Dogs; Animals; Tomography, X-Ray Computed/veterinary; Tomography, X-Ray Computed/methods; Blood Volume/physiology; Carcinoma, Squamous Cell/diagnostic imaging; Carcinoma, Squamous Cell/veterinary; Carcinoma, Squamous Cell/blood supply; Sarcoma/diagnostic imaging; Sarcoma/veterinary; Dog Diseases/diagnostic imaging; Blood Volume; Carcinoma, Squamous Cell; Dog Diseases; Sarcoma; Tomography, X-Ray Computed; Veterinary (all); General Veterinary; General Medicine
Abstract :
[en] [en] OBJECTIVE: Treatment of orofacial tumors in dogs is associated with high morbidity and reliable prognostic factors are lacking. Dynamic contrast-enhanced computed tomography (DCECT) can be used to assess tumor perfusion. The objectives of this study were to describe the perfusion parameters of different types of orofacial tumors and to describe the changes in perfusion parameters during radiotherapy (RT) in a subset of them.
ANIMALS: 11 dogs with orofacial tumors prospectively recruited.
CLINICAL PRESENTATION AND PROCEDURES: All dogs had baseline DCECT to assess blood volume (BV), blood flow (BF), and transit time (TT). Five dogs had repeat DCECT during megavoltage RT.
RESULTS: 5 squamous cell carcinomas, 3 sarcomas, 1 melanoma, 1 histiocytic sarcoma, and 1 acanthomatous ameloblastoma were included. Blood volume and BF were higher in squamous cell carcinomas than in sarcomas, although no statistical analysis was performed. At repeat DCECT, 4 dogs showed a reduction in the size of their tumor during RT. Among these dogs, 3 showed an increase in BV and BF and 1 a decrease in these parameters between the baseline and the follow-up DCECT. The only dog whose tumor increased in size between the first and the second DCECT showed a decrease in BV and BF.
CLINICAL RELEVANCE: Perfusion parameters derived from DCECT were described in a series of dogs with various types of orofacial tumors. The results suggest that epithelial tumors could have higher BV and BF than mesenchymal tumors, although larger sample sizes are needed to support these preliminary findings.
Disciplines :
Veterinary medicine & animal health
Author, co-author :
Mortier, Jérémy ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) ; Small Animal Teaching Hospital, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, United Kingdom
Maddox, Thomas W; Small Animal Teaching Hospital, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, United Kingdom
Blackwood, Laura; Small Animal Teaching Hospital, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, United Kingdom
La Fontaine, Matthew D; The Netherlands Cancer Institute, Amsterdam, the Netherlands
Busoni, Valeria ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Médecine vétérinaire comparée
Language :
English
Title :
Dynamic contrast-enhanced computed tomography in 11 dogs with orofacial tumors.
Publication date :
01 May 2023
Journal title :
American Journal of Veterinary Research
ISSN :
0002-9645
eISSN :
1943-5681
Publisher :
American Veterinary Medical Association, United States
Results from this study were presented at the EAVDI-BID meeting 2022 in Warwick, UK. The authors received a research grant from the university of Liège for this work.
Amory JT, Reetz JA, Sánchez MD, et al. Computed tomographic characteristics of odontogenic neoplasms in dogs. Vet Radiol Ultrasound. 2014;55:147–158. doi:10.1111/vru.12101
Cray M, Selmic LE, Kindra C, et al. Analysis of risk factors associated with complications following mandibulectomy and maxillectomy in dogs. J Am Vet Med Assoc. 2021;259(3):265–274. doi:10.2460/javma.259.3.265
Lee S, Jang Y, Lee G, Jeon S, Kim D, Choi J. CT features of malignant and benign oral tumors in 28 dogs. Vet Radiol Ultrasound. 2021;62(5):549–556. doi:10.1111/vru.12996
Kawabe M, Mori T, Ito Y, et al. Outcomes of dogs undergoing radiotherapy for treatment of oral malignant melanoma: 111 cases (2006–2012). J Am Vet Med Assoc. 2015;247(10):1146–1153. doi:10.2460/javma.247.10.1146
Poirier VJ, Bley CR, Roos M, Kaser-hotz B. Efficacy of RT for the treatment of macroscopic canine oral STS. In Vivo (Brooklyn). 2006;20(3):415–419.
