, J. A., Ortega, F. A., 2007. An integrated methodology for the rapid transit network design problem. In F.Geraets, L.Kroon, A.Schöebel, D.Wagner, & C.Zaroliagis (Eds.), Algorithmic methods for railway optimization. Vol. 4359 of Lecture Notes in Computer Science.(pp. 187–199). Springer.
Laporte, G., Nickel, S., Saldanha da Gama, F. (Eds.), 2015. Location science. Springer.
Laporte, G., Pascoal, M. M. B., 2015. Path based algorithms for metro network design. Computers & Operations Research, 62, 78–94. https://doi.org/10.1016/j.cor.2015.04.007
Laporte, G., Rancourt, M.-È., Rodríguez-Pereira, J., Silvestri, S., 2022. Optimizing access to drinking water in remote areas. Application to Nepal. Computers & Operations Research, 140, 105669. https://doi.org/10.1016/j.cor.2021.105669
Lariviere, M. A., 2016. OM Forum—Supply chain contracting: Doughnuts to bubbles. Manufacturing & Service Operations Management, 18 (3), 309–313. https://doi.org/10.1287/msom.2015.0567
Larkin, J. H., Simon, H. A., 1987. Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11 (1), 65–100. https://doi.org/10.1111/j.1551-6708.1987.tb00863.x
Lasry, J., Lions, P., 2006a. Jeux à champ moyen. I–le cas stationnaire. Comptes Rendus Mathématique, 343, 619–625. https://doi.org/10.1016/j.crma.2006.09.019
Lasry, J., Lions, P., 2006b. Jeux à champ moyen. II–horizon fini et contrôle optimal. Comptes Rendus Mathématique, 343, 679–684. https://doi.org/10.1016/j.crma.2006.09.018
Lasry, J., Lions, P., 2007. Mean field games. Japanese Journal of Mathematics, 2, 229–260. https://doi.org/10.1007/s11537-007-0657-8
Latouche, G., Ramaswami, V., 1999. Introduction to matrix analytic methods in stochastic modeling. Society for Industrial and Applied Mathematics.
Lavoie, S., Minoux, M., Odier, E., 1988. A new approach for crew pairing problems by column generation with an application to air transportation. European Journal of Operational Research, 35 (1), 45–58. https://doi.org/10.1016/0377-2217(88)90377-3
Law. 2003. How to conduct a successful simulation study. InProceedings of the 2003 Winter Simulation Conference(Vol. 1. pp. 66–70).
Law, A. M., 2015. Simulation modeling and analysis (5th ed.). McGraw-Hill Education
Lawler, E., 1976. Combinatorial optimization: Networks and matroids. Holt, Rinehart and Winston.
Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., Shmoys, D. B. (Eds.), 1985. The traveling salesman problem (A guided tour of combinatorial optimization). Wiley,.
Lawrence, M., Goodwin, P., O’Connor, M., Önkal, D., 2006. Judgmental forecasting: A review of progress over the last 25 years. International Journal of Forecasting, 22 (3), 493–518. https://doi.org/10.1016/j.ijforecast.2006.03.007
Le Menestrel, M., Van Wassenhove, L. N., 2004. Ethics outside, within, or beyond OR models?European Journal of Operational Research, 153 (2), 477–484. https://doi.org/10.1016/S0377-2217(03)00168-1
Lebedev, D., Goulart, P., Margellos, K., 2021. A dynamic programming framework for optimal delivery time slot pricing. European Journal of Operational Research, 292 (2), 456–468. https://doi.org/10.1016/j.ejor.2020.11.010
Lecun, Y., 1989. Generalization and network design strategies. In R.Pfeifer, Z.Schreter, F.Fogelman, L.Steels (Eds.), Connectionism in perspective. Elsevier.
L’Ecuyer, P., 2009. Quasi-Monte Carlo methods with applications in finance. Finance and Stochastics, 13 (3), 307–349. https://doi.org/10.1007/s00780-009-0095-y
Lee, B. L., Johnes, J., 2022. Using network DEA to inform policy: The case of the teaching quality of higher education in England. Higher Education Quarterly, 76 (2), 399–421. https://doi.org/10.1111/hequ.12307
Lee, D. B., 1973. Requiem for Large-Scale models. Journal of the American Institute of Planners, 39 (3), 163–178. https://doi.org/10.1080/01944367308977851
Lee, H. L., Padmanabhan, V., Whang, S., 1997. Information distortion in a supply chain: The bullwhip effect. Management Science, 43 (4), 546–558. https://doi.org/10.1287/mnsc.43.4.546
Lee, H. L., So, K. C., Tang, C. S., 2000. The value of information sharing in a two-level supply chain. Management Science, 46 (5), 626–643. https://doi.org/10.1287/mnsc.46.5.626.12047
Lee, S. K., Mogi, G., Li, Z., Hui, K. S., Lee, S. K., Hui, K. N., Park, S. Y., Ha, Y. J., Kim, J. W., 2011. Measuring the relative efficiency of hydrogen energy technologies for implementing the hydrogen economy: An integrated fuzzy AHP/DEA approach. International Journal of Hydrogen Energy, 36 (20), 12655–12663. https://doi.org/10.1016/j.ijhydene.2011.06.135
Lehtonen, J.-M., Virtanen, K., 2022. Choosing the most economically advantageous tender using a multi-criteria decision analysis approach. Journal of Public Procurement, 22 (2), 164–179. https://doi.org/10.1108/JOPP-06-2021-0040
Lempert, R. J., Turner, S., 2021. Engaging multiple worldviews with quantitative decision support: A robust decision-making demonstration using the lake model. Risk Analysis, 41 (6), 845–865. https://doi.org/10.1111/risa.13579
Lenstra, H., 1983. Integer programming with a fixed number of variables. Mathematics of Operations Research, 8, 538–548. https://doi.org/10.1287/moor.8.4.538
Leontief, W. W., 1936. Quantitative input and output relations in the economic systems of the United States. Review of Economics and Statistics, 18 (3), 105–125. https://doi.org/10.2307/1927837
Lepenioti, K., Bousdekis, A., Apostolou, D., Mentzas, G., 2020. Prescriptive analytics: Literature review and research challenges. International Journal of Information Management, 50, 57–70. https://doi.org/10.1016/j.ijinfomgt.2019.04.003
Lettovskỳ, L., Johnson, E. L., Nemhauser, G. L., 2000. Airline crew recovery. Transportation Science, 34 (4), 337–348. https://doi.org/10.1287/trsc.34.4.337.12316
Leus, R., Herroelen, W., 2004. Stability and resource allocation in project planning. IIE Transactions, 36 (7), 667–682. https://doi.org/10.1080/07408170490447348
Lev, B., Bloom, J., Gleit, A., Murphy, F., Shoemaker, C., 1987. Strategic planning in energy and natural resources. North-Holland.
Levin, M., 1994. Action research and critical systems thinking: Two icons carved out of the same log?Systems Practice, 7 (1), 25–41. https://doi.org/10.1007/BF02169163
Levine, H. A., 2005. Project portfolio management: A practical guide to selecting projects, managing portfolios, and maximizing benefits. Wiley India Pvt. Limited.
Levitt, T., 1972. Production-line approach to service. Harvard Business Review, 50 (5), 41–52.
Lewis, M., 2003. Moneyball: The art of winning an unfair game. WW Norton.
Li, C., Grossmann, I. E., 2021. A review of stochastic programming methods for optimization of process systems under uncertainty. Frontiers of Chemical Engineering in China, 2.
Li, D., Ding, L., Connor, S., 2020. When to switch? Index policies for resource scheduling in emergency response. Production and Operations Management, 29 (2), 241–262. https://doi.org/10.1111/poms.13105
Li, D., Pang, Z., 2017. Dynamic booking control for car rental revenue management: A decomposition approach. European Journal of Operational Research, 256 (3), 850–867. https://doi.org/10.1016/j.ejor.2016.06.044
Li, D., Pang, Z., Qian, L., 2022a. Bid price controls for car rental network revenue management. Production and Operations Management.
Li, F., Wang, Y., Emrouznejad, A., Zhu, Q., Kou, G., 2021. Allocating a fixed cost across decision-making units with undesirable outputs: A bargaining game approach. Journal of the Operational Research Society, 73 (10), 2309–2325. https://doi.org/10.1080/01605682.2021.1981781
Li, H., Womer, N. K., 2015. Solving stochastic resource-constrained project scheduling problems by closed-loop approximate dynamic programming. European Journal of Operational Research, 246 (1), 20–33. https://doi.org/10.1016/j.ejor.2015.04.015
Li, J., 2021. Deterministic mincut in almost-linear time. InProceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing. STOC 2021. Association for Computing Machinery, New York, NY, USA (pp. 384–395). https://doi.org/10.1145/3406325.3451114
Li, L., Huan, Y., Kunc, M., 2022b. The impact of forum content on data science open innovation performance: A system dynamics-based causal machine learning approach. Working paper, Southampton Business School.
Li, Q., Yu, P., 2023. Perishable inventory systems. In J.-S.Song (Ed.), Research handbook on inventory management. Edward Elgar Publishing.
Li, Z., Mutha, A., Ryan, J., Sun, D., 2023. Mechanism design under asymmetric information regarding demand for remanufactured products. Working paper, University of Vermont, Burlington, Vermont, USA.
Liao, Y., Deschamps, F., Loures, E. d. F. R., Ramos, L. F. P., 2017. Past, present and future of industry 4.0–A systematic literature review and research agenda proposal. International Journal of Production Research, 55 (12), 3609–3629. https://doi.org/10.1080/00207543.2017.1308576
Liebchen, C., Möhring, R., 2002. A case study in periodic timetabling. Electronic Notes in Theoretical Computer Science, 66 (6), 1–14. https://doi.org/10.1016/S1571-0661(04)80526-7
Liesiö, J., Salo, A., Keisler, J. M., Morton, A., 2021. Portfolio decision analysis: Recent developments and future prospects. European Journal of Operational Research, 293 (3), 811–825. https://doi.org/10.1016/j.ejor.2020.12.015
Lilienfeld, R., 1978. The rise of systems theory: An ideological analysis. Wiley.
Lilley, R., Whitehead, M., Midgley, G., 2022. Mindfulness and behavioural insights: Reflections on the meditative brain, systems theory and organizational change. Journal of Awareness-Based System Change, 2 (2), 29–57. https://doi.org/10.47061/jasc.v2i2.3857
Lin, D.-Y., Liu, H.-Y., 2011. Combined ship allocation, routing and freight assignment in tramp shipping. Transportation Research Part E: Logistics and Transportation Review, 47 (4), 414–431. https://doi.org/10.1016/j.tre.2010.12.003
Lin, S., Kernighan, B. W., 1973. An effective heuristic algorithm for the traveling-salesman problem. Operations Research, 21 (2), 498–516. https://doi.org/10.1287/opre.21.2.498
Lin, Y., Leung, J. M. Y., Zhang, L., Gu, J.-W., 2020a. Single-item repairable inventory system with stochastic new and warranty demands. Transportation Research Part E: Logistics and Transportation Review, 142, 102035. https://doi.org/10.1016/j.tre.2020.102035
Lin, Y. H., Wang, Y., He, D., Lee, L. H., 2020b. Last-mile delivery: Optimal locker location under multinomial logit choice model. Transportation Research Part E: Logistics and Transportation Review, 142, 102059. https://doi.org/10.1016/j.tre.2020.102059
Linderoth, J., Ralphs, T., 2005. Noncommercial software for mixed-integer linear programming. In J.Karlof (Ed.), Integer programming (1st ed., Ch. 10, pp. 1–52). CRC Press.
Linderoth, J., Shapiro, A., Wright, S., 2006. The empirical behavior of sampling methods for stochastic programming. Annals of Operations Research, 142 (1), 215–241. https://doi.org/10.1007/s10479-006-6169-8
Lindner, F., Reiner, G., Keil, S., 2022. Review, trends, and opportunities of visualizations in manufacturing and production management: A behavioural operations perspective. In Machuca et al. (Ed.),Proceedings of the 6th World Conference on Production and Operations Management(pp. 546–555).
Lismont, J., Vanthienen, J., Baesens, B., Lemahieu, W., 2017. Defining analytics maturity indicators: A survey approach. International Journal of Information Management, 37 (3), 114–124. https://doi.org/10.1016/j.ijinfomgt.2016.12.003
Littlewood, K., 1972. Forecasting and control of passenger bookings. InAirline Group International Federation of Operational Research Societies Proceedings, 1972 (Vol. 12, pp. 95–117).
Littlewood, K., 2005. Special issue papers: Forecasting and control of passenger bookings. Journal of Revenue and Pricing Management, 4 (2), 111–123. https://doi.org/10.1057/palgrave.rpm.5170134
Liu, C., Stecke, K. E., Lian, J., Yin, Y., 2014. An implementation framework for seru production. International Transactions in Operational Research, 21 (1), 1–19. https://doi.org/10.1111/itor.12014
Liu, G., Luo, Y., Schulte, O., Kharrat, T., 2020. Deep soccer analytics: Learning an action-value function for evaluating soccer players. Data Mining and Knowledge Discovery, 34 (5), 1531–1559. https://doi.org/10.1007/s10618-020-00705-9
Liu, Q., van Ryzin, G., 2008. On the choice-based linear programming model for network revenue management. Manufacturing & Service Operations Management, 10 (2), 288–310. https://doi.org/10.1287/msom.1070.0169
Ljubić, I., 2007. A hybrid VNS for connected facility location. Lecture Notes in Computer Science, 4771, 157–169.
Ljubić, I., 2021. Solving Steiner trees: Recent advances, challenges, and perspectives. Networks, 77 (2), 177–204. https://doi.org/10.1002/net.22005
Lo, H. K., McCord, M. R., 1998. Adaptive ship routing through stochastic ocean currents: General formulations and empirical results. Transportation Research Part A: Policy and Practice, 32 (7), 547–561. https://doi.org/10.1016/S0965-8564(98)00018-4
Loch, C. H., Wu, Y., 2007. Behavioral operations management. Now Publishers Inc.
Locoro, A., Fisher, W. P., Mari, L., 2021. Visual information literacy: Definition, construct modeling and assessment. IEEE Access, 9, 71053–71071. https://doi.org/10.1109/ACCESS.2021.3078429
Lodi, A., Martello, S., Monaci, M., Vigo, D., 2014. Two-dimensional bin packing problems. In V. T.Paschos (Ed.), Paradigms of combinatorial optimization (pp. 107–129). John Wiley & Sons.
Lodi, A., Zarpellon, G., 2017. On learning and branching: A survey. Top, 25 (2), 207–236. https://doi.org/10.1007/s11750-017-0451-6
Lohatepanont, M., Barnhart, C., 2004. Airline schedule planning: Integrated models and algorithms for schedule design and fleet assignment. Transportation Science, 38 (1), 19–32. https://doi.org/10.1287/trsc.1030.0026
Long, K. M., Meadows, G. N., 2018. Simulation modelling in mental health: A systematic review. Journal of Simulation, 12 (1), 76–85. https://doi.org/10.1057/s41273-017-0062-0
Long, Y., Pan, J., Zhang, Q., Hao, Y., 2017. 3D printing technology and its impact on chinese manufacturing. International Journal of Production Research, 55 (5), 1488–1497. https://doi.org/10.1080/00207543.2017.1280196
Longstaff, F. A., Schwartz, E. S., 2001. Valuing American options by simulation: A simple least-squares approach. The Review of Financial Studies, 14 (1), 113–147. https://doi.org/10.1093/rfs/14.1.113
López-Torres, L., Johnes, J., Elliott, C., Polo, C., 2021. The effects of competition and collaboration on efficiency in the UK independent school sector. Economic Modelling, 96, 40–53. https://doi.org/10.1016/j.econmod.2020.12.020
Lovász, L., Schrijver, A., 1991. Cones of matrices and set-functions and 0–1 optimization. SIAM Journal on Optimization, 1, 166–190. https://doi.org/10.1137/0801013
Lowe, D., Espinosa, A., Yearworth, M., 2020. Constitutive rules for guiding the use of the viable system model: Reflections on practice. European Journal of Operational Research, 287 (3), 1014–1035. https://doi.org/10.1016/j.ejor.2020.05.030
Lowe, D., Yearworth, M., 2019. Response to viewpoint: Whither problem structuring methods (PSMs)?Journal of the Operational Research Society, 70 (8), 1393–1395. https://doi.org/10.1080/01605682.2018.1502629
Lozano, S., 2014. Company-wide production planning using a multiple technology DEA approach. Journal of the Operational Research Society, 65 (5), 723–734. https://doi.org/10.1057/jors.2012.171
Lozano, S., Villa, G., 2004. Centralized resource allocation using data envelopment analysis. Journal of Productivity Analysis, 22 (1), 143–161. https://doi.org/10.1023/B:PROD.0000034748.22820.33
Lozano, S., Villa, G., 2005. Determining a sequence of targets in DEA. Journal of the Operational Research Society, 56 (12), 1439–1447. https://doi.org/10.1057/palgrave.jors.2601964
Lu, H.-P., Yu, H.-J., Lu, S. S. K., 2001. The effects of cognitive style and model type on DSS acceptance: An empirical study. European Journal of Operational Research, 131 (3), 649–663. https://doi.org/10.1016/S0377-2217(00)00107-7
Lu, J., Chen, W., Ma, Y., Ke, J., Li, Z., Zhang, F., Maciejewski, R., 2017. Recent progress and trends in predictive visual analytics. Frontiers of Computer Science, 11 (2), 192–207. https://doi.org/10.1007/s11704-016-6028-y
Luck, M., 1984. Working with inner city community organizations. In K.Bowen, A.Cook, & M.Luck (Eds.), The writings of Steve Cook (pp. 77–78). Operational Research Society.
Luenberger, D. G., Ye, Y., 2016. Linear and nonlinear programming. In International series in operations research & management science (4th ed.). Springer.
Luis, E., Dolinskaya, I. S., Smilowitz, K. R., 2012. Disaster relief routing: Integrating research and practice. Socio-economic Planning Sciences, 46 (1), 88–97. https://doi.org/10.1016/j.seps.2011.06.001
Lund, D., Oksendal, B., 1991. Stochastic models and option values: Applications to resources, environment and investment problems. Emerald.
Lundell, A., Kronqvist, J., Westerlund, T., 2022. The supporting hyperplane optimization toolkit for convex MINLP. Journal of Global Optimization, 84, 1–41. https://doi.org/10.1007/s10898-022-01128-0
Lustig, I., Dietrich, B., Johnson, C., Dziekan, C., 2010. The analytics journey. Analytics Nov/Dec 2010, 11–18.
Lysgaard, J., Letchford, A., Eglese, R., 2004. A new branch-and-cut algorithm for the capacitated vehicle routing problem. Mathematical Programming, 100, 423–445. https://doi.org/10.1007/s10107-003-0481-8
Ma, Y., Zhang, W., Branke, J., 2022. Multi-objective optimisation of multifaceted maintenance strategies for wind farms. Journal of the Operational Research Society,1–16, https://doi.org/10.1080/01605682.2022.2085066
Maas, W. J., Lahr, M. M. H., Uyttenboogaart, M., Buskens, E., van der Zee, D.-J.2022. Expediting workflow in the acute stroke pathway for endovascular thrombectomy in the northern Netherlands: A simulation model. BMJ Open, 12 (4), e056415. https://doi.org/10.1136/bmjopen-2021-056415
Macal, C. M., 2016. Everything you need to know about agent-based modelling and simulation. Journal of Simulation, 10 (2), 144–156. https://doi.org/10.1057/jos.2016.7
Macdonald, B., 2012. Adjusted plus-minus for NHL players using ridge regression with goals, shots, Fenwick, and Corsi. Journal of Quantitative Analysis in Sports, 8 (3), 1–24. https://doi.org/10.1515/1559-0410.1447
Maciejowska, K., Nitka, W., Weron, T., 2021. Enhancing load, wind and solar generation for day-ahead forecasting of electricity prices. Energy Economics, 99, 105273. https://doi.org/10.1016/j.eneco.2021.105273
Maciejowska, K., Nowotarski, J., 2016. A hybrid model for GEFCom2014 probabilistic electricity price forecasting. International Journal of Forecasting, 32 (3), 1051–1056. https://doi.org/10.1016/j.ijforecast.2015.11.008
Mackert, J., 2019. Choice-based dynamic time slot management in attended home delivery. Computers & Industrial Engineering, 129, 333–345. https://doi.org/10.1016/j.cie.2019.01.048
MacQueen, J. B., 1967. Some methods for classification and analysis of multivariate observations. In L. M. L.Cam & J.Neyman (Eds.), Proc. of the fifth Berkeley Symposium on Mathematical Statistics and Probability (Vol. 1, pp. 281–297). University of California Press.
Macrina, G., Laporte, G., Guerriero, F., Di Puglia Pugliese, L., 2019. An energy-efficient green-vehicle routing problem with mixed vehicle fleet, partial battery recharging and time windows. European Journal of Operational Research, 276 (3), 971–982. https://doi.org/10.1016/j.ejor.2019.01.067
Maculan, N., 1987. The Steiner problem in graphs. Annals of Discrete Mathematics, 31, 185–211.
Magirou, E. F., Psaraftis, H. N., Bouritas, T., 2015. The economic speed of an oceangoing vessel in a dynamic setting. Transportation Research Part B: Methodological, 76, 48–67. https://doi.org/10.1016/j.trb.2015.03.001
Magnanti, T. L., Wolsey, L. A., 1995. Optimal trees. Handbooks in Operations Research and Management Science, 7, 503–615.
Magnanti, T. L., Wong, R. T., 1981. Accelerating benders decomposition: Algorithmic enhancement and model selection criteria. Operations Research, 29 (3), 464–484. https://doi.org/10.1287/opre.29.3.464
Magnanti, T. L., Wong, R. T., 1984. Network design and transportation planning: Models and algorithms. Transportation Science, 18 (1), 1–55. https://doi.org/10.1287/trsc.18.1.1
Mahar, S., Wright, P. D., 2017. In-store pickup and returns for a dual channel retailer. IEEE Transactions on Engineering Management, 64 (4), 491–504. https://doi.org/10.1109/TEM.2017.2691466
Maharjan, R., Shrestha, Y., Rakhal, B., Suman, S., Hulst, J., Hanaoka, S., 2020. Mobile logistics hubs prepositioning for emergency preparedness and response in Nepal. Journal of Humanitarian Logistics and Supply Chain Management, 10 (4), 555–572. https://doi.org/10.1108/JHLSCM-01-2020-0004
Maher, S. J., 2016. Solving the integrated airline recovery problem using column-and-row generation. Transportation Science, 50 (1), 216–239. https://doi.org/10.1287/trsc.2014.0552
Mahler, V., Girard, R., Kariniotakis, G., 2022. Data-driven structural modeling of electricity price dynamics. Energy Economics, 107, 105811. https://doi.org/10.1016/j.eneco.2022.105811
Mahmoudi, M., Shirzad, K., Verter, V., 2022. Decision support models for managing food aid supply chains: A systematic literature review. Socio-Economic Planning Sciences, 101255. https://doi.org/10.1016/j.seps.2022.101255
Maister, D. H., 1976. Centralisation of inventories and the “square root law”. International Journal of Physical Distribution, 6 (3), 124–134. https://doi.org/10.1108/eb014366
Makhorin, A., 2020. GNU linear programming kit (GLPK). https://www.gnu.org/software/glpk
Makridakis, S., Hyndman, R. J., Petropoulos, F., 2020a. Forecasting in social settings: The state of the art. International Journal of Forecasting, 36 (1), 15–28. https://doi.org/10.1016/j.ijforecast.2019.05.011
Makridakis, S., Spiliotis, E., Assimakopoulos, V., 2020b. The M4 competition: 100,000 time series and 61 forecasting methods. International Journal of Forecasting, 36 (1), 54–74. https://doi.org/10.1016/j.ijforecast.2019.04.014
Malcolm, D. G., Roseboom, J. H., Clark, C. E., Fazar, W., 1959. Application of a technique for research and development program evaluation. Operations Research, 7 (5), 646–669. https://doi.org/10.1287/opre.7.5.646
Malczewski, J., Jankowski, P., 2020. Emerging trends and research frontiers in spatial multicriteria analysis. International Journal of Geographical Information Science, 34 (7), 1257–1282. https://doi.org/10.1080/13658816.2020.1712403
Malecki, K. M. C., Keating, J. A., Safdar, N., 2020. Crisis communication and public perception of COVID-19 risk in the era of social media. Clinical Infectious Diseases, 72 (4), 697–702. https://doi.org/10.1093/cid/ciaa758
Malmquist, S., 1953. Index numbers and indifference surfaces. Trabajos de Estadistica, 4 (2), 209–242. https://doi.org/10.1007/BF03006863
Mandelbaum, A., Massey, W. A., Reiman, M. I., Rider, B., 1999. Time varying multiserver queues with abandonment and retrials. InProceedings of the 16th International Teletraffic Conference(Vol. 4. pp. 4–7).
