Adaptation models; Impedance ratios; Interface interaction; Interfacial impedance; Nano structuration; Performance; Phase-change memory; Property; Stillinger-Weber potentials; Two-materials; Physics and Astronomy (all); General Physics and Astronomy
Abstract :
[en] Recently, nanostructuration has been proposed to improve the performance of phase change memories. This is the case of superlattices composed of amorphous carbon and crystalline germanium telluride, which we have investigated by molecular dynamics. For this, a modified Stillinger-Weber potential is adapted to reproduce their stiffness contrast/impedance ratio. In order to study the effect of the interface interaction, two sets of parameters are used to model the interfaces with different interactions between the two materials using the properties of the softer material or the average properties between the two creating an adaptation of impedance across the layers. The effects of interface roughness and carbon diffusion at grain boundaries are studied. Using equilibrium molecular dynamics as well as the propagation of wave-packets, we show first that without impedance adaptation, the anisotropy is high, and the roughness has a marked impact on the properties. However, the introduction of impedance adaptation destroys those effects on the thermal conductivity. Finally, we show that the periodic texturing of the interface increases the transmission of in-plane transverse phonons.
Disciplines :
Physics
Author, co-author :
Desmarchelier, Paul ; Univ. Lyon, CNRS, INSA Lyon, CETHIL, UMR5008, Villeurbanne, France ; DMSE, Johns Hopkins University, Baltimore, United States
Giordano, Valentina M. ; Institut Lumiere Matière, UMR 5306 Universite Lyon 1, CNRS, Villeurbanne, France
Raty, Jean-Yves ; Université de Liège - ULiège > Département de chimie (sciences)
This work was granted access to the HPC resources of IDRIS under the allocation 2021- A0110911092, made by GENCI. This research was funded by ANR under the contract MAPS ANR-20-CE05-0046-03 and from the AURA region for the NanoCHARME project. The authors also thank the CNRS for funding the mobility of J.-Y.R. to Lyon through the Dialogue program. The authors want to thank fruitful discussions with Anne Tanguy.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
M. Le Gallo and A. Sebastian, “ An overview of phase-change memory device physics,” J. Phys. D: Appl. Phys. 53, 213002 ( 2020). 10.1088/1361-6463/ab7794
R. A. Kishore and S. Priya, “ A review on low-grade thermal energy harvesting: Materials, methods and devices,” Materials 11, 1433 ( 2018). 10.3390/ma11081433
E. S. Landry and A. J. H. McGaughey, “ Effect of interfacial species mixing on phonon transport in semiconductor superlattices,” Phys. Rev. B 79, 075316 ( 2009). 10.1103/PhysRevB.79.075316
J. Maire, R. Anufriev, R. Yanagisawa, A. Ramiere, S. Volz, and M. Nomura, “ Heat conduction tuning by wave nature of phonons,” Sci. Adv. 3, e1700027 ( 2017). 10.1126/sciadv.1700027
K. Termentzidis, S. Merabia, P. Chantrenne, and P. Keblinski, “ Cross-plane thermal conductivity of superlattices with rough interfaces using equilibrium and non-equilibrium molecular dynamics,” Int. J. Heat Mass Transf. 54, 2014- 2020 ( 2011). 10.1016/j.ijheatmasstransfer.2011.01.001
