Convection; Stars: evolution; Stars: oscillations; Convective envelope; Energy; Large amplitude; Sound speed; Star oscillations; Star: evolution; Stellar modeling; Stellars; Transition regions; Astronomy and Astrophysics; Space and Planetary Science
Abstract :
[en] Context. The transition between convective and radiative stellar regions is still not fully understood. This currently leads to a poor modelling of the transport of energy and chemical elements in the vicinity of these regions. The sharp variations in sound speed located in these transition regions give rise to a signature in specific seismic indicators, opening the possibility to constrain the physics of convection to radiation transition. Among those seismic indicators, the ratios of the small to large frequency separation for l = 0 and 1 modes (r010) were shown to be particularly efficient to probe these transition regions. Interestingly, in the Kepler Legacy F-type stars, the oscillatory signatures left in the r010 ratios by the sharp sound-speed variation have unexpected large amplitudes that still need to be explained. Aims. We analyse the r010 ratios of stellar models of solar-like oscillating F-type stars in order to investigate the origin of the observed large amplitude signatures of the r010 ratios. Methods. We tested different possibilities that may be at the origin of the large amplitude signatures using internal structures of stellar models. We then derived an analytical expression of the signature, in particular, of the amplitude of variation, that we tested against stellar models. Results. We show that the signature of the bottom of the convective envelope is amplified in the ratios r010 by the frequency dependence of the amplitude compared to the signal seen in the frequencies themselves or the second differences. We also find that with precise enough data, a smoother transition between the adiabatic and radiative temperature gradients could be distinguished from a fully adiabatic region. Furthermore, we find that among the different options of physical input investigated here, large amplitude signatures can only be obtained when convective penetration of the surface convective zone into the underlying radiative region is taken into account. In this case and even for amplitudes as large as those observed in F-type stars, the oscillating signature in the r01 ratios can only be detected when the convective envelope is deep enough (i.e. at the end of the main sequence). Assuming that the origin of the large amplitude glitch signal is due to penetrative convection (PC), we find that the PC must extend downward the convective to radiative transition significantly (about 12Hp) in order to reproduce the large amplitudes observed for the ratios of F-type stars. This deep extension of the convective envelope causes doubt that the origin of the large amplitudes is due to PC as it is modelled here or implies that current stellar modelling (without PC) leads to an underestimation of the size of convective envelopes. In any case, studying the glitch signatures of a large number of oscillating F-type stars opens the possibility to constrain the physics of the stellar interior in these regions.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Deal, M. ; Université de Montpellier, LUPM, Cnrs, Montpellier, France ; Instituto de Astrofísica e Ciências Do Espaço, Universidade Do Porto, Caup, Porto, Portugal
Goupil, M.-J.; Université Psl, Lesia, Observatoire de Paris, Cnrs, Meudon, France
Cunha, M.S. ; Instituto de Astrofísica e Ciências Do Espaço, Universidade Do Porto, Caup, Porto, Portugal
Monteiro, M.J.P.F.G.; Instituto de Astrofísica e Ciências Do Espaço, Universidade Do Porto, Caup, Porto, Portugal ; Departamento de Física e Astronomia, Faculdade de Ciências, Universidade Do Porto, Porto, Portugal
Lebreton, Y. ; Université Psl, Lesia, Observatoire de Paris, Cnrs, Meudon, France ; Ipr (Institut de Physique de Rennes) - Umr 6251, Université de Rennes, Cnrs, Rennes, France
Christophe, S. ; Université Psl, Lesia, Observatoire de Paris, Cnrs, Meudon, France
Pereira, F.; Instituto de Astrofísica e Ciências Do Espaço, Universidade Do Porto, Caup, Porto, Portugal
Samadi, R. ; Université Psl, Lesia, Observatoire de Paris, Cnrs, Meudon, France
Oreshina, A.V.; Sternberg Astronomical Institute, Lomonosov Moscow State University, Moscow, Russian Federation
Buldgen, Gaël ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Astrophysique stellaire théorique et astérosismologie ; Département d'Astronomie, Université de Genève, Versoix, Switzerland
Language :
English
Title :
Glitches in solar-like oscillating F-type stars: Theoretical signature of the base of the convective envelope on the ratios r 010
We gratefully thank our anonymous referee whose comprehensive readings and remarks helped to improve the content of the manuscript. We also thank Jérôme Ballot for an interesting discussion related to this work. This work was supported by CNES, focused on PLATO. This work was supported by FCT/MCTES through the research grants UIDB/04434/2020, UIDP/04434/2020 and PTDC/FIS-AST/30389/2017. MD and MSC (CEECIND/02619/2017) are supported by national funds through FCT in the form of a work contract. GB acknowledges fundings from the SNF AMBIZIONE grant No 185805 (Seismic inversions and modelling of transport processes in stars). MD thanks Gaëtan Sary for fruitful mathematical discussions.