Mandelbaum, A., Stolyar, A. L., 2004. Scheduling flexible servers with convex delay costs: Heavy-traffic optimality of the generalized c μ-rule. Operations Research, 52 (6), 836–855.
Manerba, D., Mansini, R., 2014. An effective matheuristic for the capacitated total quantity discount problem. Computers & Operations Research, 41, 1–11. https://doi.org/10.1016/j.cor.2013.07.019
Mangasarian, O. L., 1994. Nonlinear programming. SIAM.
Mansikka, H., Virtanen, K., Harris, D., 2019. Dissociation between mental workload, performance, and task awareness in pilots of high performance aircraft. IEEE Transactions on Human-Machine Systems, 49 (1), 1–9. https://doi.org/10.1109/THMS.2018.2874186
Mansikka, H., Virtanen, K., Harris, D., Jalava, M., 2021a. Measurement of team performance in air combat–have we been underperforming?Theoretical Issues in Ergonomics Science, 22 (3), 338–359. https://doi.org/10.1080/1463922X.2020.1779382
Mansikka, H., Virtanen, K., Harris, D., Salomäki, J., 2021b. Live–virtual–constructive simulation for testing and evaluation of air combat tactics, techniques, and procedures, Part 1: Assessment framework. The Journal of Defense Modeling and Simulation, 18 (4), 285–293. https://doi.org/10.1177/1548512919886375
Maoz, M., 2013. How IT should deepen big data analysis to support customer-centricity. Tech. Rep. G00248980, Gartner.
Mar-Molinero, C., Mingers, J., 2007. An evaluation of the limitations of, and alternatives to, the co-plot methodology. Journal of the Operational Research Society, 58 (7), 874–886. https://doi.org/10.1057/palgrave.jors.2602228
Marcjasz, G., Narajewski, M., Weron, R., Ziel, F., 2022. Distributional neural networks for electricity price forecasting. arXiv:2207.02832.
Mardani, A., Zavadskas, E. K., Streimikiene, D., Jusoh, A., Khoshnoudi, M., 2017. A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency. Renewable and Sustainable Energy Reviews, 70 (1), 1298–1322. https://doi.org/10.1016/j.rser.2016.12.030
Marín, A., Pelegrín, M., 2019. p-median problems. In G.Laporte, S.Nickel, &, F.Saldanha da Gama (Eds.), Location science (pp. 25–50). Springer.
Markowitz, H., Manne, A., 1957. On the solution of discrete programming problems. Econometrica, 25, 84–110. https://doi.org/10.2307/1907744
Markowitz, H. M., Todd, G. P., 2000. Mean-variance analysis in portfolio choice and capital markets. Wiley.
Marla, L., Vaaben, B., Barnhart, C., 2017. Integrated disruption management and flight planning to trade off delays and fuel burn. Transportation Science, 51 (1), 88–111. https://doi.org/10.1287/trsc.2015.0609
Marler, R. T., Arora, J. S., 2004. Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization, 26, 369–395. https://doi.org/10.1007/s00158-003-0368-6
Maróti, G., Kroon, L., 2005. Maintenance routing for train units: The transition model. Transportation Science, 39 (4), 518–525. https://doi.org/10.1287/trsc.1050.0116
Martello, S., 2010. Jeno Egerváry: From the origins of the Hungarian algorithm to satellite communication. Central European Journal of Operations Research, 18, 47–58. https://doi.org/10.1007/s10100-009-0125-z
Martello, S., Laporte, G., Minoux, M., Ribeiro, C. (Eds.), 1987. Surveys in combinatorial optimization. In Annals of discrete mathematics (Vol. 31). North-Holland.
Martello, S., Monaci, M., Vigo, D., 2003. An exact approach to the strip-packing problem. INFORMS Journal on Computing, 15 (3), 310–319. https://doi.org/10.1287/ijoc.15.3.310.16082
Martí, R., Pardalos, P. M., Resende, M. G. C., 2018. Handbook of heuristics. Springer.
Martin-Martinez, E., Samsó, R., Houghton, J., Solé, J., 2022. PySD: System dynamics modeling in python. Journal of Open Source Software, 7 (78), 4329. https://doi.org/10.21105/joss.04329
Martinovic, J., Scheithauer, G., Valério de Carvalho, J. M., 2018. A comparative study of the arcflow model and the one-cut model for one-dimensional cutting stock problems. European Journal of Operational Research, 266 (2), 458–471. https://doi.org/10.1016/j.ejor.2017.10.008
Marttunen, M., Belton, V., Lienert, J., 2018. Are objectives hierarchy related biases observed in practice? A meta-analysis of environmental and energy applications of Multi-Criteria decision analysis. European Journal of Operational Research, 265 (1), 178–194. https://doi.org/10.1016/j.ejor.2017.02.038
Marttunen, M., Haag, F., Belton, V., Mustajoki, J., Lienert, J., 2019. Methods to inform the development of concise objectives hierarchies in multi-criteria decision analysis. European Journal of Operational Research, 277 (2), 604–620. https://doi.org/10.1016/j.ejor.2019.02.039
Marttunen, M., Lienert, J., Belton, V., 2017. Structuring problems for multi-criteria decision analysis in practice: A literature review of method combinations. European Journal of Operational Research, 263 (1), 1–17. https://doi.org/10.1016/j.ejor.2017.04.041
Martzoukos, S. H., 2009. Real R&D options and optimal activation of two-dimensional random controls. Journal of the Operational Research Society, 60 (6), 843–858. https://doi.org/10.1057/palgrave.jors.2602627
Mashlakov, A., Kuronen, T., Lensu, L., Kaarna, A., Honkapuro, S., 2021. Assessing the performance of deep learning models for multivariate probabilistic energy forecasting. Applied Energy, 285, 116405. https://doi.org/10.1016/j.apenergy.2020.116405
Masmoudi, M., Abdelaziz, F. B., 2018. Portfolio selection problem: A review of deterministic and stochastic multiple objective programming models. Annals of Operations Research, 267 (1), 335–352. https://doi.org/10.1007/s10479-017-2466-7
Masmoudi, M. A., Mancini, S., Baldacci, R., Kuo, Y.-H., 2022. Vehicle routing problems with drones equipped with multi-package payload compartments. Transportation Research Part E: Logistics and Transportation Review, 164, 102757. https://doi.org/10.1016/j.tre.2022.102757
Mason, R. O., Mitroff, I. I., 1981. Challenging strategic planning assumptions: Theory, cases, and techniques. Wiley.
Massey, W. A., 1981. Non-stationary queues[Ph.D. thesis]. Stanford University.
Massey, W. A., Whitt, W., 1998. Uniform acceleration expansions for Markov chains with time-varying rates. Annals of Applied Probability, 8 (4), 1130–1155.
Mattila, V., Virtanen, K., 2014. Maintenance scheduling of a fleet of fighter aircraft through multi-objective simulation-optimization. Simulation, 90 (9), 1023–1040. https://doi.org/10.1177/0037549714540008
Mauttone, A., Cancela, H., Urquhart, M. E., 2021. Public transportation. In T. G.Crainic, M.Gendreau, & B.Gendron (Eds.), Network design with applications to transportation and logistics (pp. 539–565). Springer.
Máximo, V., Nascimento, M., 2021. A hybrid adaptive iterated local search with diversification control to the capacitated vehicle routing problem. European Journal of Operational Research, 294 (3), 1108–1119. https://doi.org/10.1016/j.ejor.2021.02.024
Mayer, K., Trück, S., 2018. Electricity markets around the world. Journal of Commodity Markets, 9, 77–100. https://doi.org/10.1016/j.jcomm.2018.02.001
Mazumdar, R., Mason, L., Douligeris, C., 1991. Fairness in network optimal flow control: Optimality of product forms. IEEE Transactions on Communications, 39 (5), 775–782. https://doi.org/10.1109/26.87140
McAfee, R. P., McMillan, J., 1987. Auctions and bidding. Journal of Economic Literature, 25 (2), 699–738.
McCloskey, J. F., 1987. British operational research in World War II. Operations Research, 35 (3), 453–470. https://doi.org/10.1287/opre.35.3.453
McCollum, B., 2002. Integrating human abilities and automated systems for timetabling: A competition using STARK and HuSSH representations. InProceedings of the International Conference of the Practice and Theory of Automated Timetabling(pp. 265–273).
McCollum, B., McMullan, P., Burke, E. K., Parkes, A. J., Qu, R., 2007. The second international timetabling competition: Examination timetabling track. Tech. Rep., Technical Report QUB/IEEE/Tech/ITC2007/-Exam/v4. 0/17, Queen’s University.
McConnell, B. M., Hodgson, T. J., Kay, M. G., King, R. E., Liu, Y., Parlier, G. H., Thoney-Barletta, K., Wilson, J. R., 2021. Assessing uncertainty and risk in an expeditionary military logistics network. Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, 18 (2), 135–156. https://doi.org/10.1177/1548512919860595
McElfresh, C., Dickerson, J., 2018. Balancing lexicographic fairness and a utilitarian objective with application to kidney exchange. In 32nd AAAI Conference on Artificial Intelligence (pp. 1161–1168). https://doi.org/10.1609/aaai.v32i1.11436
McEvoy, J., Gilbertz, S. J., Anderson, M. B., Ormerod, K. J., Bergmann, N. T., 2017. Cultural theory of risk as a heuristic for understanding perceptions of oil and gas development in Eastern Montana, USA. The Extractive Industries and Society, 4 (4), 852–859. https://doi.org/10.1016/j.exis.2017.10.004
McHale, I., Morton, A., 2011. A Bradley-Terry type model for forecasting tennis match results. International Journal of Forecasting, 27 (2), 619–630. https://doi.org/10.1016/j.ijforecast.2010.04.004
McHale, I. G., Holmes, B., 2022. Estimating transfer fees of professional footballers using advanced performance metrics and machine learning. European Journal of Operational Research, 306 (1), 389–399. https://doi.org/10.1016/j.ejor.2022.06.033
McKinney, W., 2010. Data structures for statistical computing in Python. In Stéfan van der Walt & Jarrod Millman (Eds.),Proceedings of the 9th Python in Science Conference(pp. 56–61). https://doi.org/10.25080/Majora-92bf1922-00a
Meeusen, W., van den Broeck, J., 1977. Efficiency estimation from Cobb-Douglas production functions with composed error. International Economic Review, 18 (2), 435–444. https://doi.org/10.2307/2525757
Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A., 2022. A survey on bias and fairness in machine learning. arXiv:1908-09635. https://doi.org/10.1145/3457607
Melese, F., Richter, A., Solomon, B., 2015. Military cost-benefit analysis: Theory and practice. Routledge.
Melo, M. T., Nickel, S., Saldanha-Da-Gama, F., 2009. Facility location and supply chain management–A review. European Journal of Operational Research, 196 (2), 401–412. https://doi.org/10.1016/j.ejor.2008.05.007
Meng, F., Qi, J., Zhang, M., Ang, J., Chu, S., Sim, M., 2015. A robust optimization model for managing elective admission in a public hospital. Operations Research, 63 (6), 1452–1467. https://doi.org/10.1287/opre.2015.1423
Meng, Q., Wang, S., 2011. Optimal operating strategy for a long-haul liner service route. European Journal of Operational Research, 215 (1), 105–114. https://doi.org/10.1016/j.ejor.2011.05.057
Menger, K., 1927. Zur allgemeinen Kurventheorie. Fundamenta Mathematicae, 10, 96–115. https://doi.org/10.4064/fm-10-1-96-115
Meredith, J. R., Mantel, Jr, S. J., 2003. Project management: A managerial approach. John Wiley & Sons.
Meretoja, A., Keshtkaran, M., Saver, J. L., Tatlisumak, T., Parsons, M. W., Kaste, M., Davis, S. M., Donnan, G. A., Churilov, L., 2014. Stroke thrombolysis: Save a minute, save a day. Stroke, 45 (4), 1053–1058. https://doi.org/10.1161/STROKEAHA.113.002910
Merkle, D., Middendorf, M., Schmeck, H., 2002. Ant colony optimization for resource-constrained project scheduling. IEEE Transactions on Evolutionary Computation, 6 (4), 333–346. https://doi.org/10.1109/TEVC.2002.802450
Mertens, J.-F., Neyman, A., 1981. Stochastic games. International Journal of Game Theory, 10, 53–56. https://doi.org/10.1007/BF01769259
Messner, J., Pinson, P., 2019. Online adaptive lasso estimation in vector autoregressive models for high dimensional wind power forecasting. International Journal of Forecasting, 35 (4), 1485–1498. https://doi.org/10.1016/j.ijforecast.2018.02.001
Mete, H. O., Zabinsky, Z. B., 2010. Stochastic optimization of medical supply location and distribution in disaster management. International Journal of Production Economics, 126 (1), 76–84. https://doi.org/10.1016/j.ijpe.2009.10.004
Meyer, R. E., Jancsary, D., Höllerer, M. A., Boxenbaum, E., 2018. The role of verbal and visual text in the process of institutionalization. Academy of Management Review, 43 (3), 392–418. https://doi.org/10.5465/amr.2014.0301
Michaud, R. O., 1989. The Markowitz optimization enigma: Is ‘optimized’ optimal?Financial Analysts Journal, 45 (1), 31–42. https://doi.org/10.2469/faj.v45.n1.31
Michna, Z., Disney, S. M., Nielsen, P., 2020. The impact of stochastic lead times on the bullwhip effect under correlated demand and moving average forecasts. Omega, 93, 102033. https://doi.org/10.1016/j.omega.2019.02.002
Midgley, G., 1992. The sacred and profane in critical systems thinking. Systems Practice, 5 (1), 5–16. https://doi.org/10.1007/BF01060044
Midgley, G., 1994. Ecology and the poverty of humanism: A critical systems perspective. Systems Research, 11 (4), 67–76. https://doi.org/10.1002/sres.3850110406
Midgley, G., 2000. Systemic intervention: Philosophy, methodology, and practice. Kluwer/Plenum.
Midgley, G., Cavana, R. Y., Brocklesby, J., Foote, J. L., Wood, D. R. R., Ahuriri-Driscoll, A., 2013. Towards a new framework for evaluating systemic problem structuring methods. European Journal of Operational Research, 229 (1), 143–154. https://doi.org/10.1016/j.ejor.2013.01.047
Midgley, G., Johnson, M. P., Chichirau, G., 2018. What is community operational research?European Journal of Operational Research, 268 (3), 771–783. https://doi.org/10.1016/j.ejor.2017.08.014
Midgley, G., Munlo, I., Brown, M., 1998. The theory and practice of boundary critique: Developing housing services for older people. Journal of the Operational Research Society, 49 (5), 467–478. https://doi.org/10.2307/3009885
Midgley, G., Ochoa-Arias, A. E., 2004. Visions of community for community OR. In G.Midgley & A. E.Ochoa-Arias, (Eds.), Community operational research: OR and systems thinking for community development (pp. 75–105). Kluwer Academic/Plenum Publishers.
Midgley, G., Pinzón, L. A., 2011. Boundary critique and its implications for conflict prevention. Journal of the Operational Research Society, 62 (8), 1543–1554. https://doi.org/10.1057/jors.2010.76
Midgley, G., Rajagopalan, R., 2021. Critical systems thinking, systemic intervention, and beyond. In G. S.Metcalf, K.Kijima, & H.Deguchi (Eds.), Handbook of systems sciences (pp. 107–157). Springer.
Miettinen, K., 1999. Nonlinear multiobjective optimization. In International series in operations research and management science (Vol. 12). Kluwer Academic Publishers.
Milgrom, P. R., 1985. The economics of competitive bidding: A selective survey. In L.Hurwicz, D.Schmeidler, H.Sonnenschein (Eds.), Social goals and social organization: essays in memory of Elisha Pazner (pp. 261–289). Cambridge University Press.
Milgrom, P. R., 1987. Auction theory. In O.Hart, B.Holmstrom, T.Bewley (Eds.), Advances in economic theory: Fifth world congress. Econometric society monographs (pp. 1–32). Cambridge University Press.
Milgrom, P. R., 2004. Putting auction theory to work. Churchill lectures in economics. Cambridge University Press.
Min, H., 2010. Artificial intelligence in supply chain management: Theory and applications. International Journal of Logistics Research and Applications, 13 (1), 13–39. https://doi.org/10.1080/13675560902736537
Mingers, J., 2000. The contribution of critical realism as an underpinning philosophy for OR/MS and systems. Journal of the Operational Research Society, 51 (11), 1256–1270. https://doi.org/10.2307/254211
Mingers, J., 2011a. Ethics and OR: Operationalising discourse ethics. European Journal of Operational Research, 210 (1), 114–124. https://doi.org/10.1016/j.ejor.2010.11.003
Mingers, J., 2011b. Soft OR comes of age—but not everywhere!Omega, 39 (6), 729–741. https://doi.org/10.1016/j.omega.2011.01.005
Mingers, J., 2015. Helping business schools engage with real problems: The contribution of critical realism and systems thinking. European Journal of Operational Research, 242 (1), 316–331. https://doi.org/10.1016/j.ejor.2014.10.058
Mingers, J., Brocklesby, J., 1997. Multimethodology: Towards a framework for mixing methodologies. Omega, 25 (5), 489–509. https://doi.org/10.1016/S0305-0483(97)00018-2
Mingers, J., Gill, A., 1997. Multimethodology: Towards theory and practice and mixing and matching methodologies. Wiley.
Mingers, J., Rosenhead, J., 2004. Problem structuring methods in action. European Journal of Operational Research, 152 (3), 530–554. https://doi.org/10.1016/S0377-2217(03)00056-0
Mingers, J., White, L., 2010. A review of the recent contribution of systems thinking to operational research and management science. European Journal of Operational Research, 207 (3), 1147–1161. https://doi.org/10.1016/j.ejor.2009.12.019
Mingers, J. C., 1980. Towards an appropriate social theory for applied systems thinking: Critical theory and soft systems methodology. Journal of Applied Systems Analysis, 7, 41–50.
Mingers, J. C., 1984. Subjectivism and soft systems methodology–a critique. Journal of Applied Systems Analysis, 11, 85–103.
Mirchandani, P., Francis, R. (Eds.), 1990. Discrete location theory. Wiley.
Mirzaei, S., Seifi, A., 2015. Considering lost sale in inventory routing problems for perishable goods. Computers and Industrial Engineering, 87, 213–227. https://doi.org/10.1016/j.cie.2015.05.010
Miser, H. J., Quade, E. S., 1985. Handbook of systems analysis: Overview of uses, procedures, applications, and practice. North-Holland.
Miser, H. J., Quade, E. S. (Eds.), 1988. Handbook of systems analysis: Craft issues and procedural choices. Wiley.
Mishra, D., Parkes, D. C., 2009. Multi-item Vickrey–Dutch auctions. Games and Economic Behavior, 66 (1), 326–347. https://doi.org/10.1016/j.geb.2008.04.007
Mitchell, S., Kean, A., Mason, A., O’Sullivan, M., Phillips, A., Peschiera, F., 2022. PuLP. https://projects.coin-or.org/pulp
Mitchell, T. M., 1997. Machine learning. McGraw-hill.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D., 2015. Human-level control through deep reinforcement learning. Nature, 518 (7540), 529–533. https://doi.org/10.1038/nature14236
Moccia, L., Cordeau, J.-F., Gaudioso, M., Laporte, G., 2006. A branch-and-cut algorithm for the quay crane scheduling problem in a container terminal. Naval Research Logistics, 53 (1), 45–59. https://doi.org/10.1002/nav.20121
Moeller, S., 2010. Characteristics of services: A customer integration perspective uncovers their value. Journal of Services Marketing, 24 (5), 359–368. https://doi.org/10.1108/08876041011060468
Moghaddam, K. S., DePuy, G. W., 2011. Farm management optimization using chance constrained programming method. Computers and Electronics in Agriculture, 77 (2), 229–237. https://doi.org/10.1016/j.compag.2011.05.006
Mohiuddin, S., Busby, J., Savović, J., Richards, A., Northstone, K., Hollingworth, W., Donovan, J. L., Vasilakis, C., 2017. Patient flow within UK emergency departments: A systematic review of the use of computer simulation modelling methods. BMJ Open, 7 (5), e015007. https://doi.org/10.1136/bmjopen-2016-015007
Monks, T., Currie, C. S. M., Onggo, B. S., Robinson, S., Kunc, M., Taylor, S. J. E., 2019. Strengthening the reporting of empirical simulation studies: Introducing the STRESS guidelines. Journal of Simulation, 13 (1), 55–67. https://doi.org/10.1080/17477778.2018.1442155
Monks, T., Pearson, M., Pitt, M., Stein, K., James, M. A., 2015. Evaluating the impact of a simulation study in emergency stroke care. Operations Research for Health Care, 6, 40–49. https://doi.org/10.1016/j.orhc.2015.09.002
Monks, T., Pitt, M., Stein, K., James, M., 2012. Maximizing the population benefit from thrombolysis in acute ischemic stroke. Stroke, 43 (10), 2706–2711. https://doi.org/10.1161/STROKEAHA.112.663187
Monma, C., Shallcross, D., 1989. Methods for designing communications networks with certain two-connected survivability constraints. Operations Research, 37 (4), 531–541. https://doi.org/10.1287/opre.37.4.531
Montero-Manso, P., Athanasopoulos, G., Hyndman, R. J., Talagala, T. S., 2020. FFORMA: Feature-based forecast model averaging. International Journal of Forecasting, 36 (1), 86–92. https://doi.org/10.1016/j.ijforecast.2019.02.011
Mor, A., Speranza, M., 2020. Vehicle routing problems over time: A survey. 4OR - A Quarterly Journal of Operations Research, 18, 129–149. https://doi.org/10.1007/s10288-020-00433-2
Morales, J. M., Conejo, A. J., Madsen, H., Pinson, P., Zugno, M., 2014. Integrating renewables in electricity markets: Operational problems. Springer.
Morecroft, J. D. W., 2010. Romeo and Juliet in Brazil: Use of metaphorical models for feedback systems thinking. In J.Richmond, L.Stuntz, K.Richmond, & J.Egner (Eds.), Tracing connections: Voices of systems thinkers. ISEE Systems, Inc. and the creative learning exchange (pp. 95–119).
Morecroft, J. D. W., 2012. Metaphorical models for limits to growth and industrialization. Systems Research and Behavioral Science, 29 (6), 645–666. https://doi.org/10.1002/sres.2143
Morecroft, J. D. W., 2015. Strategic modelling and business dynamics: A feedback systems approach. John Wiley & Sons.
