hypervalent bonding; material design; material maps; metavalent bonding; quantum chemical bonding descriptors; Chemical bondings; Descriptors; Electron-deficient; Material map; Materials design; Property; Quantum chemical; Quantum chemical bonding descriptor; Medicine (miscellaneous); Chemical Engineering (all); Materials Science (all); Biochemistry, Genetics and Molecular Biology (miscellaneous); Engineering (all); Physics and Astronomy (all); General Physics and Astronomy; General Engineering; General Materials Science; General Chemical Engineering
Abstract :
[en] A family of solids including crystalline phase change materials such as GeTe and Sb2 Te3 , topological insulators like Bi2 Se3, and halide perovskites such as CsPbI3 possesses an unconventional property portfolio that seems incompatible with ionic, metallic, or covalent bonding. Instead, evidence is found for a bonding mechanism characterized by half-filled p-bands and a competition between electron localization and delocalization. Different bonding concepts have recently been suggested based on quantum chemical bonding descriptors which either define the bonds in these solids as electron-deficient (metavalent) or electron-rich (hypervalent). This disagreement raises concerns about the accuracy of quantum-chemical bonding descriptors is showed. Here independent of the approach chosen, electron-deficient bonds govern the materials mentioned above is showed. A detailed analysis of bonding in electron-rich XeF2 and electron-deficient GeTe shows that in both cases p-electrons govern bonding, while s-electrons only play a minor role. Yet, the properties of the electron-deficient crystals are very different from molecular crystals of electron-rich XeF2 or electron-deficient B2 H6 . The unique properties of phase change materials and related solids can be attributed to an extended system of half-filled bonds, providing further arguments as to why a distinct nomenclature such as metavalent bonding is adequate and appropriate for these solids.
Disciplines :
Physics Chemistry
Author, co-author :
Wuttig, Matthias ; I. Institute of Physics, Physics of Novel Materials, RWTH Aachen University, 52056, Aachen, Germany ; Jülich-Aachen Research Alliance (JARA FIT and JARA HPC), RWTH Aachen University, 52056, Aachen, Germany ; Green IT (PGI 10), Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
Schön, Carl-Friedrich; I. Institute of Physics, Physics of Novel Materials, RWTH Aachen University, 52056, Aachen, Germany
Kim, Dasol; I. Institute of Physics, Physics of Novel Materials, RWTH Aachen University, 52056, Aachen, Germany
Golub, Pavlo; Department of Theoretical Chemistry, J. Heyrovský Institute of Physical Chemistry, Dolejškova 2155/3, Prague, 18223, Czech Republic
Gatti, Carlo; CNR-SCITEC, Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", sezione di via Golgi, via Golgi 19, Milano, 20133, Italy
Raty, Jean-Yves ; Université de Liège - ULiège > Département de chimie (sciences)
Kooi, Bart J; Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747AG, The Netherlands
Pendás, Ángel Martín; Departamento de Química Física y Analítica, Julián Clavería 8, Oviedo, 33006, Spain
Arora, Raagya; Theoretical Sciences Unit, School of Advanced Materials, JNCASR, Jakkur, Bangalore, 560064, India
Waghmare, Umesh; Theoretical Sciences Unit, School of Advanced Materials, JNCASR, Jakkur, Bangalore, 560064, India
Language :
English
Title :
Metavalent or Hypervalent Bonding: Is There a Chance for Reconciliation?
Publication date :
07 December 2023
Journal title :
Advanced Science
eISSN :
2198-3844
Publisher :
John Wiley and Sons Inc, Germany
Pages :
e2308578
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif Tier-1 supercomputer
M. Wuttig, C. F. Schön, J. Loetfering, P. Golub, C. Gatti, J. Y. Raty, Adv. Mater. 2023, 35, 2208485.
T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlockermann, M. Wuttig, Nat. Mater. 2011, 10, 202.
M. Wuttig, C. F. Schon, M. Schumacher, J. Robertson, P. Golub, E. Bousquet, C. Gatti, J. Y. Raty, Adv. Funct. Mater. 2021, 32, 2110166.
G. Lucovsky, R. M. White, Phys. Rev. B 1973, 8, 660.
L. Pauling, The Nature of the Chemical Bond, Cornell Univ. Press, New York 1960.
K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, M. Wuttig, Nat. Mater. 2008, 7, 653.