Anders, E. H., Jermyn, A. S., Lecoanet, D., & Brown, B. P. 2022 a, ApJ, 926, 169
Anders, E. H., Jermyn, A. S., Lecoanet, D., et al. 2022 b, Res. Notes Am. Astron. Soc., 6, 41
Angulo, C. 1999, Am. Inst. Phys. Conf. Ser., 495, 365
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481
Ayukov, S. V., Baturin, V. A., Gryaznov, V. K., Iosilevsky, I. L., & Starostin, A. N. 2004, in Equation-of-State and Phase-Transition in Models of Ordinary Astrophysical Matter, eds. V. Celebonovic, D. Gough, & W. Däppen, Am. Inst. Phys. Conf. Ser., 731, 178
Baglin, A. 2006, in The CoRoT Mission Pre-Launch Status Stellar Seismology and Planet Finding, eds. M. Fridlund, A. Baglin, J. Lochard, & L. Conroy, ESA Spec. Pub., 1306, 111
Baglin, A., Michel, E., & Noels, A. 2013, in Progress in Physics of the Sun and Stars: A New Era in Helio-and Asteroseismology, eds. H. Shibahashi, & A. E. Lynas-Gray, ASP Conf. Ser., 479, 461
Ballot, J., Turck-Chièze, S., & García, R. A. 2004, A&A, 423, 1051
Basu, S. 1997, MNRAS, 288, 572
Basu, S., & Antia, H. M. 1994, MNRAS, 269, 1137
Baturin, V. A., & Mironova, I. V. 2010, Ap&SS, 328, 265
Baturin, V. A., Ayukov, S. V., Gryaznov, V. K., et al. 2013, in Progress in Physics of the Sun and Stars: A New Era in Helio-and Asteroseismology, eds. H. Shibahashi, & A. E. Lynas-Gray, ASP Conf. Ser., 479, 11
Baturin, V. A., Däppen, W., Morel, P., et al. 2017, A&A, 606, A129
Berthomieu, G., Morel, P., Provost, J., & Zahn, J. P. 1993, in IAU Colloq. 137: Inside the Stars, eds. W. W. Weiss, & A. Baglin, ASP Conf. Ser., 40, 60
Böhm-Vitense, E. 1958, ZAp, 46, 108
Borucki, W., Koch, D., Batalha, N., et al. 2009, in Transiting Planets, eds. F. Pont, D. Sasselov, & M. J. Holman, 253, 289
Brandão, I. M., Cunha, M. S., & Christensen-Dalsgaard, J. 2014, MNRAS, 438, 1751
Breton, S. N., Brun, A. S., & García, R. A. 2022, A&A, 667, A43
Brito, A., & Lopes, I. 2017, MNRAS, 466, 2123
Brito, A., & Lopes, I. 2018, ApJ, 853, 183
Brito, A., & Lopes, I. 2019, MNRAS, 488, 1558
Broomhall, A.-M., Chaplin, W. J., Davies, G. R., et al. 2009, MNRAS, 396, L100
Canuto, V. M., Goldman, I., & Mazzitelli, I. 1996, ApJ, 473, 550
Chaplin, W. J., & Miglio, A. 2013, ARA&A, 51, 353
Christensen-Dalsgaard, J. 2008, Ap&SS, 316, 113
Christensen-Dalsgaard, J., Monteiro, M. J. P. F. G., Rempel, M., & Thompson, M. J. 2011, MNRAS, 414, 1158
Christensen-Dalsgaard, J., Monteiro, M. J. P. F. G., & Thompson, M. J. 1995, MNRAS, 276, 283
Christophe, S. 2019,. PhD Thesis, Université PSL, https://tel.archives-ouvertes.fr/tel-02883979/document
Cox, J. P. 1980,. Theory of Stellar Pulsation
Cunha, M. S., & Brandão, I. M. 2011, A&A, 529, A10
Cunha, M. S., & Metcalfe, T. S. 2007, ApJ, 666, 413
Cunha, M. S., Aerts, C., Christensen-Dalsgaard, J., et al. 2007, A&ARv, 14, 217
Deal, M., Richard, O., & Vauclair, S. 2016, A&A, 589, A140