Mortenson, M. J., Doherty, N. F., Robinson, S., 2015. Operational research from Taylorism to Terabytes: A research agenda for the analytics age. European Journal of Operational Research, 241 (3), 583–595. https://doi.org/10.1016/j.ejor.2014.08.029
Morton, T., Pentico, D. W., 1993. Heuristic scheduling systems: With applications to production systems and project management (Vol. 3). Wiley-Interscience.
Moss, S. J., Vasilakis, C., Wood, R. M., 2022. Exploring financially sustainable initiatives to address out-of-area placements in psychiatric ICUs: A computer simulation study. Journal of Mental Health, 1–9. https://doi.org/10.1080/09638237.2022.2091769
Mostajabdaveh, M., Gutjahr, W. J., Sibel Salman, F., 2019. Inequity-averse shelter location for disaster preparedness. IISE Transactions, 51 (8), 809–829. https://doi.org/10.1080/24725854.2018.1496372
Moulin, H., 1988. Axioms of cooperative decision making (1st ed.). Cambridge University Press.
Muckstadt, J. A., Roundy, R. O., 1993. Analysis of multistage production systems. Handbooks in Operations Research and Management Science, 4, 59–131.
Muehlheusser, G., Schneemann, S., Sliwka, D., Wallmeier, N., 2018. The contribution of managers to organizational success: Evidence from German soccer. Journal of Sports Economics, 19 (6), 786–819. https://doi.org/10.1177/1527002516674760
Müller, T., Rudová, H., Müllerová, Z., 2018. University course timetabling and international timetabling competition 2019. InProceedings of the 12th International Conference of the Practice and Theory of Automated Timetabling(pp. 5–31).
Müller-Merbach, H., 1981. Heuristics and their design: A survey. European Journal of Operational Research, 8 (1), 1–23. https://doi.org/10.1016/0377-2217(81)90024-2
Munien, C., Ezugwu, A. E., 2021. Metaheuristic algorithms for one-dimensional bin-packing problems: A survey of recent advances and applications. Journal of Intelligent Systems, 30 (1), 636–663. https://doi.org/10.1515/jisys-2020-0117
Murphy, K. P., 2022. Probabilistic machine learning: An introduction. MIT Press.
Murphy, K. P., 2023. Probabilistic machine learning: Advanced topics. MIT Press.
Murty, K. G., Kabadi, S. N., 1987. Some NP-complete problems in quadratic and nonlinear programming. Mathematical Programming, 39 (2), 117–129. https://doi.org/10.1007/BF02592948
Musliu, N., 2006. Heuristic methods for automatic rotating workforce scheduling. International Journal of Computational Intelligence Research, 2, 309–326. https://doi.org/10.5019/j.ijcir.2006.69
Mustajoki, J., Marttunen, M., 2017. Comparison of multi-criteria decision analytical software for supporting environmental planning processes. Environmental Modelling & Software, 93, 78–91. https://doi.org/10.1016/j.envsoft.2017.02.026
Mutha, A., Bansal, S., 2023. Determining assortments of used products for B2B transactions in reverse supply chain. IISE Transactions.https://doi.org/10.1080/24725854.2022.2159590
Mutha, A., Bansal, S., Guide, V. D. R., 2016. Managing demand uncertainty through core acquisition in remanufacturing. Production and Operations Management, 25 (8), 1449–1464. https://doi.org/10.1111/poms.12554
Mutha, A., Bansal, S., Guide, V. D. R., 2019. Selling assortments of used products to third-party remanufacturers. Production and Operations Management, 28 (7), 1792–1817. https://doi.org/10.1111/poms.13004
Nahmias, S., 1979. Simple approximations for a variety of dynamic leadtime lost-sales inventory models. Operations Research, 27 (5), 904–924. https://doi.org/10.1287/opre.27.5.904
Nahmias, S., 2011. Perishable inventory systems. In International series in operations research & management science (Vol. 160). Springer Science & Business Media.
Narasimhan, R., Swink, M., Kim, S. W., 2006. Disentangling leanness and agility: An empirical investigation. Journal of Operations Management, 24 (5), 440–457. https://doi.org/10.1016/j.jom.2005.11.011
Nash, J., 1950a. The bargaining problem. Econometrica, 18, 155–162. https://doi.org/10.2307/1907266
Nash, J., 1950b. Equilibrium points in n-person games. Proceedings of the National Academy of Sciences USA, 36 (1), 48–49. https://doi.org/10.1073/pnas.36.1.48
National Grid ESO. 2022. Short term operating reserve. Retrieved November 1, 2022, from https://www.nationalgrideso.com/industry-information/balancing-services/ reserve-services/short-term-operating-reserve.
Naylor, J. B., Naim, M. M., Berry, D., 1999. Leagility: Integrating the lean and agile manufacturing paradigms in the total supply chain. International Journal of Production Economics, 62 (1), 107–118. https://doi.org/10.1016/S0925-5273(98)00223-0
Nehring, K., 2007. The impossibility of a Paretian rational: A Bayesian perspective. Economics Letters, 96 (1), 45–50. https://doi.org/10.1016/j.econlet.2006.12.008
Nemhauser, G., Wolsey, L., 1988. Integer and combinatorial optimization. John Wiley & Sons.
Nesterov, Y. E., Nemirovskii, A., 1994. Interior-point polynomial algorithms in convex programming. In SIAM studies in applied mathematics (Vol. 13). SIAM.
Neumann, K., Schwindt, C., Zimmermann, J., 2003. Project scheduling with time windows and scarce resources: Temporal and resource-constrained project scheduling with regular and nonregular objective functions. Springer.
Neumann, K., Zimmermann, J., 2000. Procedures for resource leveling and net present value problems in project scheduling with general temporal and resource constraints. European Journal of Operational Research, 127 (2), 425–443. https://doi.org/10.1016/S0377-2217(99)00498-1
Neuts, M. F., 1981. Matrix-geometric solutions in stochastic models: An algorithmic approach. In Johns Hopkins series in the mathematical sciences (Vol. 2). Johns Hopkins University Press.
Neuts, M. F., 1989. Structured stochastic matrices of M/G/1 type and their applications. In Probability: Pure and applied 5. Marcel Dekker.
Newbold, R. C., 1998. Project management in the fast lane: Applying the theory of constraints. CRC Press.
Newman, A. M., Rubio, E., Caro, R., Weintraub, A., Eurek, K., 2010. A review of operations research in mine planning. Interfaces, 40 (3), 222–245. https://doi.org/10.1287/inte.1090.0492
Nicholls, M. G., 2009. The use of markov models as an aid to the evaluation, planning and benchmarking of doctoral programs. Journal of the Operational Research Society, 60 (9), 1183–1190. https://doi.org/10.1057/palgrave.jors.2602639
Niedermeier, R., 2006. Invitation to fixed-parameter algorithms. Oxford University Press.
Nifakos, S., Chandramouli, K., Nikolaou, C. K., Papachristou, P., Koch, S., Panaousis, E., Bonacina, S., 2021. Influence of human factors on cyber security within healthcare organisations: A systematic review. Sensors, 21 (15). https://doi.org/10.3390/s21155119
Nikolopoulos, K., Litsa, A., Petropoulos, F., Bougioukos, V., Khammash, M., 2015. Relative performance of methods for forecasting special events. Journal of Business Research, 68 (8), 1785–1791. https://doi.org/10.1016/j.jbusres.2015.03.037
Nisan, N., 2007. Introduction to mechanism design. In N.Nisan, T.Roughgarden, E.Tardos, V. V.Vazirani (Eds.), Algorithmic game theory (pp. 209–242). Cambridge University Press.
Nishihara, M., 2012. Real options with synergies: Static versus dynamic policies. Journal of the Operational Research Society, 63 (1), 107–121. https://doi.org/10.1057/jors.2011.5
Niu, H., Zhou, X., 2013. Optimizing urban rail timetable under time-dependent demand and oversaturated conditions. Transportation Research Part C: Emerging Technologies, 36, 212–230. https://doi.org/10.1016/j.trc.2013.08.016
Niu, H., Zhou, X., Gao, R., 2015. Train scheduling for minimizing passenger waiting time with time-dependent demand and skip-stop patterns: Nonlinear integer programming models with linear constraints. Transportation Research Part B: Methodological, 76, 117–135. https://doi.org/10.1016/j.trb.2015.03.004
Nocedal, J., Wright, S. J., 2006. Numerical optimization. In Springer series in operations research and financial engineering (2nd ed.). Springer.
Norlund, E. K., Gribkovskaia, I., 2013. Reducing emissions through speed optimization in supply vessel operations. Transportation Research Part D: Transport and Environment, 23, 105–113. https://doi.org/10.1016/j.trd.2013.04.007
Nowotarski, J., Liu, B., Weron, R., Hong, T., 2016. Improving short term load forecast accuracy via combining sister forecasts. Energy, 98, 40–49. https://doi.org/10.1016/j.energy.2015.12.142
Nowotarski, J., Weron, R., 2018. Recent advances in electricity price forecasting: A review of probabilistic forecasting. Renewable and Sustainable Energy Reviews, 81, 1548–1568. https://doi.org/10.1016/j.rser.2017.05.234
Nübel, H., 2001. The resource renting problem subject to temporal constraints. OR Spectrum, 23 (3), 359–381. https://doi.org/10.1007/PL00013357
Numrich, S. K., Picucci, P. M., 2012. New challenges: Human, social, cultural, and behavioral modeling. In A.Tolk (Ed.), Engineering principles of combat modeling and distributed simulation (pp. 641–667). Wiley.
Oesterreich, T. D., Anton, E., Teuteberg, F., 2022. What translates big data into business value? A meta-analysis of the impacts of business analytics on firm performance. Information & Management, 59 (6), 103685. https://doi.org/10.1016/j.im.2022.103685
Office for National Statistics. 2022a. Coronavirus (COVID-19) infection survey: Methods and further information. Tech. Rep., Office for National Statistics.
Office for National Statistics. 2022b. Coronavirus (COVID-19) latest insights. Tech. Rep. Office for National Statistics.
Office for National Statistics, 2022c. COVID-19 schools infection survey, England statistical bulletins. Tech. rep. Office for National Statistics.
Ogata, K., et al., 2010. Modern control engineering (5th ed.). Prentice Hall.
Ogryczak, W., Luss, H., Pióro, M., Nace, D., Tomaszewski, A., 2014. Fair optimization and networks: A survey. Journal of Applied Mathematics, 2014, 1–25. https://doi.org/10.1155/2014/612018
Ogryczak, W., Śliwiński, T., 2003. On solving linear programs with the ordered weighted averaging objective. European Journal of Operational Research, 148 (1), 80–91. https://doi.org/10.1016/S0377-2217(02)00399-5
O’Hanley, J. R., Church, R. L., 2011. Designing robust coverage networks to hedge against worst-case facility losses. European Journal of Operational Research, 209 (1), 23–36. https://doi.org/10.1016/j.ejor.2010.08.030
Öhman, M., Hiltunen, M., Virtanen, K., Holmström, J., 2021. Frontlog scheduling in aircraft line maintenance: From explorative solution design to theoretical insight into buffer management. Journal of Operations Management, 67 (2), 120–151. https://doi.org/10.1002/joom.1108
Ohno, T., 1988. Toyota production system: Beyond large-scale production. Productivity Press.
Olesen, O. B., Petersen, N. C., Podinovski, V. V., 2022. The structure of production technologies with ratio inputs and outputs. Journal of Productivity Analysis, 57 (3), 255–267. https://doi.org/10.1007/s11123-022-00631-6
Olhager, J., 2010. The role of the customer order decoupling point in production and supply chain management. Computers in Industry, 61 (9), 863–868. https://doi.org/10.1016/j.compind.2010.07.011
Olivares, K., Challu, C., Marcjasz, G., Weron, R., Dubrawski, A., 2023. Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx. International Journal of Forecasting, 39 (2), 884–900. https://doi.org/10.1016/j.ijforecast.2022.03.001
Oliveira, J., Ferreira, J., 1990. An improved version of Wang’s algorithm for two-dimensional cutting problems. European Journal of Operational Research, 44 (2), 256–266. https://doi.org/10.1016/0377-2217(90)90361-E
O’Neil, C., 2016. Weapons of math destruction: How big data increases inequality and threatens democracy. Crown Publishing Group.
Onggo, B. S., 2019. Symbiotic simulation system (S3) for industry 4.0. In M.Gunal (Ed.), Simulation for industry 4.0: Past, present and future (pp. 153–165). Springer.
Opricovic, S., Tzeng, G.-H., 2004. Compromise solution by MCDM methods: A comparative analysis of Vikor and Topsis. European Journal of Operational Research, 156 (2), 445–455. https://doi.org/10.1016/S0377-2217(03)00020-1
Ord, K., Fildes, R., Kourentzes, N., 2017. Principles of business forecasting (2nd ed.). Wessex Press Inc.
Orlin, J. B., 1993. A faster strongly polynomial minimum cost flow algorithm. Operations Research, 41 (2), 338–350. https://doi.org/10.1287/opre.41.2.338
Orlin, J. B., 2013. Max flows in O(nm) time, or better. In D. Boneh, T. Roughgarden, J. Feigenbaum (Eds.),Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1–4, 2013 (pp. 765–774).
Ormerod, R., Yearworth, M., White, L., 2023. Understanding participant actions in OR interventions using practice theories: A research agenda. European Journal of Operational Research, 306 (2), 810–827. https://doi.org/10.1016/j.ejor.2022.08.030
Ormerod, R. J., 2014a. The mangle of OR practice: Towards more informative case studies of ‘technical’ projects. Journal of the Operational Research Society, 65 (8), 1245–1260. https://doi.org/10.1057/jors.2013.78
Ormerod, R. J., 2014b. OR competences: The demands of problem structuring methods. EURO Journal on Decision Processes, 2 (3), 313–340. https://doi.org/10.1007/s40070-013-0021-6
Ormerod, R. J., Ulrich, W., 2013. Operational research and ethics: A literature review. European Journal of Operational Research, 228 (2), 291–307. https://doi.org/10.1016/j.ejor.2012.11.048
Osborne, M., Rubinstein, A., 1994. A course in game theory. MIT Press.
Otto, A., Agatz, N., Campbell, J., Golden, B., Pesch, E., 2018. Optimization approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: A survey. Networks, 72 (4), 411–458. https://doi.org/10.1002/net.21818
Oude Vrielink, R. A., Jansen, E. A., Hans, E. W., van Hillegersberg, J., 2019. Practices in timetabling in higher education institutions: A systematic review. Annals of Operations Research, 275 (1), 145–160. https://doi.org/10.1007/s10479-017-2688-8
Ovchinnikov, A., 2011. Revenue and cost management for remanufactured products. Production and Operations Management, 20 (6), 824–840. https://doi.org/10.1111/j.1937-5956.2010.01214.x
Owen, G., 1973. Cutting planes for programs with disjunctive constraints. Journal of Optimization Theory and Applications, 11, 49–55. https://doi.org/10.1007/BF00934290
Owen, G., 1995. Game theory (3rd ed.). Academic Press.
Özdemir-Akyıldırım, Ö., Denizel, M., Ferguson, M., 2014. Allocation of returned products among different recovery options through an opportunity cost-based dynamic approach. Decision Sciences, 45 (6), 1083–1116. https://doi.org/10.1111/deci.12100
Padberg, M., Rinaldi, G., 1987. Optimization of a 532 city symmetric traveling salesman problem by branch-and-cut. Operations Research Letters, 6, 1–7. https://doi.org/10.1016/0167-6377(87)90002-2
Padberg, M., Rinaldi, G., 1990a. An efficient algorithm for the minimum capacity cut problem. Mathematical Programming, 47, 19–36. https://doi.org/10.1007/BF01580850
Padberg, M., Rinaldi, G., 1990b. Facet identification for the symmetric traveling salesman polytope. Mathematical Programming, 47, 219–257. https://doi.org/10.1007/BF01580861
Padberg, M., Rinaldi, G., 1991. A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Review, 33 (1), 60–100. https://doi.org/10.1137/1033004
Padberg, M., Sung, T., 1991. An analytical comparison of different formulations of the travelling salesman problem. Mathematical Programming, 52, 315–357. https://doi.org/10.1007/BF01582894
Padberg, M., Van Roy, T., Wolsey, L., 1984. Valid inequalities for fixed charge problems. Operations Research, 32, 842–861. https://doi.org/10.1287/opre.33.4.842
Pagel, C., Yates, C. A., 2022. Role of mathematical modelling in future pandemic response policy. BMJ, 378. https://doi.org/10.1136/bmj-2022-070615
Pahl-Wostl, C., 2007. The implications of complexity for integrated resources management. Environmental Modelling & Software, 22 (5), 561–569. https://doi.org/10.1016/j.envsoft.2005.12.024
Paivio, A., 1990. Mental representations: A dual coding approach. Oxford University Press.
Pajor, T., Uchoa, E., Werneck, R. F., 2018. A robust and scalable algorithm for the Steiner problem in graphs. Mathematical Programming Computation, 10 (1), 69–118. https://doi.org/10.1007/s12532-017-0123-4
Pang, G., Whitt, W., 2010. Two-parameter heavy-traffic limits for infinite-server queues. Queueing Systems, 65 (4), 325–364. https://doi.org/10.1007/s11134-010-9184-z
Pantuso, G., Fagerholt, K., Hvattum, L. M., 2014. A survey on maritime fleet size and mix problems. European Journal of Operational Research, 235 (2), 341–349. https://doi.org/10.1016/j.ejor.2013.04.058
Papadimitriou, C., Steiglitz, K., 1982. Combinatorial optimization: Algorithms and complexity. Prentice Hall.
Papadimitriou, M., Johnes, J., 2019. Does merging improve efficiency? A study of English universities. Studies in Higher Education, 44 (8), 1454–1474. https://doi.org/10.1080/03075079.2018.1450851
Pardalos, P. M., Vavasis, S. A., 1991. Quadratic programming with one negative eigenvalue is NP-hard. Journal of Global Optimization, 1 (1), 15–22. https://doi.org/10.1007/BF00120662
Parilina, E., Zaccour, G., 2015. Approximated cooperative equilibria for games played over event trees. Operations Research Letters, 43, 507–513. https://doi.org/10.1016/j.orl.2015.07.006
Parry, R., Mingers, J., 1991. Community operational research: Its context and its future. Omega, 19 (6), 577–586. https://doi.org/10.1016/0305-0483(91)90008-H
Pastor, J. T., Lovell, C. A. K., 2005. A global Malmquist productivity index. Economics Letters, 88 (2), 266–271. https://doi.org/10.1016/j.econlet.2005.02.013
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S., 2019. Pytorch: An imperative style, high-performance deep learning library. In Advances in neural information processing systems 32 (NeurIPS 2019) (pp. 8024–8035). Curran Associates, Inc.
Paucar-Caceres, A., Cavalcanti-Bandos, M. F., Quispe-Prieto, S. C., Huerta-Tantalean, L. N., Werner-Masters, K., 2022. Using soft systems methodology to align community projects with sustainability development in higher education stakeholders’ networks in a Brazilian university. Systems Research and Behavioral Science, 39 (4), 750–764. https://doi.org/10.1002/sres.2818
Paucar-Caceres, A., Espinosa, A., 2011. Management science methodologies in environmental management and sustainability: Discourses and applications. Journal of the Operational Research Society, 62 (9), 1601–1620. https://doi.org/10.1057/jors.2010.110
Paucar-Caceres, A., Thorpe, R., 2005. Mapping the structure of MBA programmes: A comparative study of the structure of accredited AMBA programmes in the United Kingdom. Journal of the Operational Research Society, 56 (1), 25–38. https://doi.org/10.1057/palgrave.jors.2601820
Paul, M., Knust, S., 2015. A classification scheme for integrated staff rostering and scheduling problems. RAIRO-Operations Research, 49 (2), 393–412. https://doi.org/10.1051/ro/2014052
Pearl, J., 1988. Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann.
Pecin, D., Pessoa, A., Poggi, M., Uchoa, E., 2017. Improved branch-cut-and-price for capacitated vehicle routing. Mathematical Programming Computation, 9 (1), 61–100. https://doi.org/10.1007/s12532-016-0108-8
Pedraza-Martinez, A. J., Van Wassenhove, L. N., 2016. Empirically grounded research in humanitarian operations management: The way forward. Journal of Operations Management, 45 (1), 1–10. https://doi.org/10.1016/j.jom.2016.06.003
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
Peeters, M., Kroon, L., 2008. Circulation of railway rolling stock: A branch-and-price approach. Computers & Operations Research, 35 (2), 538–556. https://doi.org/10.1016/j.cor.2006.03.019
Peeters, T. L. P. R., Salaga, S., Juravich, M., 2020. Matching and winning? The impact of upper and middle managers on firm performance in major league baseball. Management Science, 66 (6), 2735–2751. https://doi.org/10.1287/mnsc.2019.3323
Pelletier, S., Jabali, O., Laporte, G., 2016. 50th anniversary invited article—goods distribution with electric vehicles: Review and research perspectives. Transportation Science, 50 (1), 3–22. https://doi.org/10.1287/trsc.2015.0646
Pellizzoni, L., Ungaro, D., 2000. Technological risk, participation and deliberation. some results from three Italian case studies. Journal of Hazardous Materials, 78 (1–3), 261–280. https://doi.org/10.1016/s0304-3894(00)00226-0
Perakis, A. N., Papadakis, N. A., 1989. Minimal time vessel routing in a time-dependent environment. Transportation Science, 23 (4), 266–276. https://doi.org/10.1287/trsc.23.4.266
Perera, H., Davis, J., Swartz, T. B., 2016. Optimal lineups in Twenty20 cricket. Journal of Statistical Computation and Simulation, 86 (14), 2888–2900. https://doi.org/10.1080/00949655.2015.1136629
Perera, S. C., Sethi, S. P., 2022a. A survey of stochastic inventory models with fixed costs: Optimality of (s, S) and (s, S)-type policies–Continuous-time case. Production and Operations Management,https://doi.org/10.1111/poms.13819
Perera, S. C., Sethi, S. P., 2022b. A survey of stochastic inventory models with fixed costs: Optimality of (s, S) and (s, S)-type policies–Discrete-time case. Production and Operations Management,https://doi.org/10.1111/poms.13820
Pessoa, A., Sadykov, R., Uchoa, E., Vanderbeck, F., 2018. Automation and combination of linear-programming based stabilization techniques in column generation. INFORMS Journal on Computing, 30 (2), 339–360. https://doi.org/10.1287/ijoc.2017.0784
Pessoa, A., Sadykov, R., Uchoa, E., Vanderbeck, F., 2020. A generic exact solver for vehicle routing and related problems. Mathematical Programming, 183 (1), 483–523. https://doi.org/10.1007/s10107-020-01523-z
Petersen, J. D., Sölveling, G., Clarke, J.-P., Johnson, E. L., Shebalov, S., 2012. An optimization approach to airline integrated recovery. Transportation Science, 46 (4), 482–500. https://doi.org/10.1287/trsc.1120.0414
Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M. Z., Barrow, D. K., Ben Taieb, S., Bergmeir, C., Bessa, R. J., Bijak, J., Boylan, J. E., Browell, J., Carnevale, C., Castle, J. L., Cirillo, P., Clements, M. P., Cordeiro, C., Cyrino Oliveira, F. L., De Baets, S., Dokumentov, A., Ellison, J., Fiszeder, P., Franses, P. H., Frazier, D. T., Gilliland, M., Gönül, M. S., Goodwin, P., Grossi, L., Grushka-Cockayne, Y., Guidolin, M., Guidolin, M., Gunter, U., Guo, X., Guseo, R., Harvey, N., Hendry, D. F., Hollyman, R., Januschowski, T., Jeon, J., Jose, V. R. R., Kang, Y., Koehler, A. B., Kolassa, S., Kourentzes, N., Leva, S., Li, F., Litsiou, K., Makridakis, S., Martin, G. M., Martinez, A. B., Meeran, S., Modis, T., Nikolopoulos, K., Önkal, D., Paccagnini, A., Panagiotelis, A., Panapakidis, I., Pavía, J. M., Pedio, M., Pedregal, D. J., Pinson, P., Ramos, P., Rapach, D. E., Reade, J. J., Rostami-Tabar, B., Rubaszek, M., Sermpinis, G., Shang, H. L., Spiliotis, E., Syntetos, A. A., Talagala, P. D., Talagala, T. S., Tashman, L., Thomakos, D., Thorarinsdottir, T., Todini, E., Trapero Arenas, J. R., Wang, X., Winkler, R. L., Yusupova, A., Ziel, F., 2022. Forecasting: theory and practice. International Journal of Forecasting, 38 (3), 705–871. https://doi.org/10.1016/j.ijforecast.2021.11.001
Petropoulos, F., Fildes, R., Goodwin, P., 2016. Do ‘big losses’ in judgmental adjustments to statistical forecasts affect experts’ behaviour?European Journal of Operational Research, 249 (3), 842–852. https://doi.org/10.1016/j.ejor.2015.06.002
Petropoulos, F., Kourentzes, N., Nikolopoulos, K., Siemsen, E., 2018. Judgmental selection of forecasting models. Journal of Operations Management, 60, 34–46. https://doi.org/10.1016/j.jom.2018.05.005
Petropoulos, F., Siemsen, E., 2022. Forecast selection and representativeness. Management Science. https://doi.org/10.1287/mnsc.2022.4485
Petrosjan, L., 1977. Stable solutions of differential games with many participants. Viestnik of Leningrad University, 19, 46–52.
