Binaries: close; Stars: individual: HD 98800; Stars: pre-main sequence; Techniques: high angular resolution; Techniques: interferometric; Orbital parameters; Orbitals; Quadruple systems; Radial velocity; Star: individual: HD 98800; Stars: individual: proxima Centauri; Technique: interferometric; Techniques: high angular resolutions; Astronomy and Astrophysics; Space and Planetary Science; astro-ph.SR; astro-ph.EP; astro-ph.IM
Abstract :
[en] Context. HD 98800 is a young (∼10 Myr old) and nearby (∼45 pc) quadruple system, composed of two spectroscopic binaries orbiting around each other (AaAb and BaBb), with a gas-rich disk in polar configuration around BaBb. While the orbital parameters of BaBb and AB are relatively well constrained, this is not the case for AaAb. A full characterisation of this quadruple system can provide insights on the formation of such a complex system. Aims. The goal of this work is to determine the orbit of the AaAb subsystem and refine the orbital solution of BaBb using multi-epoch interferometric observations with the Very Large Telescope Interferometer PIONIER and radial velocities. Methods. The PIONIER observations provide relative astrometric positions and flux ratios for both AaAa and BaBb subsystems. Combining the astrometric points with radial velocity measurements, we determine the orbital parameters of both subsystems. Results. We refined the orbital solution of BaBb and derived, for the first time, the full orbital solution of AaAb. We confirmed the polar configuration of the circumbinary disk around BaBb. From our solutions, we also inferred the dynamical masses of AaAb (MAa=0.93±0.09 and MAb=0.29±0.02M). We also revisited the parameters of the AB outer orbit. Conclusions. The orbital parameters are relevant to test the long-term stability of the system and to evaluate possible formation scenarios of HD 98800. Using the N-body simulation, we show that the system should be dynamically stable over thousands of orbital periods and that it made preliminary predictions for the transit of the disk in front of AaAb which is estimated to start around 2026. We discuss the lack of a disk around AaAb, which can be explained by the larger X-ray luminosity of AaAb, promoting faster photo-evaporation of the disk. High-resolution infrared spectroscopic observations would provide radial velocities of Aa and Ab (blended lines in contemporary observations), which would allow us to calculate the dynamical masses of Aa and Ab independently of the parallax of BaBb. Further monitoring of other hierarchical systems will improve our understanding of the formation and dynamical evolution of these kinds of systems.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Zúñiga Fernández, Sebastián Gaspar ; Université de Liège - ULiège > Astrobiology ; Núcleo Milenio de Formación Planetaria (NPF), Valparaíso, Chile ; European Southern Observatory, Santiago de Chile, Chile ; Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
Olofsson, J.; Núcleo Milenio de Formación Planetaria (NPF), Valparaíso, Chile ; Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
Bayo, A.; Núcleo Milenio de Formación Planetaria (NPF), Valparaíso, Chile ; Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
Haubois, X.; European Southern Observatory, Santiago de Chile, Chile
Corral-Santana, J.M.; European Southern Observatory, Santiago de Chile, Chile
Lopera-Mejía, A.; Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