Proulx DR, Ruslander DM, Dodge RK, et al. A retrospective analysis of 140 dogs with oral melanoma treated with external beam radiation. Vet Radiol Ultrasound. 2003;44(3):352–359. doi:10.1111/j.1740-8261.2003. tb00468.x
Sarowitz BN, Davis GJ, Kim S. Outcome and prognostic factors following curative-intent surgery for oral tumours in dogs: 234 cases (2004 to 2014). J Small Anim Pract. 2017;58(3):146–153. doi:10.1111/jsap.12624
Riggs J, Adams VJ, Hermer JV, Dobson JM, Murphy S, Ladlow JF. Outcomes following surgical excision or surgical excision combined with adjunctive, hypofractionated radiotherapy in dogs with oral squamous cell carcinoma or fibrosarcoma. J Am Vet Med Assoc. 2018;253(1): 73–83. doi:10.2460/javma.253.1.73
Selmic LE, Lafferty MH, Kamstock DA, et al. Outcome and prognostic factors for osteosarcoma of the maxilla, mandible, or calvarium in dogs: 183 cases (1986–2012). J Am Vet Med Assoc. 2014;245(8):930–938. doi:10.2460/javma.245.8.930
Sharma S, Boston SE, Skinner OT, et al. Survival time of juvenile dogs with oral squamous cell carcinoma treated with surgery alone: a Veterinary Society of Surgical Oncology retrospective study. Vet Surg. 2021;50(4): 740–747. doi:10.1111/vsu.13625
Coyle VJ, Rassnick KM, Borst LB, et al. Biological behaviour of canine mandibular osteosarcoma. A retrospective study of 50 cases (1999–2007). Vet Comp Oncol. 2015;13(2):89–97. doi:10.1111/vco.12020
Tuohy JL, Selmic LE, Worley DR, Ehrhart NP, Withrow SJ. Outcome following curative-intent surgery for oral melanoma in dogs: 70 cases (1998–2011). J Am Vet Med Assoc. 2014;245(11):1266–1273. doi:10.2460/javma.245.11.1266
Mestrinho LA, Faísca P, Peleteiro MC, Niza MMRE. PCNA and grade in 13 canine oral squamous cell carcinomas: association with prognosis. Vet Comp Oncol. 2017;15(1):18–24. doi:10.1111/vco.12134
Miles KA, Lee TY, Goh V, et al. Current status and guidelines for the assessment of tumour vascular support with dynamic contrast-enhanced computed tomography. Eur Radiol. 2012;22(7):1430–1441. doi:10.1007/s00330-012-2379-4
Cuenod CAA, Balvay D. Perfusion and vascular permeability: basic concepts and measurement in DCE-CT and DCE-MRI. Diagn Interv Imaging. 2013;94(12):1187–1204. doi:10.1016/j.diii.2013.10.010
García-Figueiras R, Goh VJ, Padhani AR, et al. CT perfusion in oncologic imaging: a useful tool? Am J of Roentgenol. 2013;200(1):8–19. doi:10.2214/AJR.11.8476
Vaupel P. Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol. 2004;14(3):198–206.doi:10.1016/j.semradonc.2004.04.008
Razek AAKA, Tawfik AM, Elsorogy LGA, Soliman NY. Perfusion CT of head and neck cancer. Eur J Radiol. 2014;83(3):537–544. doi:10.1016/j.ejrad.2013.12.008
Preda L, Calloni SF, Moscatelli MEM, Cossu Rocca M, Bellomi M. Role of CT perfusion in monitoring and prediction of response to therapy of head and neck squamous cell carcinoma. Biomed Res Int. 2014;2014:917150. doi:10.1155/2014/917150
Petralia G, Preda L, Giugliano G, et al. Perfusion computed tomography for monitoring induction chemotherapy in patients with squamous cell carcinoma of the upper aerodigestive tract: correlation between changes in tumor perfusion and tumor volume. J Comput Assist Tomogr. 2009;33(4):552–559. doi:10.1097/RCT.0b013e31818d446e