Petrosyan, L., Zaccour, G., 2018. Cooperative differential games with transferable payoffs. In T.Başar & G.Zaccour (Eds.), Handbook of dynamic game theory (pp. 1–38). Springer.
Petrovic, S., Burke, E., 2004. University timetabling. In J. Y.-T.Leung (Ed.), Handbook of scheduling: Algorithms, models, and performance analysis (p. 45). Chapman and Hall/CRC.
Petrovic, S., Parkin, J., Wrigley, D., 2020. Personnel scheduling considering employee well-being: Insights from case studies. InProceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021(Vol. I, pp. 10–23).
Petrovic, S., Yang, Y., Dror, M., 2007. Case-based selection of initialisation heuristics for metaheuristic examination timetabling. Expert Systems with Applications, 33 (3), 772–785. https://doi.org/10.1016/j.eswa.2006.06.017
Petruzzi, N. C., Dada, M., 1999. Pricing and the newsvendor problem: A review with extensions. Operations Research, 47 (2), 183–194. https://doi.org/10.1287/opre.47.2.183
Peykani, P., Farzipoor Saen, R., Seyed Esmaeili, F. S., Gheidar-Kheljani, J., 2021. Window data envelopment analysis approach: A review and bibliometric analysis. Expert Systems, 38 (7), e12721. https://doi.org/10.1111/exsy.12721
Peykani, P., Mohammadi, E., Saen, R. F., Sadjadi, S. J., Rostamy-Malkhalifeh, M., 2020. Data envelopment analysis and robust optimization: A review. Expert Systems, 37 (4), e12534. https://doi.org/10.1111/exsy.12534
Phelps, S., Köksalan, M., 2003. An interactive evolutionary metaheuristic for multiobjective combinatorial optimization. Management Science, 49 (12), 1726–1738. https://doi.org/10.1287/mnsc.49.12.1726.25117
Phillips, P. J., Hahn, C., Fontana, P., Yates, A., Greene, K. K., Broniatowski, D., Przybocki, M. A., 2021. Four principles of explainable artificial intelligence. Retrieved November 29, 2021, fromhttps://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=933399
Pidd, M., 2009. Tools for Thinking: modelling in management science. Wiley.
Pillac, V., Guéret, C., Medaglia, A. L., 2013. A parallel matheuristic for the technician routing and scheduling problem. Optimization Letters, 7, 1525–1535. https://doi.org/10.1007/s11590-012-0567-4
Pillay, N., 2016. A review of hyper-heuristics for educational timetabling. Annals of Operations Research, 239 (1), 3–38. https://doi.org/10.1007/s10479-014-1688-1
Pinçe, Ç., Ferguson, M., Toktay, B., 2016. Extracting maximum value from consumer returns: Allocating between remarketing and refurbishing for warranty claims. Manufacturing & Service Operations Management, 18 (4), 475–492. https://doi.org/10.1287/msom.2016.0584
Pinedo, M., 2012. Scheduling. Springer.
Pinzon-Salcedo, L. A., Torres-Cuello, M. A., 2022. Systems thinking concepts within a collaborative programme evaluation methodology: The Hermes Programme evaluation. Systems Research and Behavioral Science, 39 (4), 708–722. https://doi.org/10.1002/sres.2822
Pióro, M., Medhi, D., 2004. Routing, flow, and capacity design in communication and computer networks. Morgan Kaufman.
Pióro, M., Szentesi, A., Harmatos, J., Jüttner, A., 2000. On OSPF related network optimization problems. In8th IFIP Workshop on Performance Modelling and Evaluation of ATM & IP Networks. Ilkley, UK (pp. 70/1–70/14).
Pirabán, A., Guerrero, W. J., Labadie, N., 2019. Survey on blood supply chain management: Models and methods. Computers and Operations Research, 112, 104756. https://doi.org/10.1016/j.cor.2019.07.014
Pirkul, H., 1987. Efficient algorithms for the capacitated concentrator location problem. Computers & Operations Research, 14, 197–208. https://doi.org/10.1016/0305-0548(87)90022-0
Pishvaee, M. S., Rabbani, M., Torabi, S. A., 2011. A robust optimization approach to closed-loop supply chain network design under uncertainty. Applied Mathematical Modelling, 35 (2), 637–649. https://doi.org/10.1016/j.apm.2010.07.013
Pisinger, D., Ropke, S., 2007. A general heuristic for vehicle routing problems. Computers & Operations Research, 34 (8), 2403–2435. https://doi.org/10.1016/j.cor.2005.09.012
Pisinger, D., Sigurd, M., 2007. Using decomposition techniques and constraint programming for solving the two-dimensional bin-packing problem. INFORMS Journal on Computing, 19 (1), 36–51. https://doi.org/10.1287/ijoc.1060.0181
Plà, L. M., Sandars, D. L., Higgins, A. J., 2014. A perspective on operational research prospects for agriculture. Journal of the Operational Research Society, 65 (7), 1078–1089. https://doi.org/10.1057/jors.2013.45
Plastria, F., 2002. Continuous covering location problems. In Z.Drezner & H.Hamacher (Eds.), Facility location: Applications and theory (pp. 37–79). Springer.
Polzin, T., 2003. Algorithms for the Steiner problem in networks [Ph.D. thesis]. Saarland University, Saarbrücken, Germany.
Polzin, T., Vahdati Daneshmand, S., 2009. Approaches to the Steiner problem in networks. In J.Lerner, D.Wagner, K. A.Zweig (Eds.), Algorithmics of large and complex networks (pp. 81–103). Springer.
Poole, M. S., 2004. Central issues in the study of change and innovation. In M. S.Poole & A. H.Van de Ven (Eds.), Handbook of organizational change and innovation (pp. 3–31). Oxford University Press.
Poole, M. S., 2007. Generalization in process theories of communication. Communication Methods and Measures, 1 (3), 181–190. https://doi.org/10.1080/19312450701434979
Poropudas, J., Virtanen, K., 2010. Game-Theoretic validation and analysis of air combat simulation models. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 40 (5), 1057–1070. https://doi.org/10.1109/TSMCA.2010.2044997
Poropudas, J., Virtanen, K., 2011. Simulation metamodeling with dynamic Bayesian networks. European Journal of Operational Research, 214 (3), 644–655. https://doi.org/10.1016/j.ejor.2011.05.007
Portela, M. C. A. S., Thanassoulis, E., 2010. Malmquist-type indices in the presence of negative data: An application to bank branches. Journal of Banking & Finance, 34 (7), 1472–1483. https://doi.org/10.1016/j.jbankfin.2010.01.004
Portela, M. C. S., Camanho, A. S., Borges, D., 2012. Performance assessment of secondary schools: The snapshot of a country taken by DEA. Journal of the Operational Research Society, 63 (8), 1098–1115. https://doi.org/10.1057/jors.2011.114
Porteus, E. L., 1990. Stochastic inventory theory. In D. P.Heyman & M. J.Sobel (Eds.), Stochastic models. Vol. 2 of Handbooks in Operations Research and Management Science (pp. 605–652). Elsevier.
Porteus, E. L., 2002. Foundations of stochastic inventory theory. Stanford University Press.
Post, G., Ahmadi, S., Daskalaki, S., Kingston, J. H., Kyngas, J., Nurmi, C., Ranson, D., 2012. An XML format for benchmarks in high school timetabling. Annals of Operations Research, 194, 385–397. https://doi.org/10.1007/s10479-010-0699-9
Post, G., Di Gaspero, L., Kingston, J. H., McCollum, B., Schaerf, A., 2016. The third international timetabling competition. Annals of Operations Research, 239, 69–75. https://doi.org/10.1007/s10479-013-1340-5
Post, G., Kingston, J. H., Ahmadi, S., Daskalaki, S., Gogos, C., Kyngas, J., Nurmi, C., Musliu, N., Pillay, N., Santos, H., Schaerf, A., 2014. XHSTT: An XML archive for high school timetabling problems in different countries. Annals of Operations Research, 218, 295–301. https://doi.org/10.1007/s10479-011-1012-2
Posta, M., Ferland, J. A., Michelon, P., 2014. An exact cooperative method for the uncapacitated facility location problem. Mathematical Programming Computation, 6 (3), 199–231. https://doi.org/10.1007/s12532-014-0065-z
Pouwels, K. B., House, T., Pritchard, E., Robotham, J. V., Birrell, P. J., Gelman, A., Vihta, K.-D., Bowers, N., Boreham, I., Thomas, H., Lewis, J., Bell, I., Bell, J. I., Newton, J. N., Farrar, J., Diamond, I., Benton, P., Walker, A. S.2021. Community prevalence of SARS-CoV-2 in England from April to November, 2020: Results from the ONS coronavirus infection survey. The Lancet. Public Health, 6 (1), e30–e38. https://doi.org/10.1016/S2468-2667(20)30282-6
Powell, W. B., 2011. Approximate dynamic programming: Solving the curses of dimensionality. Wiley.
Powell, W. B., Sheffi, Y., 1983. The load planning problem of motor carriers: Problem description and a proposed solution approach. Transportation Research Part A: General, 17 (6), 471–480. https://doi.org/10.1016/0191-2607(83)90167-X
Powell, W. B., Sheffi, Y., 1989. Design and implementation of an interactive optimization system for network design in the motor carrier industry. Operations Research, 37, 12–29. https://doi.org/10.1287/opre.37.1.12
Power, D. J., Heavin, C., McDermott, J., Daly, M., 2018. Defining business analytics: An empirical approach. Journal of Business Analytics, 1 (1), 40–53. https://doi.org/10.1080/2573234X.2018.1507605
Pöyhönen, M., Vrolijk, H., Hämäläinen, R. P., 2001. Behavioral and procedural consequences of structural variation in value trees. European Journal of Operational Research, 134 (1), 216–227. https://doi.org/10.1016/S0377-2217(00)00255-1
Prékopa, A., 2013. Stochastic programming. Springer Science & Business Media.
Prim, R., 1957. Shortest connection networks and some generalizations. Bell System Technical Journal, 36, 1389–1401. https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
Prömel, H., Steger, A., 2012. The Steiner tree problem: A tour through graphs, algorithms, and complexity. Springer.
Pruhs, K., Woeginger, G. J., 2007. Approximation schemes for a class of subset selection problems. Theoretical Computer Science, 382 (2), 151–156. https://doi.org/10.1016/j.tcs.2007.03.006
Psaraftis, H. N., Kontovas, C. A., 2010. Balancing the economic and environmental performance of maritime transportation. Transportation Research Part D: Transport and Environment, 15 (8), 458–462. https://doi.org/10.1016/j.trd.2010.05.001
Psaraftis, H. N., Kontovas, C. A., 2013. Speed models for energy-efficient maritime transportation: A taxonomy and survey. Transportation Research Part C: Emerging Technologies, 26, 331–351. https://doi.org/10.1016/j.trc.2012.09.012
Psaraftis, H. N., Kontovas, C. A., 2014. Ship speed optimization: Concepts, models and combined speed-routing scenarios. Transportation Research Part C: Emerging Technologies, 44, 52–69. https://doi.org/10.1016/j.trc.2014.03.001
Pulleyblank, W., Dietrich, B., Forrest, J., Lougee-Heimer, R., 2000. Open source for optimization software. In:International Symposium for Mathematical Programming (ISMP).
Pyrgiotis, N., Malone, K. M., Odoni, A., 2013. Modelling delay propagation within an airport network. Transportation Research Part C: Emerging Technologies, 27, 60–75. https://doi.org/10.1016/j.trc.2011.05.017
Qi, X., 2015. Disruption management for liner shipping. In C.-Y.Lee & Q.Meng (Eds.), Handbook of ocean container transport logistics: Making global supply chains effective (pp. 231–249). Springer.
Qi, Y., Harrod, S., Psaraftis, H. N., Lang, M., 2022. Transport service selection and routing with carbon emissions and inventory costs consideration in the context of the belt and road initiative. Transportation Research Part E: Logistics and Transportation Review, 159, 102630. https://doi.org/10.1016/j.tre.2022.102630
Qin, Y., Wang, R., Vakharia, A. J., Chen, Y., Seref, M. M., 2011. The newsvendor problem: Review and directions for future research. European Journal of Operational Research, 213 (2), 361–374. https://doi.org/10.1016/j.ejor.2010.11.024
Qu, R., Pham, N., Bai, R., Kendall, G., 2015. Hybridising heuristics within an estimation distribution algorithm for examination timetabling. Applied Intelligence, 42 (4), 679–693. https://doi.org/10.1007/s10489-014-0615-0
Queiroga, E., Sadykov, R., Uchoa, E., 2021. A popmusic matheuristic for the capacitated vehicle routing problem. Computers & Operations Research, 136, 105475. https://doi.org/10.1016/j.cor.2021.105475
Queiroga, E., Sadykov, R., Uchoa, E., Vidal, T., 2022. 10,000 optimal CVRP solutions for testing machine learning based heuristics. InAAAI-22 Workshop on Machine Learning for Operations Research (ML4OR)(pp. 1–2).
Raack, C., Koster, A. M., Orlowski, S., Wessäly, R., 2011. On cut-based inequalities for capacitated network design polyhedra. Networks, 57 (2), 141–156. https://doi.org/10.1002/net.20395
Rad, S. R., Roy, O., 2021. Deliberation, single-peakedness, and coherent aggregation. The American Political Science Review, 115 (2), 629–648. https://doi.org/10.1017/S0003055420001045
Rahmaniani, R., Crainic, T. G., Gendreau, M., Rei, W., 2017. The Benders decomposition algorithm: A literature review. European Journal of Operational Research, 259 (3), 801–817. https://doi.org/10.1016/j.ejor.2016.12.005
Rajagopalan, R., 2020. Immersive systemic knowing: Advancing systems thinking beyond rational analysis. Springer.
Ralphs, T., Bulut, A., Vigerske, S., 2022. GiMPy. https://projects.coin-or.org/Gimpy
Ralphs, T. K., Guzelsoy, M., 2005. The Symphony callable library for mixed integer programming. In B.Golden, S.Raghavan, E.Wasil (Eds.), The next wave in computing, optimization, and decision technologies (pp. 61–76). Springer US.
Ram Mohan Rao, P., Murali Krishna, S., Siva Kumar, A. P., 2018. Privacy preservation techniques in big data analytics: A survey. Journal of Big Data, 5 (1), 1–12. https://doi.org/10.1186/s40537-018-0141-8
Ramsey, F. P., 1931. Truth and probability. In R. B.Braithwaite(Ed.), The foundations of mathematics and other logical essays (Ch. 7, pp. 156–198). Routledge and Kegan Paul.
Rancourt, M., Cordeau, J., Laporte, G., Watkins, B., 2015. Tactical network planning for food aid distribution in kenya. Computers & Operations Research, 56, 68–83. https://doi.org/10.1016/j.cor.2014.10.018
Ranyard, J., Hopes, J., Murray, E., 2021. Reinvigorating soft OR for practitioners: Report to HORAF.63rd Conference of the UK Operational Research Society (OR63).
Ranyard, J. C., Fildes, R., Hu, T.-I., 2015. Reassessing the scope of OR practice: The influences of problem structuring methods and the analytics movement. European Journal of Operational Research, 245 (1), 1–13. https://doi.org/10.1016/j.ejor.2015.01.058
Rasmussen, C. E., Williams, C. K. I., 2005. Gaussian processes for machine learning. The MIT Press.
Rasmussen, R. V., Trick, M. A., 2008. Round robin scheduling–A survey. European Journal of Operational Research, 188 (3), 617–636. https://doi.org/10.1016/j.ejor.2007.05.046
Rawls, C. G., Turnquist, M. A., 2010. Pre-positioning of emergency supplies for disaster response. Transportation Research Part B: Methodological, 44 (4), 521–534. https://doi.org/10.1016/j.trb.2009.08.003
Rawls, C. G., Turnquist, M. A., 2011. Pre-positioning planning for emergency response with service quality constraints. OR Spectrum, 33 (3), 481–498. https://doi.org/10.1007/s00291-011-0248-1
Rawls, J., 1971. A theory of justice. Harvard University Press.
Rea, D., Froehle, C., Masterson, S., Stettler, B., Fermann, G., Pancioli, A., 2021. Unequal but fair: Incorporating distributive justice in operational allocation models. Production and Operations Management, 30, 2304–2320. https://doi.org/10.1111/poms.13369
Red Hat. 2022. Optaplanner. https://www.optaplanner.org/
Reddie, A. W., Goldblum, B. L., Lakkaraju, K., Reinhardt, J., Nacht, M., Epifanovskaya, L., 2018. Next-generation wargames. Science, 362 (6421), 1362–1364. https://doi.org/10.1126/science.aav2135
Reed, J., 2009. The G/GI/N queue in the halfin–whitt regime. The Annals of Applied Probability, 19 (6), 2211–2269. https://doi.org/10.1214/09-AAP609
Reed, S., Campbell, A. M., Thomas, B. W., 2022. Impact of autonomous vehicle assisted last-mile delivery in urban to rural settings. Transportation Science, 56 (6), 1530–1548. https://doi.org/10.1287/trsc.2022.1142
Rehfeldt, D., 2021. Faster algorithms for steiner tree and related problems: From theory to practice [Ph.D. thesis]. Technische Universität Berlin.
Rehfeldt, D., Koch, T., 2021. Implications, conflicts, and reductions for Steiner trees. In Singh M. & Williamson D. P. (Eds.)Integer Programming and Combinatorial Optimization - 22nd International Conference, IPCO 2021, Atlanta, GA, USA, May 19–21, 2021, Proceedings. Vol. 12707 of Lecture Notes in Computer Science (pp. 473–487). Springer
Reichert, P., Langhans, S. D., Lienert, J., Schuwirth, N., 2015. The conceptual foundation of environmental decision support. Journal of Environmental Management, 154, 316–332. https://doi.org/10.1016/j.jenvman.2015.01.053
Reinhardt, L. B., Pisinger, D., 2012. A branch and cut algorithm for the container shipping network design problem. Flexible Services and Manufacturing Journal, 24 (3), 349–374. https://doi.org/10.1007/s10696-011-9105-4
Ren, H., Huang, T., 2022. Opaque selling and inventory management in vertically differentiated markets. Manufacturing & Service Operations Management, 24 (5), 2543–2557. https://doi.org/10.1287/msom.2021.1041
Ren, X., Jiang, C., Khoveyni, M., Guan, Z., Yang, G., 2021. A review of DEA methods to identify and measure congestion. Journal of Management Science and Engineering, 6 (4), 345–362. https://doi.org/10.1016/j.jmse.2021.05.003
Resnick, S. I., 2007. Heavy-tail phenomena: Probabilistic and statistical modeling. Springer Science & Business Media.
Ribeiro, C. C., 2012. Sports scheduling: Problems and applications. International Transactions in Operational Research, 19 (2), 201–226. https://doi.org/10.1111/j.1475-3995.2011.00819.x
Richardson, H. S., Weithman, P. J. (Eds.), 1999. The Philosophy of Rawls (Vol. 5). Garland.
Righini, G., Salani, M., 2008. New dynamic programming algorithms for the resource constrained elementary shortest path problem. Networks, 51 (3), 155–170. https://doi.org/10.1002/net.20212
Rintamäki, T., Spence, M. T., Saarijärvi, H., Joensuu, J., Yrjölä, M., 2021. Customers’ perceptions of returning items purchased online: Planned versus unplanned product returners. International Journal of Physical Distribution & Logistics Management, 51 (4), 403–422. https://doi.org/10.1108/IJPDLM-10-2019-0302
Rios Insua, D., Couce-Vieira, A., Rubio, J. A., Pieters, W., Labunets, K., G Rasines, D., 2021. An adversarial risk analysis framework for cybersecurity. Risk Analysis, 41 (1), 16–36. https://doi.org/10.1111/risa.13331
Ritchie, C., Taket, A., Bryant, J. (Eds.), 1994. Community works: 26 case studies showing community operational research in action. Pavic Press.
Rittel, H. W. J., Webber, M. M., 1973. Dilemmas in a general theory of planning. Policy Sciences, 4 (2), 155–169. https://doi.org/10.1007/BF01405730
Robenek, T., Azadeh, S. S., Maknoona, Y., Bierlaire, M., 2017. Hybrid cyclicity: Combining the benefits of cyclic and non-cyclic timetables. Transportation Research Part C: Emerging Technologies, 75, 228–253. https://doi.org/10.1016/j.trc.2016.12.015
Roberti, R., Ruthmair, M., 2021. Exact methods for the traveling salesman problem with drone. Transportation Science, 55 (2), 315–335. https://doi.org/10.1287/trsc.2020.1017
Robinson, A., Robinson, M., 1994. On the tabletop improvement experiments of Japan. Production and Operations Management, 3 (3), 201–217. https://doi.org/10.1111/j.1937-5956.1994.tb00120.x
Robinson, S., 2014. Simulation: The practice of model development and use. Palgrave Macmillan.
Robinson, S., 2020. Conceptual modelling for simulation: Progress and grand challenges. Journal of Simulation, 14 (1), 1–20. https://doi.org/10.1080/17477778.2019.1604466
Robinson, S. L., 2008. Conceptual modelling for simulation Part I: Definition and requirements. Journal of the Operational Research Society, 59 (3), 278–290. https://doi.org/10.1057/palgrave.jors.2602368
Rocha, M., Oliveira, J. F., Carravilla, M. A., 2013. Cyclic staff scheduling: Optimization models for some real-life problems. Journal of Scheduling, 16 (2), 231–242. https://doi.org/10.1007/s10951-012-0299-4
Rockafellar, R. T., Uryasev, S., 2002. Conditional value-at-risk for general loss distributions. Journal of Banking & Finance, 26 (7), 1443–1471. https://doi.org/10.1016/S0378-4266(02)00271-6
Rockafellar, R. T., Uryasev, S., et al., 2000. Optimization of conditional value-at-risk. Journal of Risk, 2, 21–42. https://doi.org/10.21314/JOR.2000.038
Rockafellar, R. T., Wets, R. J.-B., 1991. Scenarios and policy aggregation in optimization under uncertainty. Mathematics of Operations Research, 16 (1), 119–147. https://doi.org/10.1287/moor.16.1.119
Rogers, D. S., Tibben-Lembke, R., 2001. An examination of reverse logistics practices. Journal of Business Logistics, 22 (2), 129–148. https://doi.org/10.1002/j.2158-1592.2001.tb00007.x
Romero, J. A., Abad, C., 2022. Cloud-based big data analytics integration with ERP platforms. Management Decision, 60 (12), 3416–3437. https://doi.org/10.1108/MD-07-2021-0872
Rosenbaum, D. T., 2004. Measuring how NBA players help their teams win. Retrieved November 1, 2022. http://www.82games.com/comm30.htm.