K. Termentzidis, P. Chantrenne, and P. Keblinski, “ Nonequilibrium molecular dynamics simulation of the in-plane thermal conductivity of superlattices with rough interfaces,” Phys. Rev. B 79, 214307 ( 2009). 10.1103/PhysRevB.79.214307
B. Qiu, G. Chen, and Z. Tian, “ Effects of aperiodicity and roughness on coherent heat conduction in superlattices,” Nanoscale Microscale Thermophys. Eng. 19, 272- 278 ( 2015). 10.1080/15567265.2015.1102186
M. N. Luckyanova, J. A. Johnson, A. A. Maznev, J. Garg, A. Jandl, M. T. Bulsara, E. A. Fitzgerald, K. A. Nelson, and G. Chen, “ Anisotropy of the thermal conductivity in GaAs/AlAs superlattices,” Nano Lett. 13, 3973- 3977 ( 2013). 10.1021/nl4001162
J. Ravichandran, A. K. Yadav, R. Cheaito, P. B. Rossen, A. Soukiassian, S. Suresha, J. C. Duda, B. M. Foley, C.-H. Lee, Y. Zhu et al., “ Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices,” Nat. Mater. 13, 168- 172 ( 2014). 10.1038/nmat3826
B. Latour and Y. Chalopin, “ Distinguishing between spatial coherence and temporal coherence of phonons,” Phys. Rev. B 95, 214310 ( 2017). 10.1103/PhysRevB.95.214310
M. Zacharias, J. Bläsing, P. Veit, L. Tsybeskov, K. Hirschman, and P. M. Fauchet, “ Thermal crystallization of amorphous Si/SiO 2 superlattices,” Appl. Phys. Lett. 74, 2614- 2616 ( 1999). 10.1063/1.123914
L. Yang, B. Latour, and A. J. Minnich, “ Phonon transmission at crystalline-amorphous interfaces studied using mode-resolved atomistic green’s functions,” Phys. Rev. B 97, 205306 ( 2018). 10.1103/PhysRevB.97.205306
A. France-Lanord, S. Merabia, T. Albaret, D. Lacroix, and K. Termentzidis, “ Thermal properties of amorphous/crystalline silicon superlattices,” J. Phys.: Condens. Matter 26, 355801 ( 2014). 10.1088/0953-8984/26/35/355801
K. Termentzidis, A. France-Lanord, E. Blandre, T. Albaret, S. Merabia, J. Valentin, and D. Lacroix, “ Thermal conductivity of regularly spaced amorphous/crystalline silicon superlattices. A molecular dynamics study,” MRS Online Proc. Lib. 1543, 71- 79 ( 2013). 10.1557/opl.2013.671
P. Chen, N. A. Katcho, J. P. Feser, W. Li, M. Glaser, O. G. Schmidt, D. G. Cahill, N. Mingo, and A. Rastelli, “ Role of surface-segregation-driven intermixing on the thermal transport through planar Si / Ge superlattices,” Phys. Rev. Lett. 111, 115901 ( 2013). 10.1103/PhysRevLett.111.115901
D. Térébénec, N. Bernier, N. Castellani, M. Bernard, J.-B. Jager, M. Tomelleri, J. Paterson, M.-C. Cyrille, N.-P. Tran, V. M. Giordano, F. Hippert, and P. Noé, “ Innovative nanocomposites for low power phase-change memory: GeTe/C multilayers,” Phys. Status Solidi RRL 16, 2200054 ( 2022). 10.1002/pssr.202200054
R. Chahine, M. Tomelleri, J. Paterson, M. Bernard, N. Bernier, F. Pierre, D. Rouchon, A. Jannaud, C. Mocuta, V. M. Giordano, F. Hippert, and P. Noé, “ Nanocomposites of chalcogenide phase-change materials: From c-doping of thin films to advanced multilayers,” J. Mater. Chem. C 11, 269- 284 ( 2022). 10.1039/D2TC03567G
G. Betti Beneventi, L. Perniola, V. Sousa, E. Gourvest, S. Maitrejean, J. Bastien, A. Bastard, B. Hyot, A. Fargeix, C. Jahan, J. Nodin, A. Persico, A. Fantini, D. Blachier, A. Toffoli, S. Loubriat, A. Roule, S. Lhostis, H. Feldis, G. Reimbold, T. Billon, B. De Salvo, L. Larcher, P. Pavan, D. Bensahel, P. Mazoyer, R. Annunziata, P. Zuliani, and F. Boulanger, “ Carbon-doped GeTe: A promising material for phase-change memories,” Solid-State Electron. 65-66, 197- 204 ( 2011). 10.1016/j.sse.2011.06.029