Deal, M., Alecian, G., Lebreton, Y., et al. 2018, A&A, 618, A10
Deheuvels, S., Michel, E., Goupil, M. J., et al. 2010, A&A, 514, A31
Deheuvels, S., Brandão, I., Silva Aguirre, V., et al. 2016, A&A, 589, A93
Farnir, M., Dupret, M. A., Salmon, S. J. A. J., Noels, A., & Buldgen, G. 2019, A&A, 622, A98
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306
García, R. A., & Ballot, J. 2019, Liv. Rev. Sol. Phys., 16, 4
Gough, D. O. 1990, in Comments on Helioseismic Inference, eds. Y. Osaki, & H. Shibahashi, 367, 283
Gough, D. O. 1993, Astrophysical Fluid Dynamics – Les Houches, 1987, 399
Gough, D. O. 2002, in Stellar Structure and Habitable Planet Finding, eds. B. Battrick, F. Favata, I. W. Roxburgh, & D. Galadi, ESA Spec. Pub., 485, 65
Gryaznov, V. K., Ayukov, S. V., Baturin, V. A., et al. 2004, in Equation-of-State and Phase-Transition in Models of Ordinary Astrophysical Matter, eds. V. Celebonovic, D. Gough, & W. Däppen, Am. Inst. Phys. Conf. Ser., 731, 147
Gryaznov, V. K., Ayukov, S. V., Baturin, V. A., et al. 2006, J. Phys. A Math. Gen., 39, 4459
Hale, S. J., Howe, R., Chaplin, W. J., Davies, G. R., & Elsworth, Y. P. 2016, Sol. Phys., 291, 1
Houdek, G., & Gough, D. O. 2007, MNRAS, 375, 861
Huber, D., Bedding, T. R., Stello, D., et al. 2011, ApJ, 743, 143
Imbriani, G., Costantini, H., Formicola, A., et al. 2004, A&A, 420, 625
Koch, D. G., Borucki, W. J., Basri, G., et al. 2010, ApJ, 713, L79
Lebreton, Y., & Goupil, M. J. 2012, A&A, 544, L13
Lebreton, Y., & Goupil, M. J. 2014, A&A, 569, A21
Libbrecht, K. G., Woodard, M. F., & Kaufman, J. M. 1990, ApJS, 74, 1129
Lund, M. N., Silva Aguirre, V., Davies, G. R., et al. 2017 a, ApJ, 850, 110
Lund, M. N., Silva Aguirre, V., Davies, G. R., et al. 2017 b, ApJ, 835, 172
Marques, J. P., Goupil, M. J., Lebreton, Y., et al. 2013, A&A, 549, A74
Mazumdar, A., Monteiro, M. J. P. F. G., Ballot, J., et al. 2012, Astron. Nachr., 333, 1040
Mazumdar, A., Monteiro, M. J. P. F. G., Ballot, J., et al. 2014, ApJ, 782, 18
Michaud, G., & Proffitt, C. R. 1993, in IAU Colloq. 137: Inside the Stars, eds. W. W. Weiss, & A. Baglin, ASP Conf. Ser., 40, 246
Michaud, G., Alecian, G., & Richer, J. 2015, Atomic Diffusion in Stars (Springer International Publishing Switzerland)
Monteiro, M. J. P. F. G., & Thompson, M. J. 2005, MNRAS, 361, 1187
Monteiro, M. J. P. F. G., Christensen-Dalsgaard, J., & Thompson, M. J. 1993, in Inside the Stars, eds. W. W. Weiss, & A. Baglin, IAU Colloq. 137, ASP Conf. Ser., 40, 557
Monteiro, M. J. P. F. G., Christensen-Dalsgaard, J., & Thompson, M. J. 1994, A&A, 283, 247
Monteiro, M. J. P. F. G., Christensen-Dalsgaard, J., & Thompson, M. J. 2000, MNRAS, 316, 165
Morel, P., & Lebreton, Y. 2008, Ap&SS, 316, 61
Pereira, L. F. R., Faria, J. P. S., & Monteiro, M. J. P. F. G. 2017, Eur. Phys. J. Web Conf., 160, 01015
Popielski, B. L., & Dziembowski, W. A. 2005, Acta Astron., 55, 177