Rosenberger, J. M., Johnson, E. L., Nemhauser, G. L., 2003. Rerouting aircraft for airline recovery. Transportation Science, 37 (4), 408–421. https://doi.org/10.1287/trsc.37.4.408.23271
Rosenhead, J., 1986. Custom and practice. Journal of the Operational Research Society, 37 (4), 335–343. https://doi.org/10.1057/jors.1986.61
Rosenhead, J. (Ed.), 1989. Rational analysis for a problematic world: Problem structuring methods for complexity, uncertainty and conflict. Wiley.
Rosenhead, J., 1993. Enabling analysis: Across the developmental divide. Systems Practice, 6 (2), 117–138. https://doi.org/10.1007/BF01062247
Rosenhead, J., 1996. What’s the problem? An introduction to problem structuring methods. Interfaces, 26 (6), 117–131. https://doi.org/10.1287/inte.26.6.117
Rosenhead, J., 2006. Past, present and future of problem structuring methods. Journal of the Operational Research Society, 57 (7), 759–765. https://doi.org/10.1057/palgrave.jors.2602206
Rosenhead, J., 2013. Book review of Johnson. In P.Michael (Ed.) 2012 community-Based operations research: Decision modeling for local impact and diverse populations. Interfaces (Vol. 43, pp. 609–610).
Rosenhead, J., Mingers, J. (Eds.), 2001. Rational analysis for a problematic world revisited: Problem structuring methods for complexity, uncertainty and conflict (2nd ed.). Wiley.
Rosenhead, J., White, L., 1996. Nuclear fusion: Some linked case studies in community operational research. Journal of the Operational Research Society, 47 (4), 479–489. https://doi.org/10.2307/3010725
Rosling, K., 1989. Optimal inventory policies for assembly systems under random demands. Operations Research, 37 (4), 565–579. https://doi.org/10.1287/opre.37.4.565
Ross, S. M., 1983. Introduction to stochastic dynamic programming. Academic Press.
Roth, A., Singhal, J., Singhal, K., Tang, C. S., 2016. Knowledge creation and dissemination in operations and supply chain management. International Journal of Operations & Production Management, 25 (9), 1473–1488. https://doi.org/10.1111/poms.12590
Rother, M., Shook, J., 1999. Learning to see: Value stream mapping to add value and eliminate muda. The Lean Enterprise Institute.
Rothstein, M., 1971. An airline overbooking model. Transportation Science, 5 (2), 180–192. https://doi.org/10.1287/trsc.5.2.180
Roundy, R., 1985. 98%-effective integer-ratio lot-sizing for one-warehouse multi-retailer systems. Management Science, 31 (11), 1416–1430. https://doi.org/10.1287/mnsc.31.11.1416
Roundy, R., 1986. A 98%-effective lot-sizing rule for a multi-product, multi-stage production/inventory system. Mathematics of Operations Research, 11 (4), 699–727. https://doi.org/10.1287/moor.11.4.699
Rouwette, E. A. J. A., 2016. The impact of group model building on behavior. In M.Kunc, J.Malpass, L.White (Eds.), Behavioral operational research: Theory, methodology and practice (pp. 213–241). Palgrave Macmillan.
Rouwette, E. A. J. A., Korzilius, H., Vennix, J. A. M., Jacobs, E., 2010. Modeling as persuasion: The impact of group model building on attitudes and behavior. System Dynamics Review, 27 (1), 1–21. https://doi.org/10.1002/sdr.441
Rowe, G., Wright, G., 1999. The delphi technique as a forecasting tool: Issues and analysis. International Journal of Forecasting, 15 (4), 353–375. https://doi.org/10.1016/S0169-2070(99)00018-7
Roy, B., 1993. Decision science or decision-aid science?European Journal of Operational Research, 66 (2), 184–203. https://doi.org/10.1016/0377-2217(93)90312-B
Roy, B., 1996. Multicriteria methodology for decision aiding. In Nonconvex optimization and its applications (Vol. 12). Springer-Verlag.
Roy, B., 2005. Paradigms and challenges. In S.Greco, M.Ehrgott, J. R.Figueira (Eds.), Multiple criteria decision analysis: State of the art surveys (pp. 3–24). Springer-Verlag.
Roy, B., Słowiński, R., 2013. Questions guiding the choice of a multicriteria decision aiding method. EURO Journal on Decision Processes, 1 (1), 69–97. https://doi.org/10.1007/s40070-013-0004-7
Royset, J. O., Carlyle, W. M., Wood, R. K., 2009. Routing military aircraft with a constrained shortest-path algorithm. Military Operations Research, 14 (3), 31–52. https://doi.org/10.5711/morj.14.3.31
Royston, G., 2009. One hundred years of operational research in Health—UK 1948–2048. Journal of the Operational Research Society, 60 (Supplement 1), s169–s179. https://doi.org/10.1057/jors.2009.14
RSAS. 2020. The prize in economic sciences 2020. Press release, October 12, Royal Swedish Academy of Sciences.
Rubinstein, A., 1982. Perfect equilibrium in a bargaining model. Econometrica, 50, 97–109. https://doi.org/10.2307/1912531
Ruf, M., Cordeau, J. F., 2021. Adaptive large neighborhood search for integrated planning in railroad classification yards. Transportation Research Part B: Methodological, 150, 26–51. https://doi.org/10.1016/j.trb.2021.05.012
Ruibal, C., Mazumdar, M., 2008. Forecasting the mean and the variance of electricity prices in deregulated markets. IEEE Transactions on Power Systems, 23 (1), 25–32. https://doi.org/10.1109/TPWRS.2007.913195
Ruivo, P., Johansson, B., Sarker, S., Oliveira, T., 2020. The relationship between ERP capabilities, use, and value. Computers in Industry, 117, 103209. https://doi.org/10.1016/j.compind.2020.103209
Ruiz-Tagle, A., Lopez Droguett, E., Groth, K. M., 2022. Exploiting the capabilities of Bayesian networks for engineering risk assessment: Causal reasoning through interventions. Risk Analysis, 42 (6), 1306–1324. https://doi.org/10.1111/risa.13711
Rumelhart, D. E., Hinton, G. E., Williams, R. J., 1986. Learning representations by back-propagating errors. Nature, 323 (6088), 533–536. https://doi.org/10.1038/323533a0
Russell, C., Kusner, M. J., Loftus, J. R., Silva, R., 2017. When worlds collide: Integrating different counterfactual assumptions in fairness. InProceedings of 31st International Conference on Neural Information Processing Systems(pp. 6417–6426).
Russell, S., 1998. Learning agents for uncertain environments (extended abstract). In P. L. Bartlett & Y. Mansour (Eds.),Proceedings of the Eleventh Annual Conference on Computational Learning Theory, COLT 1998, Madison, Wisconsin, USA, July 24–26, 1998. ACM (pp. 101–103). https://doi.org/10.1145/279943.279964
Saaty, T., 1977. A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15 (3), 234–281. https://doi.org/10.1016/0022-2496(77)90033-5
Sadykov, R., 2022. Academic webpage. Retrieved September 16, 2022. https://www.math.u-bordeaux.fr/∼rsadykov/.
Sadykov, R., Uchoa, E., Pessoa, A., 2021. A bucket graph–based labeling algorithm with application to vehicle routing. Transportation Science, 55 (1), 4–28. https://doi.org/10.1287/trsc.2020.0985
Sadykov, R., Vanderbeck, F., Pessoa, A., Tahiri, I., Uchoa, E., 2019. Primal heuristics for branch and price: The assets of diving methods. INFORMS Journal on Computing, 31 (2), 251–267. https://doi.org/10.1287/ijoc.2018.0822
Şahin, G., Süral, H., 2007. A review of hierarchical facility location models. Computers & Operations Research, 34 (8), 2310–2331. https://doi.org/10.1016/j.cor.2005.09.005
Sahinidis, N., 1996. BARON: A general purpose global optimization software package. Journal of Global Optimization, 8, 201–205. https://doi.org/10.1007/BF00138693
Salahi, M., Toloo, M., Torabi, N., 2021. A new robust optimization approach to common weights formulation in DEA. Journal of the Operational Research Society, 72 (6), 1390–1402. https://doi.org/10.1080/01605682.2020.1718016
Salo, A., Keisler, J., Morton, A., 2011. Portfolio decision analysis: Improved methods for resource allocation. In International series in operations research and management science (Vol. 162). Springer-Verlag.
Salo, A., Punkka, A., 2011. Ranking intervals and dominance relations for Ratio-Based efficiency analysis. Management Science, 57 (1), 200–214. https://doi.org/10.1287/mnsc.1100.1265
Salo, A., Tosoni, E., Roponen, J., Bunn, D. W., 2022. Using cross-impact analysis for probabilistic risk assessment. Futures & Foresight Science, 4 (2), e2103. https://doi.org/10.1002/ffo2.103
Samorani, M., Alptekinoğlu, A., Messinger, P. R., 2019. Product return episodes in retailing. Service Science, 11 (4), 263–278. https://doi.org/10.1287/serv.2019.0250
Sampaio, A., Savelsbergh, M., Veelenturf, L. P., Van Woensel, T., 2020. Delivery systems with crowd-sourced drivers: A pickup and delivery problem with transfers. Networks, 76 (2), 232–255. https://doi.org/10.1002/net.21963
Samuel, A. L., 1959. Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 3 (3), 210–229. https://doi.org/10.1147/rd.33.0210
Samuelson, W., 2014. Auctions: Advances in theory and practice. In K.Chatterjee and W.Samuelson (Eds.), Game theory and business applications (pp. 323–366). Springer.
Sandholm, W., 2010. Population games and evolutionary dynamics. MIT Press.
Santibanez Gonzalez, E. D., Koh, L., Leung, J., 2019. Towards a circular economy production system: trends and challenges for operations management. International Journal of Production Research, 57 (23), 7209–7218. https://doi.org/10.1080/00207543.2019.1656844
Sarimveis, H., Patrinos, P., Tarantilis, C. D., Kiranoudis, C. T., 2008. Dynamic modeling and control of supply chain systems: A review. Computers & Operations Research, 35 (11), 3530–3561. https://doi.org/10.1016/j.cor.2007.01.017
Sartori, C. S., Gandra, V., Çalık, H., Smet, P., 2021. Production scheduling with stock- and staff-related restrictions. In M.Mes, E.Lalla-Ruiz, S.Voβ (Eds.), Computational logistics (pp. 142–162). Springer.
Savage, L., 1954. The foundations of statistics. John Wiley & Sons.
Savaskan, R. C., Van Wassenhove, L. N., 2006. Reverse channel design: The case of competing retailers. Management Science, 52 (1), 1–14. https://doi.org/10.1287/mnsc.1050.0454
Savelsbergh, M., 1994. Preprocessing and probing techniques for mixed integer programming problems. ORSA Journal on Computing, 6, 445–454. https://doi.org/10.1287/ijoc.6.4.445
Savelsbergh, M., Van Woensel, T., 2016. 50th anniversary invited article—city logistics: Challenges and opportunities. Transportation Science, 50 (2), 579–590. https://doi.org/10.1287/trsc.2016.0675
Sawaragi, Y., Nakayama, H., Tanino, T., 1985. Theory of multiobjective optimization. Academic Press.
Saxena, N. A., Huang, K., DeFilippis, E., Radanovic, G., Parkes, D. C., Liu, Y., 2020. How do fairness definitions fare? Testing public attitudes towards three algorithmic definitions of fairness in loan allocations. Artificial Intelligence, 283, 103238. https://doi.org/10.1016/j.artint.2020.103238
Scala, N. M., HowardIIJ. P. (Eds.), 2020. Handbook of military and defense operations research. CRC Press.
Scarf, H., 1959. Bayes solutions of the statistical inventory problem. The Annals of Mathematical Statistics, 30 (2), 490–508. https://doi.org/10.1214/aoms/1177706264
Scarf, H., 1960a. The optimality of (S, s) policies in the dynamic inventory problem. In Mathematical methods in the social sciences (pp. 196–202). Stanford University Press.
Scarf, H. E., 1960b. Some remarks on Bayes solutions to the inventory problem. Naval Research Logistics Quarterly, 7 (4), 591–596. https://doi.org/10.1002/nav.3800070428
Scarf, P., Parma, R., McHale, I., 2019. On outcome uncertainty and scoring rates in sport: The case of international rugby union. European Journal of Operational Research, 273 (2), 721–730. https://doi.org/10.1016/j.ejor.2018.08.021
Scarf, P., Yusof, M. M., Bilbao, M., 2009. A numerical study of designs for sporting contests. European Journal of Operational Research, 198 (1), 190–198. https://doi.org/10.1016/j.ejor.2008.07.029
Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., Monfardini, G., 2009. The graph neural network model. IEEE Transactions on Neural Networks, 20 (1), 61–80. https://doi.org/10.1109/TNN.2008.2005605
Schaefer, A. J., Johnson, E. L., Kleywegt, A. J., Nemhauser, G. L., 2005. Airline crew scheduling under uncertainty. Transportation Science, 39 (3), 340–348. https://doi.org/10.1287/trsc.1040.0091
Scheithauer, G., 2017. Introduction to cutting and packing optimization: Problems, modeling approaches, solution methods. In International series in operations research & management science. Springer. https://books.google.co.uk/books?id=FlM7DwAAQBAJ
Schiffer, M., Boysen, N., Klein, P., Laporte, G., Pavone, M., 2022. Optimal picking policies in e-commerce warehouses. Management Science, 68 (10), 7497–7517. https://doi.org/10.1287/mnsc.2021.4275
Schlkopf, B., Smola, A. J., Bach, F., 2018. Learning with kernels: Support vector machines, regularization, optimization, and beyond.The MIT Press.
Schmenner, R. W., 2004. Service businesses and productivity. Decision Sciences, 35 (3), 333–347. https://doi.org/10.1111/j.0011-7315.2004.02558.x
Schöbel, A., 2012. Line planning in public transportation: Models and methods. OR Spectrum, 34, 491–510. https://doi.org/10.1007/s00291-011-0251-6
Scholten, L., Schuwirth, N., Reichert, P., Lienert, J., 2015. Tackling uncertainty in multi-criteria decision analysis–An application to water supply infrastructure planning. European Journal of Operational Research, 242 (1), 243–260. https://doi.org/10.1016/j.ejor.2014.09.044
Schrijver, A., 1986. Theory of linear and integer programming. Wiley.
Schrijver, A., 1998. Theory of linear and integer programming. John Wiley & Sons.
Schrijver, A., 2002. On the history of the transportation and maximum flow problems. Mathematical Programming, 91 (3), 437–445. https://doi.org/10.1007/s101070100259
Schrijver, A., 2003. Combinatorial optimization–Polyhedra and efficiency. Springer.
Schrijver, A., 2005. On the history of combinatorial optimization (till 1960). In K.Aardal, G. L.Nemhauser, R.Weismantel(Eds.), Handbooks in operations research and management science (Vol. 12, pp. 1–68). Elsevier.
Schummer, J., Vohra, R. V., 2003. Auctions for procuring options. Operations Research, 51 (1), 41–51. https://doi.org/10.1287/opre.51.1.41.12804
Schütz, T., Stanley-Lockman, Z., 2017. Smart logistics for future armed forces. Brief 30, European Union Institute for Security Studies.
Schwartz, E. S., Trigeorgis, L., 2004. Real options and investment under uncertainty: Classical readings and recent contributions. MIT Press.
Schwetschenau, S. E., VanBriesen, J. M., Cohon, J. L., 2019. Integrated simulation and optimization models for treatment plant placement in drinking water systems. Journal of Water Resources Planning and Management, 145 (11), 04019047. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001106
Scott, R. J., Cavana, R. Y., Cameron, D., 2013. Evaluating immediate and long-term impacts of qualitative group model building workshops on participants’ mental models. System Dynamics Review, 29 (4), 216–236. https://doi.org/10.1002/sdr.1505
SDG. 2022. Sustainable development goalsu. Retrieved October 24, 2022. https://sdgs.un.org/goals.
Secomandi, N., 2001. A rollout policy for the vehicle routing problem with stochastic demands. Operations Research, 49 (5), 796–802. https://doi.org/10.1287/opre.49.5.796.10608
See, K. F., Md Hamzah, N., Yu, M.-M., 2021. Metafrontier efficiency analysis for hospital pharmacy services using dynamic network DEA framework. Socio-Economic Planning Sciences, 78, 101044. https://doi.org/10.1016/j.seps.2021.101044
Seidl, A., Kaplan, E. H., Caulkins, J. P., Wrzaczek, S., Feichtinger, G., 2016. Optimal control of a terror queue. European Journal of Operational Research, 248 (1), 246–256. https://doi.org/10.1016/j.ejor.2015.07.010
Sein, M. K., Henfridsson, O., Purao, S., Rossi, M., Lindgren, R., 2011. Action design research. MIS Quarterly, 35 (1), 37–56. https://doi.org/10.2307/23043488
Selten, R., 1975. Reexamination of the perfectness concept for equilibrium points in extensive games. International Journal of Game Theory, 4 (1), 25–55. https://doi.org/10.1007/BF01766400
Serfozo, R., 1999. Introduction to stochastic networks. Springer-Verlag.
Servranckx, T., Vanhoucke, M., 2019a. Strategies for project scheduling with alternative subgraphs under uncertainty: Similar and dissimilar sets of schedules. European Journal of Operational Research, 279 (1), 38–53. https://doi.org/10.1016/j.ejor.2019.05.023
Servranckx, T., Vanhoucke, M., 2019b. A tabu search procedure for the resource-constrained project scheduling problem with alternative subgraphs. European Journal of Operational Research, 273 (3), 841–860. https://doi.org/10.1016/j.ejor.2018.09.005
Sethi, S. P., Cheng, F., 1997. Optimality of (s, s) policies in inventory models with markovian demand. Operations Research, 45 (6), 931–939. https://doi.org/10.1287/opre.45.6.931
Sethi, S. P., Thompson, G. L., 1970. Applications of mathematical control theory to finance: Modeling simple dynamic cash balance problems. Journal of Financial and Quantitative Analysis, 5 (4-5), 381–394. https://doi.org/10.2307/2330038
Sethi, S. P., Thompson, G. L., 2009. Optimal control theory: Applications to management science and economics. Springer.
Shaabani, H., 2022. A literature review of the perishable inventory routing problem. The Asian Journal of Shipping and Logistics, 38 (3), 143–161. https://doi.org/10.1016/j.ajsl.2022.05.002
Shah, W. U. H., Hao, G., Yan, H., Yasmeen, R., Padda, I. U. H., Ullah, A., 2022. The impact of trade, financial development and government integrity on energy efficiency: An analysis from G7-Countries. Energy, 255 (1), 124507. https://doi.org/10.1016/j.energy.2022.124507
Shamir, R., 1987. The efficiency of the simplex method: A survey. Management Science, 33 (3), 301–334. https://doi.org/10.1287/mnsc.33.3.301
Shang, K. H., Song, J.-S., 2003. Newsvendor bounds and heuristic for optimal policies in serial supply chains. Management Science, 49 (5), 618–638. https://doi.org/10.1287/mnsc.49.5.618.15147
Shang, K. H., Song, J.-S., Zhou, S. X., 2023. Single-stage approximations of multiechelon inventory models. In J.-S.Song (Ed.), Research handbook on inventory management. Edward Elgar Publishing.
Shapiro, A., 2003. Monte Carlo sampling methods. In A.Ruszczynski & A.Shapiro (Eds.), Handbooks in operations research and management science (pp. 353–425). Horth-Holland.
Shapiro, A., Dentcheva, D., Ruszczyński, A., 2021. Lectures on stochastic programming: Modeling and theory (3rd ed.). SIAM.
Shapley, L., 1953. A value for n-person games. In H.Kuhn & A.Tucker (Eds.), Contributions to the theory of games II (pp. 307–317). Princeton University Press.
Sharp, J. A., Meng, W., Liu, W., 2007. A modified slacks-based measure model for data envelopment analysis with ‘natural’ negative outputs and inputs. Journal of the Operational Research Society, 58 (12), 1672–1677. https://doi.org/10.1057/palgrave.jors.2602318
Shaw, D., Westcombe, M., Hodgkin, J., Montibeller, G., 2004. Problem structuring methods for large group interventions. Journal of the Operational Research Society, 55 (5), 453–463. https://doi.org/10.1057/palgrave.jors.2601712
Shaw, K., Irfan, M., Shankar, R., Yadav, S. S., 2016. Low carbon chance constrained supply chain network design problem: A benders decomposition based approach. Computers & Industrial Engineering, 98, 483–497. https://doi.org/10.1016/j.cie.2016.06.011
Sherali, H., 1984. A multiple leader Stackelberg model and analysis. Operations Research, 32 (2), 229–476. https://doi.org/10.1287/opre.32.2.390
Sherali, H., Adams, W., 1990. A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM Journal on Discrete Mathematics, 3, 411–430. https://doi.org/10.1137/0403036
Sherali, H. D., Carter, T. B., Hobeika, A. G., 1991. A location-allocation model and algorithm for evacuation planning under hurricane/flood conditions. Transportation Research Part B: Methodological, 25 (6), 439–452. https://doi.org/10.1016/0191-2615(91)90037-J
Sheu, J.-B., 2014. Post-disaster relief–service centralized logistics distribution with survivor resilience maximization. Transportation Research Part B: Methodological, 68, 288–314. https://doi.org/10.1016/j.trb.2014.06.016
Shi, C., 2023. Approximation algorithms for stochastic inventory systems. In J.-S.Song (Ed.), Research handbook on inventory management. Edward Elgar Publishing.
Shi, Z., Wang, G., 2018. Integration of big-data ERP and business analytics (BA). The Journal of High Technology Management Research, 29 (2), 141–150. https://doi.org/10.1016/j.hitech.2018.09.004
Shipley, M. F., Coy, S. P., Shipley, J. B., 2018. Utilizing statistical significance in fuzzy interval-valued evidence sets for assessing artificial reef structure impact. Journal of the Operational Research Society, 69 (6), 905–918. https://doi.org/10.1057/s41274-017-0277-5
Shneiderman, B., 1996. The eyes have it: A task by data type taxonomy for information visualizations. InProceedings 1996 IEEE Symposium on Visual Languages(pp. 336–343).
Shor, N. Z., 1977. Cut-off method with space extension in convex programming problems. Cybernetics, 13 (1), 94–96. https://doi.org/10.1007/BF01071394
Shtub, A., Bard, J. F., Globerson, S., 2004. Project management: Engineering, technology and implementation (15th ed.). Pearson Custom Publishing.
Si, J., Barto, A. G., Powell, W. B., Wunsch, D., 2004. Handbook of learning and approximate dynamic programming. John Wiley & Sons.
