zinc oxide; photocatalysts; morphologies; polar facets; sol-gel; water treatment
Abstract :
[en] Three zinc oxide catalysts with different morphologies are synthesized by the sol-gel method. Zinc acetate and hexamethylenetetramine (HMTA) are used to produce nanorods (NR) and nanodiscs (ND). ZnO nanoflowers (NF) are produced from different reactants, namely zinc nitrate and sodium 2 hydroxide. The photocatalysts are efficient for degrading p-nitrophenol under halogen lamp illumination (300 nm-800 nm). X-ray diffraction confirms the presence of the wurtzite structure and scanning electron microscopy confirms the desired morphologies. In order to understand the differences in the kinetic rate of degradation between the three catalysts, surface defects are investigated using photoluminescence and Raman spectroscopy. Moreover, colloidal stability and specific surface area are determined by zeta potential and nitrogen sorption measurements, respectively, and allow the impact of the different parameters on the photocatalytic performance of the samples to be clearly understood. Although they do not have the highest number of defects nor the largest specific surface area, ND show the best degradation results by reaching 77% of degradation after 8 h. This result can be attributed to the morphology of this catalyst, where the polar facets are exposed to the medium and play a crucial role in the photocatalytic performance by enhancing the lifetime of the electron/hole pairs generated upon illumination. The polar nature of both catalyst and pollutant increases the contact between them and, consequently, the degradation efficiency.
Disciplines :
Materials science & engineering Chemical engineering
Author, co-author :
Farcy, Antoine ; Université de Liège - ULiège > Chemical engineering
Lambert, Stéphanie ; Université de Liège - ULiège > Department of Chemical Engineering
Poelman, Dirk; LumiLab, Department of Solid State Sciences, Ghent University, Ghent, Belgium
Yang, Zetian; LumiLab, Department of Solid State Sciences, Ghent University, Ghent, Belgium
Drault, Fabien; Institute of Condensed Matter and Nanosciences -Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, Louvain-La-Neuve, Belgium
Hermans, Sophie; Institute of Condensed Matter and Nanosciences -Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, Louvain-La-Neuve, Belgium
Drogui, Patrick; Centre-Eau Terre Environnement, Institut National de la Recherche Scientifique (INRS), Université du Québec, Québec, Canada
Heinrichs, Benoît ; Université de Liège - ULiège > Department of Chemical Engineering
Malherbe, Cédric ; Université de Liège - ULiège > Molecular Systems (MolSys)
Eppe, Gauthier ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de spectrométrie de masse (L.S.M.)
Verdin, Alexandre ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique
Mahy, Julien ; Université de Liège - ULiège > Chemical engineering ; Centre-Eau Terre Environnement, Institut National de la Recherche Scientifique (INRS), Université du Québec, Québec, Canada
Language :
English
Title :
Influence of crystallographic facet orientations of sol-gel ZnO on the photocatalytic degradation of p-nitrophenol in water
Kumar Reddy DH, Lee SM (2012) Water Pollution and Treatment Technologies. J Environ Anal Toxicol 02: 10.4172/2161-0525.1000e103
Crini G, Lichtfouse E (2019) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 17:145–155 DOI: 10.1007/s10311-018-0785-9
Dewil R, Mantzavinos D, Poulios I, Rodrigo MA (2017) New perspectives for advanced oxidation processes. J Environ Manag 195:93–99 DOI: 10.1016/j.jenvman.2017.04.010
Mahy JG, Wolfs C, Mertes A et al. (2019) Advanced photocatalytic oxidation processes for micropollutant elimination from municipal and industrial water. J Environ Manage 250: 10.1016/j.jenvman.2019.109561
Mahy JG, Paez CA, Carcel C et al. (2019) Porphyrin-based hybrid silica-titania as a visible-light photocatalyst. J Photochem Photobio A Chem 373:66–76. 10.1016/j.jphotochem.2019.01.001 DOI: 10.1016/j.jphotochem.2019.01.001
Nawrocki J, Kasprzyk-Hordern B (2010) The efficiency and mechanisms of catalytic ozonation. Appl Catal B 99:27–42 DOI: 10.1016/j.apcatb.2010.06.033
Babuponnusami A, Muthukumar K (2014) A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng 2:557–572 DOI: 10.1016/j.jece.2013.10.011
Lama G, Meijide J, Sanromán A, Pazos M (2022) Heterogeneous advanced oxidation processes: current approaches for wastewater treatment. Catalysts 12:344
Lee KM, Lai CW, Ngai KS, Juan JC (2016) Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res 88:428–448 DOI: 10.1016/j.watres.2015.09.045
