Article (Scientific journals)
CORALIE radial velocity search for companions around evolved stars (CASCADES): II. Seismic masses for three red giants orbited by long-period massive planets
Buldgen, Gaël; Ottoni, G.; Pezzotti, Camilla et al.
2022In Astronomy and Astrophysics, 657, p. 88
Peer Reviewed verified by ORBi
 

Files


Full Text
BuldgenCASCADES.pdf
Publisher postprint (1.33 MB) Creative Commons License - Attribution
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Asteroseismology; Planetary systems; Stars: fundamental parameters; Stars: individual: HD 22532; Stars: individual: HD 64121; Stars: individual: HD 69123; Exo-planets; Planetary system; Star: individual: HD 22532; Star: individual: HD 64121; Star: individual: HD 69123; Stars: individual: proxima Centauri; Stars:fundamental parameters; Astronomy and Astrophysics; Space and Planetary Science; astro-ph.SR; astro-ph.EP
Abstract :
[en] Context. The advent of asteroseismology as the golden path to precisely characterize single stars naturally led to synergies with the field of exoplanetology. Today, the precise determination of stellar masses, radii and ages for exoplanet-host stars is a driving force in the development of dedicated software and techniques to achieve this goal. However, as various approaches exist, it is clear that they all have advantages and inconveniences and that there is a trade-off between accuracy, efficiency, and robustness of the techniques. Aims. We aim to compare and discuss various modelling techniques for exoplanet-host red giant stars for which TESS data are available. The results of the seismic modelling are then used to study the dynamical evolution and atmospheric evaporation of the planetary systems. Methods. We study, in detail, the robustness, accuracy and precision of various seismic modelling techniques when applied to four exoplanet-host red giants observed by TESS. We discuss the use of global seismic indexes, the use of individual radial frequencies and that of non-radial oscillations. In each case, we discuss the advantages and inconveniences of the modelling technique. Results. We determine precise and accurate masses of exoplanet-host red giant stars orbited by long-period Jupiter-like planets using various modelling techniques. For each target, we also provide a model-independent estimate of the mass from a mean density inversion combined with radii values from Gaia and spectroscopic data. We show that no engulfment or migration is observed for these targets, even if their evolution is extended beyond their estimated seismic ages up the red giant branch.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Buldgen, Gaël ;  Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Astrophysique stellaire théorique et astérosismologie ; Département d'Astronomie, Université de Genève, Sauverny, Switzerland
Ottoni, G.;  Département d'Astronomie, Université de Genève, Sauverny, Switzerland
Pezzotti, Camilla ;  Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR) ; Département d'Astronomie, Université de Genève, Sauverny, Switzerland
Lyttle, A.;  School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Eggenberger, P.;  Département d'Astronomie, Université de Genève, Sauverny, Switzerland
Udry, S.;  Département d'Astronomie, Université de Genève, Sauverny, Switzerland
Ségransan, D.;  Département d'Astronomie, Université de Genève, Sauverny, Switzerland
Miglio, A.;  School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom ; Dipartimento di Fisica e Astronomia, Università Degli Studi di Bologna, Bologna, Italy ; INAF-Astrophysics and Space Science Observatory Bologna, Bologna, Italy
Mayor, M.;  Département d'Astronomie, Université de Genève, Sauverny, Switzerland
Lovis, C.;  Département d'Astronomie, Université de Genève, Sauverny, Switzerland
Elsworth, Y.;  School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Davies, G.R.;  School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Ball, W.H.;  School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
More authors (3 more) Less
Language :
English
Title :
CORALIE radial velocity search for companions around evolved stars (CASCADES): II. Seismic masses for three red giants orbited by long-period massive planets
Publication date :
2022
Journal title :
Astronomy and Astrophysics
ISSN :
0004-6361
eISSN :
1432-0746
Publisher :
EDP Sciences
Volume :
657
Pages :
A88
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
Acknowledgements. We thank the referees for their suggestions and careful reading of the manuscript. G. B. acknowledges fundings from the SNF AMBIZIONE grant No. 185805 (Seismic inversions and modelling of transport processes in stars). C. P. acknowledges fundings from the Swiss National Science Foundation (project Interacting Stars, number 200020-172505). P.E. has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 833925, project STAREX). W.H.B., G.D. and A.L. thanks the UK Science and Technology Facilities Council (STFC) for support under grant ST/R0023297/1. This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (CartographY GA. 804752). The research leading to this paper has received funding from the European Research Council (ERC grant agreement No. 772293 for the project ASTEROCHRONOMETRY). This article used an adapted version of InversionKit, a software developed within the HELAS and SPACEINN networks, funded by the European Commissions’s Sixth and Seventh Framework Programmes.
Commentary :
Accepted for publication in Astronomy and Astrophysics. Part of the CASCADES series of papers
Available on ORBi :
since 29 December 2023

Statistics


Number of views
1 (0 by ULiège)
Number of downloads
2 (0 by ULiège)

Scopus citations®
 
1
Scopus citations®
without self-citations
1
OpenCitations
 
2

Bibliography


Similar publications



Contact ORBi