Siegrist, M., Árvai, J., 2020. Risk perception: Reflections on 40 years of research. Risk Analysis, 40 (S1), 2191–2206. https://doi.org/10.1111/risa.13599
Silva, E., Oliveira, J. F., Wäscher, G., 2016. The pallet loading problem: A review of solution methods and computational experiments. International Transactions in Operational Research, 23 (1–2), 147–172. https://doi.org/10.1111/itor.12099
Silver, E. A., 2004. An overview of heuristic solution methods. Journal of the Operational Research Society, 55 (9), 936–956. https://doi.org/10.1057/palgrave.jors.2601758
Silver, E. A., Meal, C., 1973. A heuristic for selecting lot size quantities for the case of a deterministic time-varying demand rate and discrete opportunities for replenishment. Production and Inventory Management, 2, 64–74.
Silver, E. A., Pyke, D. F., Petterson, R., 1988. Inventory management and production planning and scheduling. John Wiley & Sons.
Silver, E. A., Victor, R., Vidal, V., de Werra, D., 1980. A tutorial on heuristic methods. European Journal of Operational Research, 5 (3), 153–162. https://doi.org/10.1016/0377-2217(80)90084-3
Simantics System Dynamics. 2017. SysDyn. http://sysdyn.simantics.org/
Simão, H. P., Day, J., George, A. P., Gifford, T., Nienow, J., Powell, W. B., 2009. An approximate dynamic programming algorithm for large-scale fleet management: A case application. Transportation Science, 43 (2), 178–197. https://doi.org/10.1287/trsc.1080.0238
Simar, L., Wilson, P. W., 2011. Two-stage DEA: Caveat emptor. Journal of Productivity Analysis, 36 (2), 205–218. https://doi.org/10.1007/s11123-011-0230-6
Simchi-Levi, D., Chen, X., Bramel, J., 2014. The logic of logistics: Theory, algorithms, and applications for logistics and supply chain management. Springer.
Simchi-Levi, D., Trichakis, N., Zhang, P. Y., 2019. Designing response supply chain against bioattacks. Operations Research, 67 (5), 1246–1268. https://doi.org/10.1287/opre.2019.1862
Simon, B., 1992. A simple relationship between light and heavy traffic limits. Operations Research, 40 (Suppl. 2), S342–S345. https://doi.org/10.1287/opre.40.3.S342
Simon, H. A., 1952. On the application of servomechanism theory in the study of production control. Econometrica, 20 (2), 247–268. https://doi.org/10.2307/1907849
Simon, J. L., 1968. An almost practical solution to airline overbooking. Journal of Transport Economics and Policy, 2 (2), 201–202.
Simoni, M. D., Kutanoglu, E., Claudel, C. G., 2020. Optimization and analysis of a robot-assisted last mile delivery system. Transportation Research Part E: Logistics and Transportation Review, 142, 102049. https://doi.org/10.1016/j.tre.2020.102049
Simpson, V. P., 1978. Optimum solution structure for a repairable inventory problem. Operations Research, 26 (2), 270–281. https://doi.org/10.1287/opre.26.2.270
Sims, D., Smithin, T., 1982. Voluntary operational research. Journal of the Operational Research Society, 33 (1), 21–28. https://doi.org/10.2307/2581868
Skagerlund, K., Forsblad, M., Slovic, P., Västfjäll, D., 2020. The affect heuristic and risk perception–Stability across elicitation methods and individual cognitive abilities. Frontiers in Psychology, 11, 970. https://doi.org/10.3389/fpsyg.2020.00970
Skorin-Kapov, D., Skorin-Kapov, J., Boljunčic, V., 2006. Location problems in telecommunications. In M.Resende & P.Pardalos (Eds.), Handbook of optimization in telecommunications (pp. 517–544). Springer.
Slotine, J.-J. E., Li, W., et al., 1991. Applied nonlinear control (Vol. 199). Prentice Hall, Englewood Cliffs.
Slovic, P., 2000. The perception of risk. Earthscan Publications.
Sluijk, N., Florio, A. M., Kinable, J., Dellaert, N., Van Woensel, T., 2022a. A chance-constrained two-echelon vehicle routing problem with stochastic demands. Transportation Science.https://doi.org/10.1287/trsc.2022.1162
Sluijk, N., Florio, A. M., Kinable, J., Dellaert, N., Van Woensel, T., 2022b. Two-echelon vehicle routing problems: A literature review. European Journal of Operational Research, 304 (3), 865–886. https://doi.org/10.1016/j.ejor.2022.02.022
Smet, P., Brucker, P., De Causmaecker, P., Vanden Berghe, G., 2016. Polynomially solvable personnel rostering problems. European Journal of Operational Research, 249 (1), 67–75. https://doi.org/10.1016/j.ejor.2015.08.025
Smidts, A., 1997. The relationship between risk attitude and strength of preference: A test of intrinsic risk attitude. Management Science, 43 (3), 357–370. https://doi.org/10.1287/mnsc.43.3.357
Smith, C. M., Shaw, D., 2019. The characteristics of problem structuring methods: A literature review. European Journal of Operational Research, 274 (2), 403–416. https://doi.org/10.1016/j.ejor.2018.05.003
Smits, M., 2010. Impact of policy and process design on the performance of intake and treatment processes in mental health care: A system dynamics case study. Journal of the Operational Research Society, 61 (10), 1437–1445. https://doi.org/10.1057/jors.2009.110
Sniedovich, M., Viβ, S., 2006. The corridor method: A dynamic programming inspired metaheuristic. Control and Cybernetics, 35 (3), 551–578.
Snoeck, A., Merchán, D., Winkenbach, M., 2020. Revenue management in last-mile delivery: State-of-the-art and future research directions. Transportation Research Procedia, 46, 109–116. https://doi.org/10.1016/j.trpro.2020.03.170
Snyder, L. V., Shen, Z.-J. M., 2019. Fundamentals of supply chain theory. John Wiley & Sons.
Sobolev, B. G., Sanchez, V., Vasilakis, C., 2011. Systematic review of the use of computer simulation modeling of patient flow in surgical care. Journal of Medical Systems, 35 (1), 1–16. https://doi.org/10.1007/s10916-009-9336-z
Soeffker, N., Ulmer, M., Mattfeld, D., 2022. Stochastic dynamic vehicle routing in the light of prescriptive analytics: A review. European Journal of Operational Research, 298 (3), 801–820. https://doi.org/10.1016/j.ejor.2021.07.014
Solomon, S., Li, H., Womer, K., Santos, C., 2019. Multiperiod stochastic resource planning in professional services organizations. Decision Sciences, 50 (6), 1281–1318. https://doi.org/10.1111/deci.12370
Solomon, S., Pannirselvam, G. P., Li, H., 2022. Using integrated simulation-optimisation to optimise staffing decisions in a service supply chain. International Journal of Integrated Supply Management, 15 (1), 1–26. https://doi.org/10.1504/IJISM.2022.119589
Solyalı, O., Süral, H., 2022. An effective matheuristic for the multivehicle inventory routing problem. Transportation Science, 56, 1044–1057. https://doi.org/10.1287/trsc.2021.1123
Song, E., Nelson, B. L., Pegden, C. D., 2014. Advanced tutorial: Input uncertainty quantification. In A.Tolk, A. Y.Diallo, I. O.Ryzhov, L.Yilmaz, S.Buckley, J. A.Miller (Eds.), Proceedings of the 2014 Winter Simulation Conference (pp. 162–176). IEEE Piscataway.
Song, J.-S., 1994. The effect of leadtime uncertainty in a simple stochastic inventory model. Management Science, 40 (5), 603–613. https://doi.org/10.1287/mnsc.40.5.603
Song, J.-S. (Ed.), 2023. Research handbook on inventory management. Edward Elgar Publishing.
Song, J.-S., Xiao, L., Zhang, H., Zipkin, P., 2017. Optimal policies for a dual-sourcing inventory problem with endogenous stochastic lead times. Operations Research, 65 (2), 379–395. https://doi.org/10.1287/opre.2016.1557
Song, J.-S., Zhang, Y., 2020. Stock or print? Impact of 3-D printing on spare parts logistics. Management Science, 66 (9), 3860–3878. https://doi.org/10.1287/mnsc.2019.3409
Song, J.-S., Zipkin, P., 1993. Inventory control in a fluctuating demand environment. Operations Research, 41 (2), 351–370. https://doi.org/10.1287/opre.41.2.351
Song, J.-S., Zipkin, P., 2003. Supply chain operations: Assemble-to-order systems. In, S. C.Graves & A. G.de Kok, (Eds.), Handbooks in operations research and management science (Vol. 11, pp. 561–596). Elsevier.
Song, J.-S., Zipkin, P. H., 1996. Inventory control with information about supply conditions. Management Science, 42 (10), 1409–1419. https://doi.org/10.1287/mnsc.42.10.1409
Sonnessa, M., Tànfani, E., Testi, A., 2017. An agent-based simulation model to evaluate alternative co-payment scenarios for contributing to health systems financing. Journal of the Operational Research Society, 68 (5), 591–604. https://doi.org/10.1057/s41274-016-0022-5
Soorapanth, S., Eldabi, T., Young, T., 2022. Towards a framework for evaluating the costs and benefits of simulation modelling in healthcare. Journal of the Operational Research Society,https://doi.org/10.1080/01605682.2022.2064780
Soyster, A. L., 1973. Convex programming with set-inclusive constraints and applications to inexact linear programming. Operations Research, 21 (5), 1154–1157. https://doi.org/10.1287/opre.21.5.1154
Speranza, M. G., Ukovich, W., 1994. Minimizing transportation and inventory costs for several products on a single link. Operations Research, 42 (5), 879–894. https://doi.org/10.1287/opre.42.5.879
Spliet, R., Dabia, S., Van Woensel, T., 2018. The time window assignment vehicle routing problem with time-dependent travel times. Transportation Science, 52 (2), 261–276. https://doi.org/10.1287/trsc.2016.0705
Srinivasan, K., Satyajit, S., Behera, B. K., Panigrahi, P. K., 2018. Efficient quantum algorithm for solving travelling salesman problem: An IBM quantum experience. arXiv:1805.10928.
Stadtler, H., 2003. Multilevel lot sizing with setup times and multiple constrained resources: Internally rolling schedules with lot-sizing windows. Operations Research, 51 (3), 487–502. https://doi.org/10.1287/opre.51.3.487.14949
Starita, S., Strauss, A. K., Fei, X., Jovanović, R., Ivanov, N., Pavlović, G., Fichert, F., 2020. Air traffic control capacity planning under demand and capacity provision uncertainty. Transportation Science, 54 (4), 882–896. https://doi.org/10.1287/trsc.2019.0962
Stecke, K. E., 1983. Formulation and solution of nonlinear integer production planning problems for flexible manufacturing systems. Management Science, 29 (3), 273–288. https://doi.org/10.1287/mnsc.29.3.273
Stecke, K. E., Solberg, J. J., 1981. Loading and control policies for a flexible manufacturing system. International Journal of Production Research, 19 (5), 481–490. https://doi.org/10.1080/00207548108956679
Stecke, K. E., Yin, Y., Kaku, I., Murase, Y., 2012. Seru: The organizational extension of JIT for a Super-Talent factory. International Journal of Strategic Decision Sciences, 3 (1), 106–119. https://doi.org/10.4018/jsds.2012010104
Steinbach, M. C., 2001. Markowitz revisited: Mean-variance models in financial portfolio analysis. SIAM Review, 43 (1), 31–85. https://doi.org/10.1137/S0036144500376650
Stephens, A., Lewis, E. D., Reddy, S. M., 2018. Inclusive systemic evaluation (ISE4GEMs): A new approach for the SDG Era. UN Women.
Sterman, J. D., 1989. Modeling managerial behavior: Misperceptions of feedback in a dynamic decision making experiment. Management Science, 35 (3), 321–339. https://doi.org/10.1287/mnsc.35.3.321
Sterman, J. D., 2000. Business dynamics: Systems thinking and modeling for a complex world. Irwin/McGraw-Hill.
Sterman, J. D., 2014. Interactive web-based simulations for strategy and sustainability: The MIT sloan LearningEdge management flight simulators, Part I. System Dynamics Review, 30 (1-2), 89–121. https://doi.org/10.1002/sdr.1513
Sterman, J. D., 2018. System dynamics at sixty: The path forward. System Dynamics Review, 34 (1–2), 5–47. https://doi.org/10.1002/sdr.1601
Steuer, R., 1985. Multiple criteria optimization: Theory, computation and application. John Wiley & Sons,.
Stewart, T. J., French, S., Rios, J., 2013. Integrating multicriteria decision analysis and scenario planning—Review and extension. Omega, 41 (4), 679–688. https://doi.org/10.1016/j.omega.2012.09.003
Stidham, Jr, S., 2002. Analysis, design, and control of queueing systems. Operations Research, 50 (1), 197–216. https://doi.org/10.1287/opre.50.1.197.17783
Stolyar, A. L., 2004. Maxweight scheduling in a generalized switch: State space collapse and workload minimization in heavy traffic. The Annals of Applied Probability, 14 (1), 1–53. https://doi.org/10.1214/aoap/1075828046
Stoyan, Y., Pankratov, A., Romanova, T., 2016. Cutting and packing problems for irregular objects with continuous rotations: Mathematical modelling and non-linear optimization. Journal of the Operational Research Society, 67 (5), 786–800. https://doi.org/10.1057/jors.2015.94
Strang, G., 1987. Karmarkar’s algorithm and its place in applied mathematics. The Mathematical Intelligencer, 9 (2), 4–10. https://doi.org/10.1007/BF03025891
Strauss, A., Gülpınar, N., Zheng, Y., 2021. Dynamic pricing of flexible time slots for attended home delivery. European Journal of Operational Research, 294 (3), 1022–1041. https://doi.org/10.1016/j.ejor.2020.03.007
Strauss, A. K., Klein, R., Steinhardt, C., 2018. A review of choice-based revenue management: Theory and methods. European Journal of Operational Research, 271 (2), 375–387. https://doi.org/10.1016/j.ejor.2018.01.011
Street, R., Di Mauro, M., Humphrey, K., Johns, D., Boyd, E., Crawford-Brown, D., Evans, J., Kitchen, J., Hunt, A., Knox, K., Low, R., McCall, R., Watkiss, P., Wilby, R., 2016. UK climate change risk assessment evidence report: Chapter 8, Cross-cutting Issues. Report prepared for the Adaptation Sub-Committee of the Committee on Climate Change, London.
Strogatz, S. H., 2018. Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. CRC Press.
Strozzi, F., Colicchia, C., Creazza, A., Noè, C., 2017. Literature review on the ‘smart factory’ concept using bibliometric tools. International Journal of Production Research, 55 (22), 6572–6591. https://doi.org/10.1080/00207543.2017.1326643
STT. 2021. ITC 2021: International timetabling competition on sports timetabling. Retrieved October 9, 2022. https://www.sportscheduling.ugent.be/ITC2021/.
Su, X., 2007. Intertemporal pricing with strategic customer behavior. Management Science, 53 (5), 726–741. https://doi.org/10.1287/mnsc.1060.0667
Subramanian, A., Uchoa, E., Ochi, L., 2013. A hybrid algorithm for a class of vehicle routing problems. Computers & Operations Research, 40 (10), 2519–2531. https://doi.org/10.1016/j.cor.2013.01.013
Subramanian, R., Subramanyam, R., 2012. Key factors in the market for remanufactured products. Manufacturing & Service Operations Management, 14 (2), 315–326. https://doi.org/10.1287/msom.1110.0368
Sueyoshi, T., Yuan, Y., Goto, M., 2017. A literature study for DEA applied to energy and environment. Energy Economics, 62 (1), 104–124. https://doi.org/10.1016/j.eneco.2016.11.006
Sun, X. A., Conejo, A. J., 2021. Robust optimization in electric energy systems. Springer International Publishing.
Sun, Y., Hassanlou, K., 2019. Equity trading server allocation using chance constrained programming. Journal of Supply Chain and Operations Management, 17 (1), 1–13.
Sutton, R. S., Barto, A. G., 2018. Reinforcement learning: An introduction. MIT Press.
Svetunkov, I., 2022. Smooth: Forecasting using state space models. R package version 3.1.6.
Swamy, C., Kumar, A., 2004. Primal-dual algorithms for connected facility location problems. Algorithmica, 40, 245–269. https://doi.org/10.1007/s00453-004-1112-3
Swan, J., Adriaensen, S., Brownlee, A. E., Hammond, K., Johnson, C. G., Kheiri, A., Krawiec, F., Merelo, J., Minku, L. L., Özcan, E., Pappa, G. L., García-Sánchez, P., Sörensen, K., Voβ, S., Wagner, M., White, D. R., 2022. Metaheuristics “in the large”. European Journal of Operational Research, 297 (2), 393–406. https://doi.org/10.1016/j.ejor.2021.05.042
Swaroop, P., Zou, B., Ball, M. O., Hansen, M., 2012. Do more us airports need slot controls? A welfare based approach to determine slot levels. Transportation Research Part B: Methodological, 46 (9), 1239–1259. https://doi.org/10.1016/j.trb.2012.03.002
Sweeney, C., Bessa, R., Browell, J., Pinson, P., 2020. The future of forecasting for renewable energy. Wiley Interdisciplinary Reviews: Energy and Environment, 9 (2), e365.
Sydelko, P., Espinosa, A., Midgley, G., 2023. Designing interagency responses to wicked problems: A viable system model board game. European Journal of Operational Research.https://doi.org/10.1016/j.ejor.2023.06.040
Sydelko, P., Midgley, G., Espinosa, A., 2021. Designing interagency responses to wicked problems: Creating a common, cross-agency understanding. European Journal of Operational Research, 294 (1), 250–263. https://doi.org/10.1016/j.ejor.2020.11.045
Szeider, S., 2003. On fixed-parameter tractable parameterizations of SAT. InProceedings of the 6th International Conference on Theory and Applications of Satisfiability Testing (SAT)(Vol. 2919 of LNCS, pp. 188–202).
Szeto, W. Y., Jiang, Y., 2014. Transit route and frequency design: Bi-level modeling and hybrid artificial bee colony algorithm approach. Transportation Research Part B: Methodological, 67, 235–263. https://doi.org/10.1016/j.trb.2014.05.008
Taillandier, P., Gaudou, B., Grignard, A., Huynh, Q., Marilleau, N., Caillou, P., Philippon, D., Drogoul, A., 2019. Building, composing and experimenting complex spatial models with the GAMA platform. Geoinformatica, 23, 299–322. https://doi.org/10.1007/s10707-018-00339-6
Takács, L., 1962. Introduction to the theory of queues. University texts in the mathematical sciences. Oxford University Press.
Tako, A. A., 2015. Exploring the model development process in discrete-event simulation: Insights from six expert modellers. Journal of the Operational Research Society, 66 (5), 747–760. https://doi.org/10.1057/jors.2014.52
Tako, A. A., Kotiadis, K., 2015. PartiSim: A multi-methodology framework to support facilitated simulation modelling in healthcare. European Journal of Operational Research, 244 (2), 555–564. https://doi.org/10.1016/j.ejor.2015.01.046
Tako, A. A., Robinson, S., 2010. Model development in discrete-event simulation and system dynamics: An empirical study of expert modellers. European Journal of Operational Research, 207 (2), 784–794. https://doi.org/10.1016/j.ejor.2010.05.011
Talluri, K., Van Ryzin, G., 1999. A randomized linear programming method for computing network bid prices. Transportation Science, 33 (2), 207–216. https://doi.org/10.1287/trsc.33.2.207
Talluri, K., Van Ryzin, G., 2004a. Revenue management under a general discrete choice model of consumer behavior. Management Science, 50 (1), 15–33. https://doi.org/10.1287/mnsc.1030.0147
Talluri, K., Van Ryzin, G., 2004b. The theory and practice of revenue management. In International series in operations research & management science. Springer.
Talmar, M., Walrave, B., Podoynitsyna, K. S., Holmström, J., Romme, A. G. L., 2020. Mapping, analyzing and designing innovation ecosystems: The ecosystem pie model. Long Range Planning, 53 (4), 101850. https://doi.org/10.1016/j.lrp.2018.09.002
Tan, J. S., Goh, S. L., Kendall, G., Sabar, N. R., 2021. A survey of the state-of-the-art of optimisation methodologies in school timetabling problems. Expert Systems with Applications, 165, 113943. https://doi.org/10.1016/j.eswa.2020.113943
Tang, C. S., Veelenturf, L. P., 2019. The strategic role of logistics in the industry 4.0 era. Transportation Research Part E: Logistics and Transportation Review, 129, 1–11. https://doi.org/10.1016/j.tre.2019.06.004
Tarhan, İ., Oğuz, C., 2022. A matheuristic for the generalized order acceptance and scheduling problem. European Journal of Operational Research, 299 (1), 87–103. https://doi.org/10.1016/j.ejor.2021.08.024
Tashman, L. J., 2000. Out-of-sample tests of forecasting accuracy: An analysis and review. International Journal of Forecasting, 16 (4), 437–450. https://doi.org/10.1016/S0169-2070(00)00065-0
Tavella, E., Papadopoulos, T., Paroutis, S., 2021. Artefact appropriation in facilitated modelling: An adaptive structuration theory approach. Journal of the Operational Research Society, 72 (11), 2381–2395. https://doi.org/10.1080/01605682.2020.1790308
Tena, J. d. D., Forrest, D., 2007. Within-season dismissal of football coaches: Statistical analysis of causes and consequences. European Journal of Operational Researchh, 181 (1), 362–373. https://doi.org/10.1016/j.ejor.2006.05.024
Teng, Y., Zhang, J., Sun, T., 2022. Data-driven decision-making model based on artificial intelligence in higher education system of colleges and universities. Expert Systems, e12820, https://doi.org/10.1111/exsy.12820
Terrab, M., Odoni, A. R., 1993. Strategic flow management for air traffic control. Operations Research, 41 (1), 138–152. https://doi.org/10.1287/opre.41.1.138
Teunter, R., van der Laan, E., Vlachos, D., 2004. Inventory strategies for systems with fast remanufacturing. Journal of the Operational Research Society, 55 (5), 475–484. https://doi.org/10.1057/palgrave.jors.2601687
Thanassoulis, E., De Witte, K., Johnes, J., Johnes, G., Karagiannis, G., Portela, C. S., 2016. Applications of data envelopment analysis in education. In J.Zhu (Ed.), Data envelopment analysis: A handbook of empirical studies and applications (pp. 367–438). Springer US.
Thanassoulis, E., Kortelainen, M., Johnes, G., Johnes, J., 2011. Costs and efficiency of higher education institutions in England: A DEA analysis. Journal of the Operational Research Society, 62 (7), 1282–1297. https://doi.org/10.1057/jors.2010.68
The AnyLogic Company. 2022. AnyLogistix supply chain software. https://www.anylogistix.com/
Theorin, A., Bengtsson, K., Provost, J., Lieder, M., Johnsson, C., Lundholm, T., Lennartson, B., 2017. An event-driven manufacturing information system architecture for industry 4.0. International Journal of Production Research, 55 (5), 1297–1311. https://doi.org/10.1080/00207543.2016.1201604
Thies, C., Kieckhäfer, K., Spengler, T. S., Sodhi, M. S., 2019. Operations research for sustainability assessment of products: A review. European Journal of Operational Research, 274 (1), 1–21. https://doi.org/10.1016/j.ejor.2018.04.039
Thoben, K.-D., Wiesner, S., Wuest, T., 2017. “Industrie 4.0” and smart manufacturing–A review of research issues and application examples. International Journal of Automation Technology, 11 (1), 4–16. https://doi.org/10.20965/ijat.2017.p0004
Thompson, W., 1994. Cooperative models of bargaining. In R. J.Aumann, S.Hart (Eds.), Handbook of game theory (Vol. 2, pp. 1237–1284). North-Holland.