Flores NM, Pal U, Galeazzi R, Sandoval A (2014) Effects of morphology, surface area, and defect content on the photocatalytic dye degradation performance of ZnO nanostructures. RSC Adv 4:41099–41110. 10.1039/c4ra04522j DOI: 10.1039/c4ra04522j
Yang J, Wang J, Li X et al. (2012) Effect of polar and non-polar surfaces of ZnO nanostructures on photocatalytic properties. J Alloy Compd 528:28–33. 10.1016/j.jallcom.2012.02.162 DOI: 10.1016/j.jallcom.2012.02.162
Gan YX, Jayatissa AH, Yu Z et al. (2020) Hydrothermal synthesis of nanomaterials. J Nanomater 2020:8917013
Lai J, Niu W, Luque R, Xu G (2015) Solvothermal synthesis of metal nanocrystals and their applications. Nano Today 10:240–267 DOI: 10.1016/j.nantod.2015.03.001
Kumar A, Kuang Y, Liang Z, Sun X (2020) Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: a review. Mater Today Nano 11:100076
Sajjadi SP (2005) Sol-gel process and its application in Nanotechnology. J Polym Eng Technol 13:38–41
Lambert S, Tran KY, Arrachart G et al. (2008) Tailor-made morphologies for Pd/SiO2 catalysts through sol-gel process with various silylated ligands. Microporous Mesoporous Mater 115:609–617. 10.1016/j.micromeso.2008.03.003 DOI: 10.1016/j.micromeso.2008.03.003
Brinker CJ, Scherer GW. Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, 2013
Hu J, Ding J, Ai J et al. (2021) Room temperature growth of ZnO with highly active exposed facets for photocatalytic application. Nanotechnol Rev 10:919–932. 10.1515/ntrev-2021-0057 DOI: 10.1515/ntrev-2021-0057
Mahy JG, Deschamps F, Collard V et al. (2018) Acid acting as redispersing agent to form stable colloids from photoactive crystalline aqueous sol–gel TiO2 powder. J Solgel Sci Technol 87:568–583. 10.1007/s10971-018-4751-6 DOI: 10.1007/s10971-018-4751-6
Luo S, Chen R, Xiang L, Wang J (2019) Hydrothermal synthesis of (001) facet highly exposed ZnO plates: a new insight into the effect of citrate. Crystals 9:. 10.3390/cryst9110552
Wöll C (2007) The chemistry and physics of zinc oxide surfaces. Prog Surf Sci 82:55–120 DOI: 10.1016/j.progsurf.2006.12.002
Abubakar S, Tan ST, Liew JYC et al. (2023) Controlled growth of semiconducting ZnO nanorods for piezoelectric energy harvesting-based nanogenerators. Nanomaterials 13:1025. 10.3390/nano13061025 DOI: 10.3390/nano13061025
Wang M, Zhou Y, Zhang Y et al. (2011) From Zn(OH)2 to ZnO: a study on the mechanism of phase transformation. CrystEngComm 13:6024–6026. 10.1039/c1ce05502j DOI: 10.1039/c1ce05502j
Wang M, Zhou Y, Zhang Y et al. (2012) Near-infrared photoluminescence from ZnO. Appl Phys Lett 100. 10.1063/1.3692584
Janotti A, Van De Walle CG (2009) Fundamentals of zinc oxide as a semiconductor. Rep Prog Phys 72. 10.1088/0034-4885/72/12/126501
Huang Y, Yu Y, Yu Y, Zhang B (2020) Oxygen vacancy engineering in photocatalysis. Solar RRL 4:2000037
Russo V, Ghidelli M, Gondoni P et al. (2014) Multi-wavelength Raman scattering of nanostructured Al-doped zinc oxide. J Appl Phys 115. 10.1063/1.4866322
Song Y, Zhang S, Zhang C et al. (2019) Raman spectra and microstructure of zinc oxide irradiated with swift heavy ion. Crystals 9:. 10.3390/cryst9080395
Herrmann JM (2010) Fundamentals and misconceptions in photocatalysis. J Photochem Photobio A Chem 216:85–93 DOI: 10.1016/j.jphotochem.2010.05.015
Azam A, Babkair SS (2014) Low-temperature growth of well-aligned zinc oxide nanorod arrays on silicon substrate and their photocatalytic application. Int J Nanomed 9:2109–2115. 10.2147/IJN.S60839 DOI: 10.2147/IJN.S60839
Vargas R, Núñez O (2009) Hydrogen bond interactions at the TiO2 surface: their contribution to the pH dependent photo-catalytic degradation of p-nitrophenol. J Mol Catal A Chem 300:65–71. 10.1016/j.molcata.2008.10.029 DOI: 10.1016/j.molcata.2008.10.029
Tchieno FMM, Tonle IK (2018) P-Nitrophenol determination and remediation: an overview. Rev Anal Chem 37. 10.1515/revac-2017-0019
Chen Y, Zhao H, Liu B, Yang H (2015) Charge separation between wurtzite ZnO polar {001} surfaces and their enhanced photocatalytic activity. Appl Catal B 163:189–197. 10.1016/j.apcatb.2014.07.044 DOI: 10.1016/j.apcatb.2014.07.044
Huang M, Lian J, Si R et al. (2022) Spatial separation of electrons and holes among ZnO Polar {0001} and {101¯ 0} facets for enhanced photocatalytic performance. ACS Omega 7:26844–26852. 10.1021/acsomega.2c03244 DOI: 10.1021/acsomega.2c03244
Kayaci F, Vempati S, Donmez I et al. (2014) Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control defect density. Nanoscale 6:10224–10234. 10.1039/c4nr01887g DOI: 10.1039/c4nr01887g