Ronco, M.P.; Núcleo Milenio de Formación Planetaria (NPF), Valparaíso, Chile ; Instituto de Astrofísica - Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile
Gallenne, A.; Nicolaus Copernicus Astronomical Centre, Polish Academy of Sciences, Warszawa, Poland ; Universidad de Concepción, Departamento de Astronomía, Casilla 160-C, Concepción, Chile ; Unidad Mixta Internacional Franco-Chilena de Astronomía (CNRS Umi 3386), Departamento de Astronomía, Universidad de Chile, Santiago, Chile
Kennedy, G.M.; Department of Physics, University of Warwick, Coventry, United Kingdom
Berger, J.-P.; Université Grenoble Alpes, Cnrs, Ipag, Grenoble, France
Language :
English
Title :
The HD 98800 quadruple pre-main sequence system: Towards full orbital characterisation using long-baseline infrared interferometry
ESO - European Southern Observatory ANID - Agencia Nacional de Investigación y Desarrollo FONDECYT - National Fund for Scientific and Technological Development
Funding text :
Acknowledgements. The authors would like to thank the anonymous referee for constructive comments that helped to improve the content and clarity of this paper. S.Z.-F. acknowledges financial support from the European Southern Observatory via its studentship program and ANID via PFCHA/Doctorado Nacional/2018-21181044. J.O. acknowledges support from the Universidad de Valparaíso and from Fondecyt (grant 1180395). S.Z.-F., A.B., J.O. and M.P.R. acknowledge support by ANID, – Millennium Science Initiative Program – NCN19_171. A.B. acknowledges support from Fondecyt (grant 1190748). M.P.R. acknowledges support from Fondecyt (grant 3190336). G.M.K. is supported by the Royal Society as a Royal Society University Research Fellow. This research made use of exoplanet (Foreman-Mackey et al. 2020) and its dependencies (Astropy Collaboration 2013, 2018; Salvatier et al. 2016; Theano Development Team 2016). This research has made use of the Washington Double Star Catalog maintained at the U.S. Naval Observatory. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/ web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This publication makes use of VOSA (Bayo et al. 2008), developed under the Spanish Virtual Observatory project supported by the Spanish MINECO through grant AyA2017-84089. This research has made use of NASA’s Astrophysics Data System.
Commentary :
Accepted for publication in Astronomy \& Astrophysiscs journal
(01/09/2021)
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Allard, F., Homeier, D., Freytag, B., et al. 2013, Mem. Soc. Astron. It. Suppl., 24, 128
Aly, H., Dehnen, W., Nixon, C., & King, A. 2015, MNRAS, 449, 65
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481
Astropy Collaboration (Robitaille, T. P., et al.) 2013, A&A, 558, A33
Astropy Collaboration (Price-Whelan, A. M., et al.) 2018, AJ, 156, 123
Baráe, I., Homeier, D., Allard, F., & Chabrier, G. 2015, A&A, 577, A42
Bayo, A., Rodrigo, C., Barrado Y Navascués, D., et al. 2008, A&A, 492, 277
Berger, J. P., & Segransan, D. 2007, New Astron. Rev., 51, 576
Boden, A. F., Sargent, A. I., Akeson, R. L., et al. 2005, ApJ, 635, 442
Bodenheimer, P. 1978, ApJ, 224, 488
Bonneau, D., Clausse, J. M., Delfosse, X., et al. 2006, A&A, 456, 789
Bonneau, D., Delfosse, X., Mourard, D., et al. 2011, A&A, 535, A53
Bonnell, I. A., & Bate, M. R. 1994, MNRAS, 271, 999
Cáau, E., Ludwig, H. G., Steén, M., Freytag, B., & Bonifacio, P. 2011, Sol. Phys., 268, 255