Thunhurst, C., 1992. Operational research: A role in strengthening community participation?Journal of Management in Medicine6 (4), 56–71. https://doi.org/10.1108/02689239210021979
Tijms, H. C., 1994. Stochastic models: An algorithmic approach (Vol. 303). Wiley.
Tine, G. C., 2005. Berlin airlift: Logistics, humanitarian aid, and strategic success. Army Logistician, 37 (5), 39–41.
Tippong, D., Petrovic, S., Akbari, V., 2022. A review of applications of operational research in healthcare coordination in disaster management. European Journal of Operational Research, 301 (1), 1–17. https://doi.org/10.1016/j.ejor.2021.10.048
Todd, M. J., 1988. Improved bounds and containing ellipsoids in Karmarkar’s linear programming algorithm. Mathematics of Operations Research, 13 (4), 650–659. https://doi.org/10.1287/moor.13.4.650
Toffolo, T. A. M., Wauters, T., Trick, M., 2015. An automated benchmark website for the traveling umpire problem. http://gent.cs.kuleuven.be/tup
Tohidi, G., Razavyan, S., Tohidnia, S., 2012. A global cost Malmquist productivity index using data envelopment analysis. Journal of the Operational Research Society, 63 (1), 72–78. https://doi.org/10.1057/jors.2011.23
Toktay, L. B., Wein, L. M., Zenios, S. A., 2000. Inventory management of remanufacturable products. Management Science, 46 (11), 1412–1426. https://doi.org/10.1287/mnsc.46.11.1412.12082
Toledo, F. M. B., Carravilla, M. A., Ribeiro, C., Oliveira, J. F., Gomes, A. M., 2013. The Dotted-Board model: A new MIP model for nesting irregular shapes. International Journal of Production Economics, 145 (2), 478–487. https://doi.org/10.1016/j.ijpe.2013.04.009
Tolk, A., 2012. Engineering principles of combat modeling and distributed simulation. Wiley.
Tolstoı, A. N., 1930. Metody nakhozhdeniya naimen’shego summovogo kilometrazha pri planirovanii perevozok v prostranstve (pp. 23–55). Planirovanie Perevozok, Sbornik pervyı, Transpechat’NKPS.
Tolwinski, B. A. H., Leitmann, G., 1986. Cooperative equilibria in differential games. Journal of Mathematical Analysis and Applications, 119, 182–202. https://doi.org/10.1016/0022-247X(86)90152-6
Tone, K., 2002. A slacks-based measure of super-efficiency in data envelopment analysis. European Journal of Operational Research, 143 (1), 32–41. https://doi.org/10.1016/S0377-2217(01)00324-1
Tone, K., Tsutsui, M., 2009. Network DEA: A slacks-based measure approach. European Journal of Operational Research, 197 (1), 243–252. https://doi.org/10.1016/j.ejor.2008.05.027
Tone, K., Tsutsui, M., 2010. Dynamic DEA: A slacks-based measure approach. Omega, 38 (3), 145–156. https://doi.org/10.1016/j.omega.2009.07.003
Tone, K., Tsutsui, M., 2014. Dynamic DEA with network structure: A slacks-based measure approach. Omega, 42 (1), 124–131. https://doi.org/10.1016/j.omega.2013.04.002
Topaloglu, H., Powell, W. B., 2006. Dynamic-programming approximations for stochastic time-staged integer multicommodity-flow problems. INFORMS Journal on Computing, 18 (1), 31–42. https://doi.org/10.1287/ijoc.1040.0079
Torres, J. P., Kunc, M., O’Brien, F., 2017. Supporting strategy using system dynamics. European Journal of Operational Research, 260 (3), 1081–1094. https://doi.org/10.1016/j.ejor.2017.01.018
Toth, P., Vigo, D. (Eds.), 2002. The vehicle routing problem. In SIAM monographs on discrete mathematics and applications.
Toth, P., Vigo, D. (Eds.), 2014. Vehicle routing: Problems, methods, and applications. SIAM.
Towill, D. R., 1970. Transfer function techniques for control engineers. Iliffe.
Towill, D. R., 1982. Dynamic analysis of an inventory and order based production control system. International Journal of Production Research, 20 (6), 671–687. https://doi.org/10.1080/00207548208947797
Trick, M., 2001. Challenge traveling tournament instances. https://mat.tepper.cmu.edu/TOURN/
Trick, M. A., Yildiz, H., Yunes, T., 2012. Scheduling major league baseball umpires and the traveling umpire problem. Interfaces, 42 (3), 232–244. https://doi.org/10.1287/inte.1100.0514
Trigeorgis, L., 1996. Real options: Managerial flexibility and strategy in resource allocation. MIT Press.
Trigeorgis, L., Tsekrekos, A. E., 2018. Real options in operations research: A review. European Journal of Operational Research, 270 (1), 1–24. https://doi.org/10.1016/j.ejor.2017.11.055
Trkman, P., McCormack, K., de Oliveira, M. P. V., Ladeira, M. B., 2010. The impact of business analytics on supply chain performance. Decision Support Systems, 49 (3), 318–327. https://doi.org/10.1016/j.dss.2010.03.007
Trudeau, P., Dror, M., 1992. Stochastic inventory routing: Route design with stockouts and route failures. Transportation Science, 26 (3), 171–184. https://doi.org/10.1287/trsc.26.3.171
Tsai, Y.-W., D. Gemmill, D., 1998. Using tabu search to schedule activities of stochastic resource-constrained projects. European Journal of Operational Research, 111 (1), 129–141. https://doi.org/10.1016/S0377-2217(97)00311-1
Tsoukias, A., 2021. Social responsibility of algorithms: An overview. In J.Papathanasiou, P.Zaraté, J.Freire de Sousa (Eds.), EURO working group on DSS: A Tour OF THE DSS developments over the last 30 years (pp. 153–166). Springer.
Tufte, E. R., 2001. The visual display of quantitative information. Graphics Press.
Tully, P., White, L., Yearworth, M., 2019. The value paradox of problem structuring methods. Systems Research and Behavioral Science, 36 (4), 424–444. https://doi.org/10.1002/sres.2557
Turnitsa, C., Blais, C., Tolk, A., 2021. Simulation and wargaming. Wiley.
Tustin, A., 1953. The mechanism of economic systems: An approach to the problem of economic stabilization from the point of view of control-system engineering. Harvard University.
Tversky, A., Kahneman, D., 1974. Judgment under uncertainty: Heuristics and biases: Biases in judgments reveal some heuristics of thinking under uncertainty. Science, 185 (4157), 1124–1131. https://doi.org/10.1126/science.185.4157.1124
Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., Subramanian, A., 2017. New benchmark instances for the capacitated vehicle routing problem. European Journal of Operational Research, 257 (3), 845–858. https://doi.org/10.1016/j.ejor.2016.08.012
Ulmer, M. W., 2020. Dynamic pricing and routing for same-day delivery. Transportation Science, 54 (4), 1016–1033. https://doi.org/10.1287/trsc.2019.0958
Ulmer, M. W., Thomas, B. W., 2018. Same-day delivery with heterogeneous fleets of drones and vehicles. Networks, 72 (4), 475–505. https://doi.org/10.1002/net.21855
Ulrich, M., Jahnke, H., Langrock, R., Pesch, R., Senge, R., 2021. Distributional regression for demand forecasting in e-grocery. European Journal of Operational Research, 294 (3), 831–842. https://doi.org/10.1016/j.ejor.2019.11.029
Ulrich, W., 1983. Critical heuristics of social planning. Wiley.
Ulrich, W., 1987. Critical heuristics of social systems design. European Journal of Operational Research, 31 (3), 276–283. https://doi.org/10.1016/0377-2217(87)90036-1
Ulrich, W., 1994. Critical heuristics of social planning: A new approach to practical philosophy. Wiley.
UNCTAD. 2022. Review of maritime transport 2022. Tech. rep., United Nations Conference on Trade and Development.
Uniejewski, B., Nowotarski, J., Weron, R., 2016. Automated variable selection and shrinkage for day-ahead electricity price forecasting. Energies, 9 (8), 621. https://doi.org/10.3390/en9080621
Utley, M., Crowe, S., Pagel, C., 2022. Operational research approaches. Elements of improving quality and safety in healthcare. Cambridge University Press.
Utomo, D. S., Onggo, B. S., Eldridge, S., 2018. Applications of agent-based modelling and simulation in the agri-food supply chains. European Journal of Operational Research, 269 (3), 794–805. https://doi.org/10.1016/j.ejor.2017.10.041
Vahdati Daneshmand, S., 2003. Algorithmic approaches to the Steiner problem in networks [Ph.D. thesis]. University of Mannheim, Germany.
Valero-Carreras, D., Aparicio, J., Guerrero, N. M., 2022. Multi-output support vector frontiers. Computers & Operations Research, 143, 105765. https://doi.org/10.1016/j.cor.2022.105765
Valladares, L., Nino, V., Martínez, K., Sobek, D., Claudio, D., Moyce, S., 2022. Optimizing patient flow, capacity, and performance of COVID-19 vaccination clinics. IISE Transactions on Healthcare Systems Engineering,1–13. https://doi.org/10.1080/24725579.2022.2066740
Van Bulck, D., Goossens, D., Beliën, J., Davari, M., 2021. The fifth international timetabling competition (ITC 2021): Sports timetabling. InProceedings of MathSport International. University of Reading(pp. 117–122).
Van de Ven, A., Delbeco, A. L., 1971. Nominal versus interacting group processes for committee decision-making effectiveness. Academy of Management Journal, 14 (2), 203–212. https://doi.org/10.5465/255307
Van de Ven, A. H., Poole, M. S., 2005. Alternative approaches for studying organizational change. Organization Studies, 26 (9), 1377–1404. https://doi.org/10.1177/0170840605056907
Van de Vonder, S., Demeulemeester, E., Herroelen, W., 2008. Proactive heuristic procedures for robust project scheduling: An experimental analysis. European Journal of Operational Research, 189 (3), 723–733. https://doi.org/10.1016/j.ejor.2006.10.061
van der Hagen, L., Agatz, N., Spliet, R., Visser, T. R., Kok, A. L., 2022. Machine learning-based feasability checks for dynamic time slot management. SSRN Electronic Journal, 4011237. https://doi.org/10.2139/ssrn.4011237
van der Laan, E., Salomon, M., Dekker, R., Van Wassenhove, L., 1999. Inventory control in hybrid systems with remanufacturing. Management Science, 45 (5), 733–747. https://doi.org/10.1287/mnsc.45.5.733
Van Engeland, J., Beliën, J., De Boeck, L., De Jaeger, S., 2020. Literature review: Strategic network optimization models in waste reverse supply chains. Omega, 91, 102012. https://doi.org/10.1016/j.omega.2018.12.001
van Leeuwaarden, J. S., Mathijsen, B. W., Zwart, B., 2019. Economies-of-scale in many-server queueing systems: Tutorial and partial review of the QED Halfin–Whitt heavy-traffic regime. SIAM Review, 61 (3), 403–440. https://doi.org/10.1137/17M1133944
Van Roy, T., Wolsey, L., 1986. Valid inequalities for mixed 0–1 programs. Discrete Applied Mathematics, 14, 199–213. https://doi.org/10.1016/0166-218X(86)90061-2
Van Roy, T., Wolsey, L., 1987. Solving mixed integer programming problems using automatic reformulation. Operations Research, 35, 45–57. https://doi.org/10.1287/opre.35.1.45
Van Ryzin, G., McGill, J., 2000. Revenue management without forecasting or optimization: An adaptive algorithm for determining airline seat protection levels. Management Science, 46 (6), 760–775. https://doi.org/10.1287/mnsc.46.6.760.11936
Van Slyke, R. M., Wets, R., 1969. L-Shaped linear programs with applications to optimal control and stochastic programming. SIAM Journal on Applied Mathematics, 17 (4), 638–663. https://doi.org/10.1137/0117061
Vanhoucke, M., 2018. Planning projects with scarce resources: Yesterday, today and tomorrow’s research challenges. Frontiers of Engineering Management, 5 (2), 133–149.
Vanhoucke, M., Demeulemeester, E., Herroelen, W., 2001a. An exact procedure for the resource-constrained weighted earliness–tardiness project scheduling problem. Annals of Operations Research, 102 (1), 179–196.
Vanhoucke, M., Demeulemeester, E., Herroelen, W., 2001b. Maximizing the net present value of a project with linear time-dependent cash flows. International Journal of Production Research, 39 (14), 3159–3181. https://doi.org/10.1080/00207540110056919
Vanhoucke, M., Demeulemeester, E., Herroelen, W., 2001c. On maximizing the net present value of a project under renewable resource constraints. Management Science, 47 (8), 1113–1121. https://doi.org/10.1287/mnsc.47.8.1113.10226
Vasilakis, C., Pagel, C., Gallivan, S., Richards, D., Weaver, A., Utley, M., 2013. Modelling toolkit to assist with introducing a stepped care system design in mental health care. Journal of the Operational Research Society, 64 (7), 1049–1059. https://doi.org/10.1057/jors.2012.98
Vassian, H. J., 1955. Application of discrete variable servo theory to inventory control. Journal of the Operations Research Society of America, 3 (3), 272–282. https://doi.org/10.1287/opre.3.3.272
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., Polosukhin, I., 2017. Attention is all you need. In I.Guyon, U. V.Luxburg, S.Bengio, H.Wallach, R.Fergus, S.Vishwanathan, R.Garnett (Eds.), Advances in neural information processing systems (Vol. 30, pp. 1–11). Curran Associates, Inc.
Vazirani, V. V., 2001. Approximation algorithms. Springer.
Vedantam, A., Iyer, A., 2021. Revenue-sharing contracts under quality uncertainty in remanufacturing. Production and Operations Management, 30 (7), 2008–2026. https://doi.org/10.1111/poms.13370
VeinottJr, A. F., 1965. Optimal policy for a multi-product, dynamic, nonstationary inventory problem. Management Science, 12 (3), 206–222. https://doi.org/10.1287/mnsc.12.3.206
VeinottJr, A. F., 1966. The status of mathematical inventory theory. Management Science, 12 (11), 745–777. https://doi.org/10.1287/mnsc.12.11.745
Velez-Castiblanco, J., Brocklesby, J., Midgley, G., 2016. Boundary games: How teams of OR practitioners explore the boundaries of intervention. European Journal of Operational Research, 249 (3), 968–982. https://doi.org/10.1016/j.ejor.2015.08.006
Vennix, J. A. M., Vennix, J., 1996. Group model building: Facilitating team learning using system dynamics. Wiley.
Ventana Systems Inc.2022. Vensim. https://vensim.com/
Ventosa, M., Baillo, A., Ramos, A., Rivier, M., 2005. Electricity market modeling trends. Energy Policy, 33 (7), 897–913. https://doi.org/10.1016/j.enpol.2003.10.013
Verloop, I. M., Ayesta, U., Borst, S., 2010. Monotonicity properties for multi-class queueing systems. Discrete Event Dynamic Systems, 20, 473–509. https://doi.org/10.1007/s10626-009-0069-4
Verma, S., Rubin, J., 2018. Fairness definitions explained. InProceedings of the International Workshop on Software Fairness (FairWare)(pp. 1–7). https://doi.org/10.1145/3194770.3194776
Verstegen, D. A., 1996. Concepts and measures of fiscal inequality: A new approach and effects for five states. Journal of Education Finance, 22, 145–160.
Vidal, T., 2022a. Github webpage. https://github.com/vidalt/, accessed on 2022-09-16.
Vidal, T., 2022b. Hybrid genetic search for the CVRP: Open-source implementation and SWAP* neighborhood. Computers & Operations Research, 140, 105643. https://doi.org/10.1016/j.cor.2021.105643
Vidal, T., Crainic, T., Gendreau, M., Prins, C., 2013. Heuristics for multi-attribute vehicle routing problems: A survey and synthesis. European Journal of Operational Research, 231 (1), 1–21. https://doi.org/10.1016/j.ejor.2013.02.053
Vidal, T., Laporte, G., Matl, P., 2020. A concise guide to existing and emerging vehicle routing problem variants. European Journal of Operational Research, 286, 401–416. https://doi.org/10.1016/j.ejor.2019.10.010
Vidgen, R., Hindle, G., Randolph, I., 2020. Exploring the ethical implications of business analytics with a business ethics canvas. European Journal of Operational Research, 281 (3), 491–501. https://doi.org/10.1016/j.ejor.2019.04.036
Vidgen, R., Shaw, S., Grant, D. B., 2017. Management challenges in creating value from business analytics. European Journal of Operational Research, 261 (2), 626–639. https://doi.org/10.1016/j.ejor.2017.02.023
Virtanen, K., Mansikka, H., Kontio, H., Harris, D., 2022. Weight watchers: NASA-TLX weights revisited. Theoretical Issues in Ergonomics Science, 23 (6), 725–748. https://doi.org/10.1080/1463922X.2021.2000667
Virtanen, K., Raivio, T., Hämäläinen, R. P., 2004. Modeling pilot’s sequential maneuvering decisions by a multistage influence diagram. Journal of Guidance, Control, and Dynamics, 27 (4), 665–677. https://doi.org/10.2514/1.11167
von Bertalanffy, L., 1968. General system theory: Foundations, development, applications. G. Braziller.
von Neumann, J., 1945. A model of general economic equilibrium. The Review of Economic Studies, 13 (1), 1–9. https://doi.org/10.2307/2296111
von Neumann, J., Morgenstern, O., 1944. Theory of games and economic behavior (2nd ed.). Princeton University Press.
von Nitzsch, R., Weber, M., 1993. The effect of attribute ranges on weights in multiattribute utility measurements. Management Science, 39 (8), 937–943. https://doi.org/10.1287/mnsc.39.8.937
von Stackelberg, H., 1934. Marktform und gleichgewicht. Springer Verlag.
Vossen, T. W., Ball, M. O., 2006. Slot trading opportunities in collaborative ground delay programs. Transportation Science, 40 (1), 29–43. https://doi.org/10.1287/trsc.1050.0121
Vranas, P. B., Bertsimas, D. J., Odoni, A. R., 1994. The multi-airport ground-holding problem in air traffic control. Operations Research, 42 (2), 249–261. https://doi.org/10.1287/opre.42.2.249
Vygen, J., 2002. On dual minimum cost flow algorithms. Mathematical Methods of Operations Research, 56 (1), 101–126. https://doi.org/10.1007/s001860200202
Wächter, A., Biegler, L., 2006. On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Mathematical Programming, 1, 25–57. https://doi.org/10.1007/s10107-004-0559-y
Wagner, H. M., Whitin, T. M., 1958. Dynamic version of the economic lot size model. Management Science, 5 (1), 89–96. https://doi.org/10.1287/mnsc.5.1.89
Wagner, M. R., Radovilsky, Z., 2012. Optimizing boat resources at the U.S. coast guard: Deterministic and stochastic models. Operations Research, 60 (5), 1035–1049. https://doi.org/10.1287/opre.1120.1085
Waisel, L. B., Wallace, W. A., Willemain, T. R., 2008. Visualization and model formulation: An analysis of the sketches of expert modellers. Journal of the Operational Research Society, 59 (3), 353–361. https://doi.org/10.1057/palgrave.jors.2602331
Wallace, S. W., Ziemba, W. T., 2005. Applications of stochastic programming. SIAM.
Walling, E., Vaneeckhaute, C., 2020. Developing successful environmental decision support systems: Challenges and best practices. Journal of Environmental Management, 264, 110513. https://doi.org/10.1016/j.jenvman.2020.110513
Wang, C. N., Dang, T. T., Nguyen, N. A. T., Wang, J. W., 2022a. A combined data envelopment analysis (DEA) and grey based multiple criteria decision making (G-MCDM) for solar PV power plants site selection: A case study in Vietnam. Energy Reports, 8 (1), 1124–1142. https://doi.org/10.1016/j.egyr.2021.12.045
Wang, H.-Z., Li, G.-Q., Wang, G.-B., Peng, J.-C., Jiang, H., Liu, Y.-T., 2017. Deep learning based ensemble approach for probabilistic wind power forecasting. Applied Energy, 188, 56–70. https://doi.org/10.1016/j.apenergy.2016.11.111
Wang, J., Zhao, L., Huchzermeier, A., 2021. Operations-finance interface in risk management: Research evolution and opportunities. Production and Operations Management, 30 (2), 355–389. https://doi.org/10.1111/poms.13269
Wang, K., Jacquillat, A., 2020. A stochastic integer programming approach to air traffic scheduling and operations. Operations Research, 68 (5), 1375–1402. https://doi.org/10.1287/opre.2020.1985
Wang, K., Jacquillat, A., Vaze, V., 2022b. Vertiport planning for urban aerial mobility: An adaptive discretization approach. Manufacturing & Service Operations Management, 24 (6), 3215–3235. https://doi.org/10.1287/msom.2022.1148
Wang, K., Xian, Y., Lee, C.-Y., Wei, Y.-M., Huang, Z., 2019a. On selecting directions for directional distance functions in a non-parametric framework: A review. Annals of Operations Research, 278 (1), 43–76. https://doi.org/10.1007/s10479-017-2423-5
Wang, Q., Wu, Z., Chen, X., 2019b. Decomposition weights and overall efficiency in a two-stage DEA model with shared resources. Computers & Industrial Engineering, 136, 135–148. https://doi.org/10.1016/j.cie.2019.07.014
Wang, X., Disney, S. M., 2016. The bullwhip effect: Progress, trends and directions. European Journal of Operational Research, 250 (3), 691–701. https://doi.org/10.1016/j.ejor.2015.07.022
Wang, X., Hyndman, R. J., Li, F., Kang, Y., 2022c. Forecast combinations: An over 50-year review. arXiv:2205.04216.
Wang, X., Kang, Y., Petropoulos, F., Li, F., 2022d. The uncertainty estimation of feature-based forecast combinations. Journal of the Operational Research Society, 73 (5), 979–993. https://doi.org/10.1080/01605682.2021.1880297
Wang, X. j., Curry, D. J., 2012. A robust approach to the share-of-choice product design problem. Omega, 40 (6), 818–826. https://doi.org/10.1016/j.omega.2012.01.004
Wang, Y., 2021. An improved machine learning and artificial intelligence algorithm for classroom management of English distance education. Journal of Intelligent & Fuzzy Systems, 40 (2), 3477–3488. https://doi.org/10.3233/JIFS-189385
Wang, Y.-J., Kuo, Y.-H., Huang, G. Q., Gu, W., Hu, Y., 2022e. Dynamic demand-driven bike station clustering. Transportation Research Part E: Logistics and Transportation Review, 160, 102656. https://doi.org/10.1016/j.tre.2022.102656
Ware, C., 2020. Information visualization: perception for design (interactive technologies) (4th ed.). Morgan Kaufmann.
Warfield, J. N., 1994. A science of generic design: Managing complexity through systems design. Iowa State University Press.
Wäscher, G., Hauβner, H., Schumann, H., 2007. An improved typology of cutting and packing problems. European Journal of Operational Research, 183 (3), 1109–1130. https://doi.org/10.1016/j.ejor.2005.12.047
Waβmuth, K., Köhler, C., Agatz, N., Fleischmann, M., 2022. Demand management for attended home delivery–A literature review. ERIM Report Series ERS-2022-002-LIS.
Watson, N., Hendricks, S., Stewart, T., Durbach, I., 2021. Integrating machine learning and decision support in tactical decision-making in rugby union. Journal of the Operational Research Society, 72 (10), 2274–2285. https://doi.org/10.1080/01605682.2020.1779624
Wei, K., Vaze, V., 2018. Modeling crew itineraries and delays in the national air transportation system. Transportation Science, 52 (5), 1276–1296. https://doi.org/10.1287/trsc.2018.0834
Wei, K., Vaze, V., Jacquillat, A., 2020. Airline timetable development and fleet assignment incorporating passenger choice. Transportation Science, 54 (1), 139–163. https://doi.org/10.1287/trsc.2019.0924
Weintraub, A., Romero, C., Miranda, J. P., Epstein, R., Bjørndal, T., 2007. Handbook of operations research in natural resources. Springer.