M. Wuttig, V. L. Deringer, X. Gonze, C. Bichara, J.-Y. Raty, Adv. Mater. 2018, 30, 1803777.
M. Zhu, O. Cojocaru-Mirédin, A. M. Mio, J. Keutgen, M. Küpers, Y. Yu, J.-Y. Cho, R. Dronskowski, M. Wuttig, Adv. Mater. 2018, 30, 1706735.
Y. D. Cheng, S. Wahl, M. Wuttig, Phys. Status Solidi-Rapid Res. Lett. 2021, 15, 2000482.
M. Raghuwanshi, O. Cojocaru-Mirédin, M. Wuttig, Nano Lett. 2020, 20, 116.
J.-Y. Raty, M. Schumacher, P. Golub, V. L. Deringer, C. Gatti, M. Wuttig, Adv. Mater. 2019, 31, 6.
R. O. Jones, S. R. Elliott, R. Dronskowski, Adv. Mater. 2023, 35, 2300836.
a) S. Maier, S. Steinberg, Y. Cheng, C.-F. Schön, M. Schumacher, R. Mazzarello, P. Golub, R. Nelson, O. Cojocaru-Mirédin, J.-Y. Raty, M. Wuttig, Adv. Mater. 2020, 32, 2005533;
b) Y. Cheng, O. Cojocaru-Mirédin, J. Keutgen, Y. Yu, M. Küpers, M. Schumacher, P. Golub, J.-Y. Raty, R. Dronskowski, M. Wuttig, Adv. Mater. 2019, 31, 1904316;
c) M. Wuttig, C.-F. Schön, J. Lötfering, P. Golub, C. Gatti, J.-Y. Raty, Adv. Mater. 2022, 35, 2208485.
A. I. Baranov, M. Kohout, J. Comput. Chem. 2011, 32, 2064.
P. Golub, A. I. Baranov, J. Chem. Phys. 2016, 145, 154107.
A. Otero-De-La-Roza, E. R. Johnson, V. Luaña, Comput. Phys. Commun. 2014, 185, 1007.
P. C. Müller, C. Ertural, J. Hempelmann, R. Dronskowski, J. Phys. Chem. C 2021, 125, 7959.
K. B. Wiberg, Tetrahedron 1968, 24, 1083.
I. Mayer, Chem. Phys. Lett. 1983, 97, 270.
I. Mayer, J. Comput. Chem. 2007, 28, 204.
C. Outeiral, M. A. Vincent, Á. Martín Pendás, P. L. A. Popelier, Chem. Sci. 2018, 9, 5517.
S. V. Bergerem, C.-F. Schön, C. Mattes, A. Yadav, M. Grohe, L. Kobbelt, M. Wuttig, Sci. Adv. 2023, 8, eade0828.
R. Hoffmann, Angew. Chem.-Int. Edit. Engl. 1987, 26, 846.
G. C. Pimentel, J. Chem. Phys. 1951, 19, 446.
S. Maintz, V. L. Deringer, A. L. Tchougréeff, R. Dronskowski, J. Comput. Chem. 2016, 37, 1030.
H. H. Osman, A Otero-de-la-Roza, P. Rodrıguez-Hernandez, A. Munoz, F. Javier Manjon, ChemTxiv 2023, 69, 1327.
N. W. Alcock, Bonding and Structure, Structural Principles in Inorganic and Organic Chemistry, Ellis Horwood, New York, London 1990.
R. E. Rundle, J. Am. Chem. Soc. 1947, 69, 1327.
R. Arora, U. V. Waghmare, C. N. R. Rao, Adv. Mater. 2023, 35, 2208724.
R. Peierls, More Surprises in Theoretical Physics, Princeton University Press, Princeton, NJ 1991.
a) C.-F. Schön, S. Van Bergerem, C. Mattes, A. Yadav, M. Grohe, L. Kobbelt, M. Wuttig, Sci. Adv. 2022, 8, eade0828;
b) L. Guarneri, S. Jakobs, A. Von Hoegen, S. Maier, M. Xu, M. Zhu, S. Wahl, C. Teichrib, Y. Zhou, O. Cojocaru-Mirédin, M. Raghuwanshi, C.-F. Schön, M. Drögeler, C. Stampfer, R. P. S. M. Lobo, A. Piarristeguy, A. Pradel, J.-Y. Raty, M. Wuttig, Adv. Mater. 2021, 33, 2102356.
P. W. Anderson, Phys. Rev. 1958, 109, 1492.
N. F. Mott, Rev. Mod. Phys. 1968, 40, 677.
D. Di Sante, S. Fratini, V. Dobrosavljevic, S. Ciuchi, Phys. Rev. Lett. 2017, 118, 036602.