Chelli, A., Duvert, G., Bourgès, L., et al. 2016, A&A, 589, A112
Cincotta, P. M., & Simó, C. 2000, A&AS, 147, 205
Cuello, N., & Giuppone, C. A. 2019, A&A, 628, A119
Czekala, I., Chiang, E., Andrews, S. M., et al. 2019, ApJ, 883, 22
Czekala, I., Ribas, Á., Cuello, N., et al. 2021, ApJ, 912, 6
Douglass, G. G., & Worley, C. E. 1992, in IAU Colloq. 135: Complementary Approaches to Double and Multiple Star Research, eds. H. A. McAlister, & W. I. Hartkopf, ASP Conf. Ser., 32, 311
Duchêne, G., & Kraus, A. 2013, ARA&A, 51, 269
Eggleton, P. P. 2009, MNRAS, 399, 1471
Elliott, P., & Bayo, A. 2016, MNRAS, 459, 4499
Elliott, P., Bayo, A., Melo, C. H. F., et al. 2016, A&A, 590, A13
Farago, F., & Laskar, J. 2010, MNRAS, 401, 1189
Fekel, F. C. Jr. 1981, ApJ, 246, 879
Foreman-Mackey, D., Luger, R., Czekala, I., et al. 2020, Exoplanetdev /exoplanet v0. 4. 0
Gaia Collaboration (Prusti, T., et al.) 2016, A&A, 595, A1
Gaia Collaboration (Brown, A. G. A., et al.) 2021, A&A, 649, A1
Gallenne, A., Mérand, A., Kervella, P., et al. 2015, A&A, 579, A68
Gallenne, A., Pietrzýnski, G., Graczyk, D., et al. 2018, A&A, 616, A68
Gallenne, A., Pietrzýnski, G., Graczyk, D., et al. 2019, A&A, 632, A31
Giuppone, C. A., & Cuello, N. 2019, J. Phys. Conf. Ser., 1365
GRAVITY Collaboration (Eupen, F., et al.) 2021, A&A, 648, A37
Haguenauer, P., Abuter, R., Alonso, J., et al. 2008, in Optical and Infrared Interferometry, eds. M. Schäller, W. C. Danchi, &F. Delplancke, International Society for Optics and Photonics (SPIE), 7013, 141
Hamers, A. S., Rantala, A., Neunteufel, P., Preece, H., & Vynatheya, P. 2021, MNRAS, 502, 4479
Haubois, X., Abuter, R., Aller-Carpentier, E., et al. 2020, in Optical and Infrared Interferometry and Imaging VII, eds. P. G. Tuthill, A. Mérand, & S. Sallum, International Society for Optics and Photonics (SPIE), 11446, 26
Hinse, T. C., Christou, A. A., Alvarellos, J. L. A., & Gózdziewski, K. 2010, MNRAS, 404, 837
Hummel, C. A., Le Bouquin, J. B., & Merand, A. 2016, in Optical and Infrared Interferometry and Imaging V, eds. F. Malbet, M. J. Creech-Eakman, & P. G. Tuthill, SPIE Conf. Ser., 9907, 99073B
Joncour, I., Duchêne, G., & Moraux, E. 2017, A&A, 599, A14
Kastner, J. H., Huenemoerder, D. P., Schulz, N. S., et al. 2004, ApJ, 605, L49
Kaufer, A., Stahl, O., Tubbesing, S., et al. 1999, The Messenger, 95, 8
Kennedy, G. M., Matrà, L., Facchini, S., et al. 2019, Nat. Astron., 3, 230
Kervella, P., Mérand, A., Gallenne, A., et al. 2017, Eur. Phys. J. Web Conf., 152, 07002
Kiselev, A. A., & Kiyaeva, O. V. 1980, AZh, 57, 1227
Kozai, Y. 1962, AJ, 67, 591
Kraus, S., Kreplin, A., Young, A. K., et al. 2020, Science, 369, 1233
Laskar, T., Soderblom, D. R., Valenti, J. A., & Stauér, J. R. 2009, ApJ, 698, 660
Le Bouquin, J. B., & Absil, O. 2012, A&A, 541, A89
Le Bouquin, J. B., Berger, J. P., Lazaré, B., et al. 2011, A&A, 535, A67
Lee, A. T., Óner, S. S. R., Kratter, K. M., Smullen, R. A., & Li, P. S. 2019, ApJ, 887, 232
Lidov, M. 1962, Planet. Space Sci., 9, 719
Lindegren, L., Hernández, J., Bombrun, A., et al. 2018, A&A, 616, A2
Marrese, P. M., Marinoni, S., Fabrizio, M., & Altavilla, G. 2021, Gaia EDR3 documentation Chapter 9: Cross-match with external catalogues
Martin, R. G., & Lubow, S. H. 2019, MNRAS, 490, 1332
Mason, B. D., Wycó, G. L., Hartkopf, W. I., Douglass, G. G., & Worley, C. E. 2001, AJ, 122, 3466
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.