Wen, M., Pacino, D., Kontovas, C. A., Psaraftis, H. N., 2017. A multiple ship routing and speed optimization problem under time, cost and environmental objectives. Transportation Research Part D: Transport and Environment, 52, 303–321. https://doi.org/10.1016/j.trd.2017.03.009
Weron, R., 2014. Electricity price forecasting: A review of the state-of-the-art with a look into the future. International Journal of Forecasting, 30 (4), 1030–1081. https://doi.org/10.1016/j.ijforecast.2014.08.008
Westcombe, M., Franco, L. A., Shaw, D., 2006. Where next for PSMs—A grassroots revolution?Journal of the Operational Research Society, 57 (7), 776–778. https://doi.org/10.1057/palgrave.jors.2602161
White, L., 2002. Size matters: Large group methods and the process of operational research. Journal of the Operational Research Society, 53 (2), 149–160. https://doi.org/10.1057/palgrave.jors.2601298
White, L., 2006. Evaluating problem-structuring methods: Developing an approach to show the value and effectiveness of PSMs. Journal of the Operational Research Society, 57 (7), 842–855. https://doi.org/10.1057/palgrave.jors.2602149
White, L., 2009. Understanding problem structuring methods interventions. European Journal of Operational Research, 199 (3), 823–833. https://doi.org/10.1016/j.ejor.2009.01.066
White, L., 2016. Behavioural operational research: Towards a framework for understanding behaviour in OR interventions. European Journal of Operational Research, 249 (3), 827–841. https://doi.org/10.1016/j.ejor.2015.07.032
White, L., 2018. A Cook’s tour: Towards a framework for measuring the social impact of social purpose organisations. European Journal of Operational Research, 268 (3), 784–797. https://doi.org/10.1016/j.ejor.2017.06.015
White, L., Burger, K., Yearworth, M., 2016. Understanding behaviour in problem structuring methods interventions with activity theory. European Journal of Operational Research, 249 (3), 983–1004. https://doi.org/10.1016/j.ejor.2015.07.044
White, L., Kunc, M., Burger, K., Malpass, J., 2020. Behavioral operational research: A capabilities approach. Palgrave Macmillan.
White, L., Lee, G. J., 2009. Operational research and sustainable development: Tackling the social dimension. European Journal of Operational Research, 193 (3), 683–692. https://doi.org/10.1016/j.ejor.2007.06.057
Whitt, W., 1982. On the heavy-traffic limit theorem for GI/G/∞ queues. Advances in Applied Probability, 14 (1), 171–190.
Whitt, W., 1991. A review of L=λW and extensions. Queueing Systems, 9 (3), 235–268.
Whitt, W., 2002. Stochastic-process limits: An introduction to stochastic-process limits and their application to queues. Space, 500, 391–426.
Whitt, W., 2018. Time-varying queues. Queueing Models and Service Management, 1 (2), 79–164.
Whittle, P., 1988. Restless bandits: Activity allocation in a changing world. Journal of Applied Probability, 25 (A), 287–298. https://doi.org/10.2307/3214163
Wickramasuriya, S. L., Athanasopoulos, G., Hyndman, R. J., 2019. Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization. Journal of the American Statistical Association, 114 (526), 804–19. https://doi.org/10.1080/01621459.2018.1448825
Willemain, T. R., 1995. Model formulation: What experts think about and when. Operations Research, 43 (6), 916–932. https://doi.org/10.1287/opre.43.6.916
Willemain, T. R., Powell, S. G., 2007. How novices formulate models. Part II: A quantitative description of behaviour. Journal of the Operational Research Society, 58 (10), 1271–1283. https://doi.org/10.1057/palgrave.jors.2602279
Williams, A., Cookson, R., 2000. Equity in health. In A.Culyer & J.Newhouse (Eds.), Handbook of health economics (pp. 1863–1910). Elsevier.
Williamson, D. P., 2019. Network flow algorithms. Cambridge University Press.
Williamson, D. P., Shmoys, D. B., 2011. The design of approximation algorithms. Cambridge University Press.
Wilson, R., 1934. A scientific routine for stock control. Harvard Business Review, 13, 116–128.
Wilson, R., 1998. Sequential equilibria of asymmetric ascending auctions: The case of log-normal distributions. Economic Theory, 12, 433–440. https://doi.org/10.1007/s001990050229
Winkenbach, M., Roset, A., Spinler, S., 2016. Strategic redesign of urban mail and parcel networks at la poste. Interfaces, 46 (5), 445–458. https://doi.org/10.1287/inte.2016.0854
Winston, W. L., Venkataramanan, M., 2003. Introduction to mathematical programming. Operations research (4th ed., Vol. 1). Brooks/Cole–Thomson Learning, Pacific Grove.
Winter, P., 1987. Steiner problem in networks: A survey. Networks, 17 (2), 129–167. https://doi.org/10.1002/net.3230170203
Winters, P. R., 1960. Forecasting sales by exponentially weighted moving averages. Management Science, 6, 324–342. https://doi.org/10.1287/mnsc.6.3.324
Woeginger, G. J., 2000. When does a dynamic programming formulation guarantee the existence of a fully polynomial time approximation scheme (FPTAS)?INFORMS Journal on Computing, 12 (1), 57–74. https://doi.org/10.1287/ijoc.12.1.57.11901
Woeginger, G. J., 2021. The trouble with the second quantifier. 4OR - A Quarterly Journal of Operations Research, 19, 157–181. https://doi.org/10.1007/s10288-021-00477-y
Wojtczak, D., 2018. On strong NP-completeness of rational problems. In F. V.Fomin & V. V.Podolskii (Eds.), Computer science–Theory and applications. Vol. 10846 of Lecture notes in computer science (pp. 308–320).
Wolfers, J., Zitzewitz, E., 2004. Prediction markets. The Journal of Economic Perspectives, 18 (2), 107–126. https://doi.org/10.1257/0895330041371321
Wollmer, R. D., 1992. An airline seat management model for a single leg route when lower fare classes book first. Operations Research, 40 (1), 26–37. https://doi.org/10.1287/opre.40.1.26
Wolsey, L., 1975. Faces for a linear inequality in 0–1 variables. Mathematical Programming, 8, 165–178. https://doi.org/10.1007/BF01580441
Wolstenholme, E. F., 1990. System enquiry: A system dynamics approach. Wiley.
Wolszczak-Derlacz, J., 2018. Assessment of TFP in European and American higher education institutions–Application of Malmquist indices. Technological and Economic Development of Economy, 24 (2), 467–488. https://doi.org/10.3846/20294913.2016.1213197
Womack, J., Jones, D., Roos, D., 1990. The machine that changed the world. Mandarin Books.
Wong, D., Hiew, Y., 2020. Community operational research (OR) and design thinking for the health and social services: A comparative analysis. In2020 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). Singapore (pp. 1042–1047).
Wong, N., Mingers, J., 1994. The nature of community OR. Journal of the Operational Research Society, 45 (3), 245–254. https://doi.org/10.2307/2584158
Wood, R. M., McWilliams, C. J., Thomas, M. J., Bourdeaux, C. P., Vasilakis, C., 2020. COVID-19 scenario modelling for the mitigation of capacity-dependent deaths in intensive care. Health Care Management Science, 23 (3), 315–324. https://doi.org/10.1007/s10729-020-09511-7
Wood, R. M., Moss, S. J., Murch, B. J., Vasilakis, C., Clatworthy, P. L., 2022. Optimising acute stroke pathways through flexible use of bed capacity: A computer modelling study. BMC Health Services Research, 22 (1), 1068. https://doi.org/10.1186/s12913-022-08433-0
Wood, R. M., Murch, B. J., 2020. Modelling capacity along a patient pathway with delays to transfer and discharge. Journal of the Operational Research Society, 71 (10), 1530–1544. https://doi.org/10.1080/01605682.2019.1609885
Wood, R. M., Murch, B. J., Moss, S. J., Tyler, J. M. B., Thompson, A. L., Vasilakis, C., 2021a. Operational research for the safe and effective design of COVID-19 mass vaccination centres. Vaccine, 39 (27), 3537–3540. https://doi.org/10.1016/j.vaccine.2021.05.024
Wood, R. M., Pratt, A. C., Kenward, C., McWilliams, C. J., Booton, R. D., Thomas, M. J., Bourdeaux, C. P., Vasilakis, C., 2021b. The value of triage during periods of intense COVID-19 demand: Simulation modeling study. Medical Decision Making, 41 (4), 393–407. https://doi.org/10.1177/0272989X21994035
Woodhouse, G., Goldstein, H., 1988. Educational performance indicators and LEA league tables. Oxford Review of Education, 14 (3), 301–320. https://doi.org/10.1080/0305498880140303
Woolley, R. N., Pidd, M., 1981. Problem structuring—A literature review. Journal of the Operational Research Society, 32 (3), 197–206. https://doi.org/10.2307/2581061
Wright, D. J., 1983. Catastrophe theory in management forecasting and decision making. Journal of the Operational Research Society, 34 (10), 935–942. https://doi.org/10.2307/2580892
Wright, G., Cairns, G., O’Brien, F. A., Goodwin, P., 2019. Scenario analysis to support decision making in addressing wicked problems: Pitfalls and potential. European Journal of Operational Research, 278 (1), 3–19. https://doi.org/10.1016/j.ejor.2018.08.035
Wright, P. D., Liberatore, M. J., Nydick, R. L., 2006. A survey of operations research models and applications in homeland security. Interfaces, 36 (6), 514–529. https://doi.org/10.1287/inte.1060.0253
Wright, S. J., 1997. Primal-dual interior-point methods. SIAM.
Xiang, W., Yin, J., Lim, G., 2015. A short-term operating room surgery scheduling problem integrating multiple nurses roster constraints. Artificial Intelligence in Medicine, 63 (2), 91–106. https://doi.org/10.1016/j.artmed.2014.12.005
Xin, L., Van Mieghem, J. A., 2023. Dual-sourcing, dual-mode dynamic stochastic inventory models. In J.-S.Song (Ed.), Research handbook on inventory management. Edward Elgar Publishing.
Xu, J., Huang, E., Hsieh, L., Lee, L. H., Jia, Q.-S., Chen, C.-H., 2016. Simulation optimization in the era of industrial 4.0 and the industrial internet. Journal of Simulation, 10 (4), 310–320. https://doi.org/10.1057/s41273-016-0037-6
Yager, R., 1997. On the analytic representation of the leximin ordering and its application to flexible constraint propagation. European Journal of Operational Research, 102 (1), 176–192. https://doi.org/10.1016/S0377-2217(96)00217-2
Yaman, H., 2005. Concentrator location in telecommunications networks. In Combinatorial optimization (Vol. 16). Springer.
Yan, C., Barnhart, C., Vaze, V., 2022a. Choice-based airline schedule design and fleet assignment: A decomposition approach. Transportation Science. https://doi.org/10.1287/trsc.2022.1141
Yan, S., Archibald, T. W., Han, X., Bian, Y., 2022b. Whether to adopt” buy online and return to store” strategy in a competitive market?European Journal of Operational Research, 301 (3), 974–986. https://doi.org/10.1016/j.ejor.2021.11.040
Yan, W., Wang, G., 2021. Research on the development trend of foreign education based on machine learning and artificial intelligence simulation analysis. Journal of Intelligent and Fuzzy Systems, 1–10. https://doi.org/10.3233/JIFS-219133
Yan, Y., Chow, A. H., Ho, C. P., Kuo, Y.-H., Wu, Q., Ying, C., 2022c. Reinforcement learning for logistics and supply chain management: Methodologies, state of the art, and future opportunities. Transportation Research Part E: Logistics and Transportation Review, 162, 102712. https://doi.org/10.1016/j.tre.2022.102712
Yang, D., 2018. Ultra-fast preselection in lasso-type spatio-temporal solar forecasting problems. Solar Energy, 176, 788–796. https://doi.org/10.1016/j.solener.2018.08.041
Yang, D., Wang, W., Gueymard, C., Hong, T., Kleissl, J., Huang, J., Perez, M., Perez, R., Bright, J., Xia, X., van der Meer, D., Peters, I., 2022. A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality. Renewable and Sustainable Energy Reviews, 161, 112348. https://doi.org/10.1016/j.rser.2022.112348
Yang, X., Strauss, A. K., 2017. An approximate dynamic programming approach to attended home delivery management. European Journal of Operational Research, 263 (3), 935–945. https://doi.org/10.1016/j.ejor.2017.06.034
Yang, X., Strauss, A. K., Currie, C. S., Eglese, R., 2016. Choice-based demand management and vehicle routing in e-fulfillment. Transportation Science, 50 (2), 473–488. https://doi.org/10.1287/trsc.2014.0549
Yardley, E., Petropoulos, F., 2021. Beyond error measures to the utility and cost of the forecasts. Foresight: The International Journal of Applied Forecasting, 63, 36–45.
Ye, Y., 1987. Karmarkar’s algorithm and the ellipsoid method. Operations Research Letters, 6 (4), 177–182. https://doi.org/10.1016/0167-6377(87)90016-2
Ye, Y., 1997. Interior point algorithms: Theory and analysis. Wiley.
Yearworth, M., White, L., 2014. The non-codified use of problem structuring methods and the need for a generic constitutive definition. European Journal of Operational Research, 237 (3), 932–945. https://doi.org/10.1016/j.ejor.2014.02.015
Yearworth, M., White, L., 2019. Group support systems: Experiments with an online system and implications for Same-Time/Different-Places working. In D. M.Kilgour 7 C.Eden (Eds.), Handbook of group decision and negotiation (pp. 681–706). Springer.
Yen, J. W., Birge, J. R., 2006. A stochastic programming approach to the airline crew scheduling problem. Transportation Science, 40 (1), 3–14. https://doi.org/10.1287/trsc.1050.0138
Yeung, D., Petrosyan, L., 2018. Nontransferable utility cooperative dynamic games. In T.Başar & G.Zaccour (Eds.), Handbook of dynamic game theory (pp. 633–670). Springer.
Yıldız, B., Karaşan, O. E., 2017. Regenerator location problem in flexible optical networks. Operations Research, 65 (3), 595–620. https://doi.org/10.1287/opre.2016.1587
Yin, C., Perchet, R., Soupé, F., 2021. A practical guide to robust portfolio optimization. Quantitative Finance, 21 (6), 911–928. https://doi.org/10.1080/14697688.2020.1849780
Yin, Y., Kaku, I., Stecke, K. E., 2008. The evolution of seru production systems throughout canon. Operations Management Education Review, 2, 27–40.
Yin, Y., Stecke, K. E., Swink, M., Kaku, I., 2017. Lessons from seru production on manufacturing competitively in a high cost environment. Journal of Operations Management, 49–51, 67–76. https://doi.org/10.1016/j.jom.2017.01.003
Yin, Y., Yasuda, K., 2006. Similarity coefficient methods applied to the cell formation problem: A taxonomy and review. International Journal of Production Economics, 101 (2), 329–352. https://doi.org/10.1016/j.ijpe.2005.01.014
Yitzhaki, S., Schechtman, E., 2013. More than a dozen alternative ways of spelling Gini. In S.Yitzhaki & E.Schechtman (Eds.), The gini methodology (pp. 11–31). Springer.
You, P.-S., 1999. Dynamic pricing in airline seat management for flights with multiple flight legs. Transportation Science, 33 (2), 192–206. https://doi.org/10.1287/trsc.33.2.192
Young, B. C., Eyre, D. W., Kendrick, S., White, C., Smith, S., Beveridge, G., Nonnenmacher, T., Ichofu, F., Hillier, J., Oakley, S., Diamond, I., Rourke, E., Dawe, F., Day, I., Davies, L., Staite, P., Lacey, A., McCrae, J., Jones, F., Kelly, J., Bankiewicz, U., Tunkel, S., Ovens, R., Chapman, D., Bhalla, V., Marks, P., Hicks, N., Fowler, T., Hopkins, S., Yardley, L., Peto, T. E. A., 2021. Daily testing for contacts of individuals with SARS-CoV-2 infection and attendance and SARS-CoV-2 transmission in english secondary schools and colleges: An open-label, cluster-randomised trial. The Lancet, 398 (10307), 1217–1229. https://doi.org/10.1016/S0140-6736(21)01908-5
Yu, D., He, X., 2020. A bibliometric study for DEA applied to energy efficiency: Trends and future challenges. Applied Energy, 268 (1), 115048. https://doi.org/10.1016/j.apenergy.2020.115048
Yuan, J., Gao, Y., Li, S., Liu, P., Yang, L., 2022. Integrated optimization of train timetable, rolling stock assignment and short-turning strategy for a metro line. European Journal of Operational Research, 301 (3), 855–874. https://doi.org/10.1016/j.ejor.2021.11.019
Yudin, D., Nemirovskii, A. S., 1976. Informational complexity and efficient methods for the solution of convex extremal problems. Ekonomika i Matematicheskie Metody, 12, 128–142.
Zanakis, S. H., Evans, J. R., Vazacopoulos, A. A., 1989. Heuristic methods and applications: A categorized survey. European Journal of Operational Research, 43 (1), 88–110. https://doi.org/10.1016/0377-2217(89)90412-8
Zawacki-Richter, O., Marín, V. I., Bond, M., Gouverneur, F., 2019. Systematic review of research on artificial intelligence applications in higher education–Where are the educators?International Journal of Educational Technology in Higher Education, 16 (1), 1–27. https://doi.org/10.1186/s41239-019-0171-0
Zawadzki, P., Żywicki, K., 2016. Smart product design and production control for effective mass customization in the industry 4.0 concept. Management and Production Engineering Review, 7 (3), 105–112. https://doi.org/10.1515/mper-2016-0030
Zeng, Q., Yang, Z., 2007. Model integrating fleet design and ship routing problems for coal shipping. In Y.Shi, G. D.van Albada, J.Dongarra, P. M. A.Sloot (Eds.), Computational science–ICCS (pp. 1000–1003). Springer.
Zhang, J., Dimitrakopoulos, R. G., 2018. Stochastic optimization for a mineral value chain with nonlinear recovery and forward contracts. Journal of the Operational Research Society, 69 (6), 864–875. https://doi.org/10.1057/s41274-017-0269-5
Zhang, N., Alipour, A., 2022. A stochastic programming approach to enhance the resilience of infrastructure under weather-related risk. Computer-aided Civil and Infrastructure Engineering.https://doi.org/10.1111/mice.12843
Zhang, Y., Zhang, Z., Lim, A., Sim, M., 2021. Robust data-driven vehicle routing with time windows. Operations Research, 69 (2), 469–485. https://doi.org/10.1287/opre.2020.2043
Zhang, Z. G., 2023. Fundamentals of stochastic models. CRC Press.
Zhao, K., Jin, J. G., Lee, D.-H., 2017. Two-Stage stochastic programming model for robust personal rapid transit network design. Transportation Research Record, 2650 (1), 152–162. https://doi.org/10.3141/2650-18
Zhao, X., Bennell, J. A., Bektaş, T., Dowsland, K., 2016. A comparative review of 3D container loading algorithms. International Transactions in Operational Research, 23 (1–2), 287–320. https://doi.org/10.1111/itor.12094
Zhen, L., 2015. Tactical berth allocation under uncertainty. European Journal of Operational Research, 247 (3), 928–944. https://doi.org/10.1016/j.ejor.2015.05.079
Zheng, Y.-S., 1992. On properties of stochastic inventory systems. Management Science, 38 (1), 87–103. https://doi.org/10.1287/mnsc.38.1.87
Zhou, C., Ma, N., Cao, X., Lee, L. H., Chew, E. P., 2021. Classification and literature review on the integration of simulation and optimization in maritime logistics studies. IISE Transactions, 53 (10), 1157–1176. https://doi.org/10.1080/24725854.2020.1856981
Zhou, H., Qi, J., Yang, L., Shi, J., Pan, H., Gao, Y., 2022. Joint optimization of train timetabling and rolling stock circulation planning: A novel flexible train composition mode. Transportation Research Part B: Methodological, 162, 352–385. https://doi.org/10.1016/j.trb.2022.06.007
Zhou, H., Yang, Y., Chen, Y., Zhu, J., 2018. Data envelopment analysis application in sustainability: The origins, development and future directions. European Journal of Operational Research, 264 (1), 1–16. https://doi.org/10.1016/j.ejor.2017.06.023
Zhou, K., Doyle, J. C., 1998. Essentials of robust control. Prentice Hall.
Zhou, S. X., Tao, Z., Chao, X., 2011. Optimal control of inventory systems with multiple types of remanufacturable products. Manufacturing & Service Operations Management, 13 (1), 20–34. https://doi.org/10.1287/msom.1100.0298
Zhu, E., Crainic, T. G., Gendreau, M., 2014. Scheduled service network design for freight rail transportation. Operations Research, 62 (2), 383–400. https://doi.org/10.1287/opre.2013.1254
Zhu, J., 2015. Data envelopment analysis: A handbook of models and methods. Springer.
Zhu, Q., Wu, J., Song, M., Liang, L., 2017. A unique equilibrium efficient frontier with fixed-sum outputs in data envelopment analysis. Journal of the Operational Research Society, 68 (12), 1483–1490. https://doi.org/10.1057/s41274-017-0181-z
Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., He, Q., 2021. A comprehensive survey on transfer learning. Proceedings of the IEEE, 109 (1), 43–76. https://doi.org/10.1109/JPROC.2020.3004555
Ziel, F., 2016. Forecasting electricity spot prices using lasso: On capturing the autoregressive intraday structure. IEEE Transactions on Power Systems, 31 (6), 4977–4987. https://doi.org/10.1109/TPWRS.2016.2521545
Ziel, F., Liu, B., 2016. Lasso estimation for GEFCom2014 probabilistic electric load forecasting. International Journal of Forecasting, 32 (3), 1029–1037. https://doi.org/10.1016/j.ijforecast.2016.01.001
Ziel, F., Steinert, R., 2018. Probabilistic mid- and long-term electricity price forecasting. Renewable and Sustainable Energy Reviews, 94, 251–266. https://doi.org/10.1016/j.rser.2018.05.038
Ziel, F., Weron, R., 2018. Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs. multivariate modeling frameworks. Energy Economics, 70, 396–420. https://doi.org/10.1016/j.eneco.2017.12.016
Zikopoulos, C., Tagaras, G., 2008. On the attractiveness of sorting before disassembly in remanufacturing. IIE Transactions, 40 (3), 313–323. https://doi.org/10.1080/07408170701488078
Zipkin, P., 2000. Foundations of inventory management. McGraw-Hill.
Zis, T., Psaraftis, H. N., 2017. The implications of the new sulphur limits on the european Ro-Ro sector. Transportation Research Part D: Transport and Environment, 52, 185–201. https://doi.org/10.1016/j.trd.2017.03.010
Zis, T., Psaraftis, H. N., 2019. Operational measures to mitigate and reverse the potential modal shifts due to environmental legislation. Maritime Policy & Management, 46 (1), 117–132. https://doi.org/10.1080/03088839.2018.1468938
Zis, T. P. V., Psaraftis, H. N., Ding, L., 2020. Ship weather routing: A taxonomy and survey. Ocean Engineering, 213, 107697. https://doi.org/10.1016/j.oceaneng.2020.107697
Zografos, K. G., Salouras, Y., Madas, M. A., 2012. Dealing with the efficient allocation of scarce resources at congested airports. Transportation Research Part C: Emerging Technologies, 21 (1), 244–256. https://doi.org/10.1016/j.trc.2011.10.008
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.