Troeltzsch D, Niehues SM, Fluegge T, et al. The diagnostic performance of perfusion CT in the detection of local tumor recurrence in head and neck cancer. Clin Hemorheol Microcirc. 2020;76(2):171–177. doi:10.3233/CH-209209
Camp S, Fisher P, Thrall DE. Dynamic CT measurement of contrast medium washin kinetics in canine nasal tumors. Vet Radiol Ultrasound. 2000;41(5):403–408. doi:10.1111/j.1740-8261.2000.tb01861.x
Malinen E, Rødal J, Knudtsen IS, Søvik Å, Skogmo HK. Spatiotemporal analysis of tumor uptake patterns in dynamic (18)FDG-PET and dynamic contrast enhanced CT. Acta Oncol. 2011;50(6):873–882. doi:10.3109/02841 86X.2011.579161
Hansen AE, Kristensen AT, Law I, McEvoy FJ, Kjær A, Engelholm SA. Multimodality functional imaging of spontaneous canine tumors using 64Cu-ATSM and 18FDG PET/CT and dynamic contrast enhanced perfusion CT. Radiother Oncol. 2012;102(3):424–428. doi:10.1016/j.radonc.2011.10.021
Nitzl D, Ohlerth S, Mueller-Schwandt F, Angst A, Roos M, Kaser-Hotz B. Dynamic computed tomography to measure tissue perfusion in spontaneous canine tumors. Vet Radiol Ultrasound. 2009;50(4):347–352. doi:10.1111/j.1740-8261.2009.01548.x
Rødal J, Rusten E, Søvik Å, Skogmo HK, Malinen E. Functional imaging to monitor vascular and metabolic response in canine head and neck tumors during fractionated radiotherapy. Acta Oncol. 2013;52(7):1293–1299. doi:10.3109/0284186X.2013.812800
Zwingenberger AL, Pollard RE, Taylor SL, Chen RX, Nunley J, Kent MS. Perfusion and volume response of canine brain tumors to stereotactic radiosurgery and radiotherapy. J Vet Intern Med. 2016;30(3):827–835. doi:10.1111/jvim.13945
la Fontaine MD, McDaniel LS, Kubicek LN, Chappell RJ, Forrest LJ, Jeraj R. Patient characteristics influencing the variability of distributed parameter-based models in DCE-CT kinetic analysis. Vet Comp Oncol. 2017;15(1): 105–117. doi:10.1111/vco.12143
Takagi S, Yamazaki H, Izumi Y, Hanazono K, Hoshino Y, Hosoya K. Assessment of tumor enhancement by contrast-enhanced CT in solid tumor-bearing dogs treated with toceranib phosphate. Vet Radiol Ultrasound. 2020;61(4):427–434. doi:10.1111/vru.12856
Trojanowska A, Trojanowski P, Drop A, Jargiełło T, Klatka J. Head and neck cancer: value of perfusion CT in depicting primary tumor spread. Med Sci Monit. 2012;18(2): CR112–118. doi:10.12659/MSM.882466
Tian F, Hayano K, Kambadakone AR, Sahani DV. Response assessment to neoadjuvant therapy in soft tissue sarcomas: using CT texture analysis in comparison to tumor size, density, and perfusion. Abdom Imaging. 2015;40(6):1705–1712. doi:10.1007/s00261-014-0318-3
Nemec A, Murphy B, Kass PH, Verstraete FJM. Histological subtypes of oral non-tonsillar squamous cell carcinoma in dogs. J Comp Pathol. 2012;147(2–3):111–120. doi:10.1016/j.jcpa.2011.11.198
Hermans R, Meijerink M, van den Bogaert W, Rijnders A, Weltens C, Lambin P. Tumor perfusion rate determined noninvasively by dynamic computed tomography predicts outcome in head-and-neck cancer after radiotherapy. Int J Radiat Oncol Biol Phys. 2003;57(5):1351–1356. doi:10.1016/S0360-3016(03)00764-8
Zima A, Carlos R, Gandhi D, Case I, Teknos T, Mukherji SK. Can pretreatment CT perfusion predict response of advanced squamous cell carcinoma of the upper aerodigestive tract treated with induction chemotherapy? AJNR Am J Neuroradiol. 2007;28(2):328–334.