W.-D. Liu, D.-Z. Wang, Q. Liu, W. Zhou, Z. Shao, and Z.-G. Chen, “ High-performance GeTe-based thermoelectrics: From materials to devices,” Adv. Energy Mater. 10, 2000367 ( 2020). 10.1002/aenm.202000367
J.-Y. Raty and M. Wuttig, “ The interplay between peierls distortions and metavalent bonding in IV-VI compounds: Comparing GeTe with related monochalcogenides,” J. Phys. D: Appl. Phys. 53, 234002 ( 2020). 10.1088/1361-6463/ab7e66
D. Sarkar, S. Roychowdhury, R. Arora, T. Ghosh, A. Vasdev, B. Joseph, G. Sheet, U. V. Waghmare, and K. Biswas, “ Metavalent bonding in GeSe leads to high thermoelectric performance,” Angew. Chem. Int. Ed. 60, 10350- 10358 ( 2021). 10.1002/anie.202101283
G. C. Sosso, G. Miceli, S. Caravati, J. Behler, and M. Bernasconi, “ Neural network interatomic potential for the phase change material GeTe,” Phys. Rev. B 85, 174103 ( 2012). 10.1103/PhysRevB.85.174103
F. Li and J. S. Lannin, “ Radial distribution function of amorphous carbon,” Phys. Rev. Lett. 65, 1905- 1908 ( 1990). 10.1103/PhysRevLett.65.1905
C. de Tomas, I. Suarez-Martinez, and N. A. Marks, “ Graphitization of amorphous carbons: A comparative study of interatomic potentials,” Carbon 109, 681- 693 ( 2016). 10.1016/j.carbon.2016.08.024
F. H. Stillinger and T. A. Weber, “ Computer simulation of local order in condensed phases of silicon,” Phys. Rev. B 31, 5262- 5271 ( 1985). 10.1103/PhysRevB.31.5262
K. Termentzidis, P. Chantrenne, J.-Y. Duquesne, and A. Saci, “ Thermal conductivity of GaAs/AlAs superlattices and the puzzle of interfaces,” J. Phys.: Condens. Matter 22, 475001 ( 2010). 10.1088/0953-8984/22/47/475001
Y. Wang, C. Gu, and X. Ruan, “ Optimization of the random multilayer structure to break the random-alloy limit of thermal conductivity,” Appl. Phys. Lett. 106, 073104 ( 2015). 10.1063/1.4913319
A. Tlili, V. M. Giordano, Y. M. Beltukov, P. Desmarchelier, S. Merabia, and A. Tanguy, “ Enhancement and anticipation of the Ioffe-Regel crossover in amorphous/nanocrystalline composites,” Nanoscale 11, 21502- 21512 ( 2019). 10.1039/C9NR03952J
J. Chen, G. Zhang, and B. Li, “ Tunable thermal conductivity of Si 1 − x Ge x nanowires,” Appl. Phys. Lett. 95, 073117 ( 2009). 10.1063/1.3212737
J. Tersoff, “ Empirical interatomic potential for silicon with improved elastic properties,” Phys. Rev. B 38, 9902- 9905 ( 1988). 10.1103/PhysRevB.38.9902
C. Fusco, T. Albaret, and A. Tanguy, “ Role of local order in the small-scale plasticity of model amorphous materials,” Phys. Rev. E 82, 066116 ( 2010). 10.1103/PhysRevE.82.066116
R. Vink, G. Barkema, W. van der Weg, and N. Mousseau, “ Fitting the Stillinger-Weber potential to amorphous silicon,” J. Non-Cryst. Solids 282, 248- 255 ( 2001). 10.1016/S0022-3093(01)00342-8
M. Verdier, D. Lacroix, and K. Termentzidis, “ Roughness and amorphization impact on thermal conductivity of nanofilms and nanowires: Making atomistic modeling more realistic,” J. Appl. Phys. 126, 164305 ( 2019). 10.1063/1.5108618
E. Blandre, L. Chaput, S. Merabia, D. Lacroix, and K. Termentzidis, “ Modeling the reduction of thermal conductivity in core/shell and diameter-modulated silicon nanowires,” Phys. Rev. B 91, 115404 ( 2015). 10.1103/PhysRevB.91.115404
A. J. Bullen, K. E. O’Hara, D. G. Cahill, O. Monteiro, and A. von Keudell, “ Thermal conductivity of amorphous carbon thin films,” J. Appl. Phys. 88, 6317- 6320 ( 2000). 10.1063/1.1314301