Bisdas S, Nguyen SA, Anand SK, Glavina G, Day T, Rumboldt Z. Outcome prediction after surgery and chemoradiation of squamous cell carcinoma in the oral cavity, oropharynx, and hypopharynx: use of baseline perfusion CT microcirculatory parameters vs. tumor volume. Int J Radiat Oncol Biol Phys. 2009;73(5):1313–1318. doi:10.1016/j.ijrobp.2008.06.1956
Bisdas S, Rumboldt Z, Surlan-Popovic K, et al. Perfusion CT in squamous cell carcinoma of the upper aerodigestive tract: long-term predictive value of baseline perfusion CT measurements. Am J Neuroradiol. 2010;31(3):576–581. doi:10.3174/ajnr.A1852
Truong MT, Saito N, Ozonoff A, et al. Prediction of locoregional control in head and neck squamous cell carcinoma with serial CT perfusion during radiotherapy. Am J Neuroradiol. 2011;32(7):1195–1201. doi:10.3174/ajnr.A2501
Pietsch C, de Galiza Barbosa F, Hüllner MW, et al. Combined PET/CT-perfusion in patients with head and neck cancers might predict failure after radio-chemotherapy: a proof of concept study. BMC Med Imaging. 2015;15(1):1–9. doi:10.1186/s12880-015-0102-z
Brizel DM, Sibley GS, Prosnitz LR, Scher RL, Dewhirst MW. Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys. 1997;38(2):285–289. doi:10.1016/S0360-3016(97)00101-6
Surlan-Popovic K, Bisdas S, Rumboldt Z, Koh TS, Strojan P. Changes in perfusion CT of advanced squamous cell carcinoma of the head and neck treated during the course of concomitant chemoradiotherapy. Am J Neuroradiol. 2010;31(3):570–575. doi:10.3174/ajnr.A1859
Abramyuk A, Hietschold V, Appold S, von Kummer R, Abolmaali N. Radiochemotherapy-induced changes of tumour vascularity and blood supply estimated by dynamic contrast-enhanced CT and fractal analysis in malignant head and neck tumours. Br J Radiol. 2015;88(1045). doi:10.1259/bjr.20140412
Haider MA, Milosevic M, Fyles A, et al. Assessment of the tumor microenvironment in cervix cancer using dynamic contrast enhanced CT, interstitial fluid pressure and oxygen measurements. Int J Radiat Oncol Biol Phys. 2005;62:1100–1107. doi:10.1016/j.ijrobp.2004.12.064
Aoki M, Takai Y, Narita Y, et al. Correlation between tumor size and blood volume in lung tumors: a prospective study on dual-energy gemstone spectral CT imaging. J Radiat Res. 2014;55:917–923. doi:10.1093/jrr/rru026
Chen C, Kang Q, Wei Q, et al. Correlation between CT perfusion parameters and Fuhrman grade in pTlb renal cell carcinoma. Abdom Radiol. 2017;42:1464–1471. doi:10.1007/s00261-016-1009-z
Mander K, Finnie J. Tumour angiogenesis, anti-angiogenic therapy and chemotherapeutic resistance. Aust Vet J. 2018;96:371–378. doi:10.1111/avj.12747
Ng CS, Wei W, Ghosh P, Anderson E, Herron DH, Chandler AG. Observer variability in CT perfusion parameters in primary and metastatic tumors in the lung. Technol Cancer Res Treat. 2018;17:1–9. doi:10.1177/1533034618769767