K. Persson, ( 2014). “Materials data on GeTe (Sg:160) by materials project,” DOE https://doi.org/10.17188/1272924.
G. Clavier, N. Desbiens, E. Bourasseau, V. Lachet, N. Brusselle-Dupend, and B. Rousseau, “ Computation of elastic constants of solids using molecular simulation: Comparison of constant volume and constant pressure ensemble methods,” Mol. Simul. 43, 1413- 1422 ( 2017). 10.1080/08927022.2017.1313418
R. Shaltaf, E. Durgun, J.-Y. Raty, P. Ghosez, and X. Gonze, “ Dynamical, dielectric, and elastic properties of GeTe investigated with first-principles density functional theory,” Phys. Rev. B 78, 205203 ( 2008). 10.1103/PhysRevB.78.205203
R. Jana, D. Savio, V. L. Deringer, and L. Pastewka, “ Structural and elastic properties of amorphous carbon from simulated quenching at low rates,” Modell. Simul. Mater. Sci. Eng. 27, 085009 ( 2019). 10.1088/1361-651X/ab45da
S. Merabia and K. Termentzidis, “ Thermal conductance at the interface between crystals using equilibrium and nonequilibrium molecular dynamics,” Phys. Rev. B 86, 094303 ( 2012). 10.1103/PhysRevB.86.094303
E. T. Swartz and R. O. Pohl, “ Thermal boundary resistance,” Rev. Mod. Phys. 61, 605- 668 ( 1989). 10.1103/RevModPhys.61.605
P. Desmarchelier, A. Carré, K. Termentzidis, and A. Tanguy, “ Ballistic heat transport in nanocomposite: The role of the shape and interconnection of nanoinclusions,” Nanomaterials 11(8), 1982 ( 2021). 10.3390/nano11081982
P. B. Allen and J. L. Feldman, “ Thermal conductivity of disordered harmonic solids,” Phys. Rev. B 48, 12581- 12588 ( 1993). 10.1103/PhysRevB.48.12581
Y. M. Beltukov, C. Fusco, D. A. Parshin, and A. Tanguy, “ Boson peak and Ioffe-Regel criterion in amorphous siliconlike materials: The effect of bond directionality,” Phys. Rev. E 93, 023006 ( 2016). 10.1103/PhysRevE.93.023006
A. France-Lanord, E. Blandre, T. Albaret, S. Merabia, D. Lacroix, and K. Termentzidis, “ Atomistic amorphous/crystalline interface modelling for superlattices and core/shell nanowires,” J. Phys.: Condens. Matter 26, 055011 ( 2014). 10.1088/0953-8984/26/5/055011
K.-H. Lin and A. Strachan, “ Thermal transport in SiGe superlattice thin films and nanowires: Effects of specimen and periodic lengths,” Phys. Rev. B 87, 115302 ( 2013). 10.1103/PhysRevB.87.115302
Y. Peng, J.U. Thiele, G. Ju, T. Nolan, Y. Ding, and A. Wu, “Recording layer for heat assisted magnetic recording,” U.S. patent 8507114B2 (30 June 2011).
A. Rajabpour, S. M. Vaez Allaei, Y. Chalopin, F. Kowsary, and S. Volz, “ Tunable superlattice in-plane thermal conductivity based on asperity sharpness at interfaces: Beyond Ziman’s model of specularity,” J. Appl. Phys. 110, 113529 ( 2011). 10.1063/1.3665408
M. Hu, J. V. Goicochea, B. Michel, and D. Poulikakos, “ Thermal rectification at water/functionalized silica interfaces,” Appl. Phys. Lett. 95, 151903 ( 2009). 10.1063/1.3247882
G. C. Sosso, V. L. Deringer, S. R. Elliott, and G. Csányi, “ Understanding the thermal properties of amorphous solids using machine-learning-based interatomic potentials,” Mol. Simul. 44, 866- 880 ( 2018). 10.1080/08927022.2018.1447107
B. Bhattarai, A. Pandey, and D. Drabold, “ Evolution of amorphous carbon across densities: An inferential study,” Carbon 131, 168- 174 ( 2018). 10.1016/j.carbon.2018.01.103
T. Damart, V. M. Giordano, and A. Tanguy, “ Nanocrystalline inclusions as a low-pass filter for thermal transport in a-Si,” Phys. Rev. B 92, 094201 ( 2015). 10.1103/PhysRevB.92.094201
M. Samanta, T. Ghosh, R. Arora, U. V. Waghmare, and K. Biswas, “ Realization of both n- and p-Type GeTe thermoelectrics: Electronic structure modulation by AgBiSe 2 alloying,” J. Am. Chem. Soc. 141, 19505- 19512 ( 2019). 10.1021/jacs.9b11405
P. K. Schelling, S. R. Phillpot, and P. Keblinski, “ Comparison of atomic-level simulation methods for computing thermal conductivity,” Phys. Rev. B 65, 144306 ( 2002). 10.1103/PhysRevB.65.144306
M. T. Dove, “Time correlation functions,” in Introduction to Lattice Dynamics, Cambridge Topics in Mineral Physics and Chemistry (Cambridge University Press, 1993), pp. 229-232.
A. Savitzky and M. J. Golay, “ Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627- 1639 ( 1964). 10.1021/ac60214a047
J. P. Boon and S. Yip, Molecular Hydrodynamics ( Courier Corporation, 1991).
P. Desmarchelier, A. Tanguy, and K. Termentzidis, “ Thermal rectification in asymmetric two-phase nanowires,” Phys. Rev. B 103, 014202 ( 2021). 10.1103/PhysRevB.103.014202
Y. M. Beltukov, V. I. Kozub, and D. A. Parshin, “ Ioffe-Regel criterion and diffusion of vibrations in random lattices,” Phys. Rev. B 87, 134203 ( 2013). 10.1103/PhysRevB.87.134203
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.