[en] Planets with radii between that of the Earth and Neptune (hereafter referred to as 'sub-Neptunes') are found in close-in orbits around more than half of all Sun-like stars1,2. However, their composition, formation and evolution remain poorly understood3. The study of multiplanetary systems offers an opportunity to investigate the outcomes of planet formation and evolution while controlling for initial conditions and environment. Those in resonance (with their orbital periods related by a ratio of small integers) are particularly valuable because they imply a system architecture practically unchanged since its birth. Here we present the observations of six transiting planets around the bright nearby star HD 110067. We find that the planets follow a chain of resonant orbits. A dynamical study of the innermost planet triplet allowed the prediction and later confirmation of the orbits of the rest of the planets in the system. The six planets are found to be sub-Neptunes with radii ranging from 1.94R⊕ to 2.85R⊕. Three of the planets have measured masses, yielding low bulk densities that suggest the presence of large hydrogen-dominated atmospheres.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Luque, R ; Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL, USA. rluque@uchicago.edu
Osborn, H P; Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland ; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA ; Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA, USA
Leleu, A; Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland ; Observatoire Astronomique de l'Université de Genève, Versoix, Switzerland
Pallé, E ; Instituto de Astrofisica de Canarias, La Laguna, Tenerife, Spain ; Departamento de Astrofisica, Universidad de La Laguna, La Laguna, Tenerife, Spain
Bonfanti, A ; Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Barragán, O; Sub-department of Astrophysics, Department of Physics, University of Oxford, Oxford, UK
Wilson, T G ; Centre for Exoplanet Science, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, UK ; Department of Physics, University of Warwick, Coventry, UK ; Centre for Exoplanets and Habitability, University of Warwick, Coventry, UK
Broeg, C ; Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland ; Center for Space and Habitability, University of Bern, Bern, Switzerland
Cameron, A Collier ; Centre for Exoplanet Science, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, UK
Lendl, M; Observatoire Astronomique de l'Université de Genève, Versoix, Switzerland
Maxted, P F L; Astrophysics Group, Lennard Jones Building, Keele University, Keele, UK
Alibert, Y; Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland ; Center for Space and Habitability, University of Bern, Bern, Switzerland
Gandolfi, D ; Dipartimento di Fisica, Universita degli Studi di Torino, Torino, Italy
Delisle, J-B ; Observatoire Astronomique de l'Université de Genève, Versoix, Switzerland
Hooton, M J; Cavendish Laboratory, University of Cambridge, Cambridge, UK
Egger, J A ; Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
Nowak, G; Instituto de Astrofisica de Canarias, La Laguna, Tenerife, Spain ; Departamento de Astrofisica, Universidad de La Laguna, La Laguna, Tenerife, Spain ; Institute of Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Toruń, Poland
Lafarga, M; Department of Physics, University of Warwick, Coventry, UK ; Centre for Exoplanets and Habitability, University of Warwick, Coventry, UK
Rapetti, D ; NASA Ames Research Center, Moffett Field, CA, USA ; Research Institute for Advanced Computer Science, Universities Space Research Association, Washington, DC, USA
Twicken, J D ; NASA Ames Research Center, Moffett Field, CA, USA ; SETI Institute, Mountain View, CA, USA
Morales, J C ; Institut de Ciencies de l'Espai (ICE-CSIC), Bellaterra, Spain ; Institut d'Estudis Espacials de Catalunya (IEEC), Barcelona, Spain
Carleo, I ; Instituto de Astrofisica de Canarias, La Laguna, Tenerife, Spain ; INAF - Osservatorio Astrofisico di Torino, Pino Torinese, Italy
Orell-Miquel, J; Instituto de Astrofisica de Canarias, La Laguna, Tenerife, Spain ; Departamento de Astrofisica, Universidad de La Laguna, La Laguna, Tenerife, Spain
Adibekyan, V ; Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, Porto, Portugal ; Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
Alonso, R ; Instituto de Astrofisica de Canarias, La Laguna, Tenerife, Spain ; Departamento de Astrofisica, Universidad de La Laguna, La Laguna, Tenerife, Spain
Alqasim, A; Mullard Space Science Laboratory, University College London, Dorking, UK
Amado, P J ; Instituto de Astrofísica de Andalucía (IAA-CSIC), Granada, Spain
Anderson, D R ; Department of Physics, University of Warwick, Coventry, UK ; Centre for Exoplanets and Habitability, University of Warwick, Coventry, UK
Anglada-Escudé, G; Institut de Ciencies de l'Espai (ICE-CSIC), Bellaterra, Spain ; Institut d'Estudis Espacials de Catalunya (IEEC), Barcelona, Spain
Bandy, T; European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Noordwijk, The Netherlands
Bárczy, T; Admatis, Miskolc, Hungary
Barrado Navascues, D ; Depto. de Astrofisica, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
Barros, S C C; Instituto de Astrofisica e Ciencias do Espaco, Universidade do Porto, Porto, Portugal ; Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Porto, Portugal
Baumjohann, W ; Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Bayliss, D ; Department of Physics, University of Warwick, Coventry, UK
Bean, J L; Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL, USA
Beck, M; Observatoire Astronomique de l'Université de Genève, Versoix, Switzerland
Beck, T; Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
Benz, W; Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland ; Center for Space and Habitability, University of Bern, Bern, Switzerland
Billot, N ; Observatoire Astronomique de l'Université de Genève, Versoix, Switzerland
Bonfils, X; Université Grenoble Alpes, CNRS, IPAG, Grenoble, France
Borsato, L ; INAF - Osservatorio Astronomico di Padova, Padova, Italy
Boyle, A W; Department of Astronomy, California Institute of Technology, Pasadena, CA, USA
Brandeker, A ; Department of Astronomy, Stockholm University, AlbaNova University Center, Stockholm, Sweden
Bryant, E M; Department of Physics, University of Warwick, Coventry, UK ; Mullard Space Science Laboratory, University College London, Dorking, UK
Cabrera, J ; Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
Carrazco-Gaxiola, S; Instituto de Astronomía, Universidad Nacional Autónoma de México, Ciudad de México, Mexico ; Department of Physics and Astronomy, Georgia State University, Atlanta, GA, USA ; RECONS Institute, Chambersburg, PA, USA
Charbonneau, D; Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA, USA
Charnoz, S ; Université de Paris Cité, Institut de Physique du Globe de Paris, CNRS, Paris, France
Ciardi, D R; Department of Astronomy, California Institute of Technology, Pasadena, CA, USA
Cochran, W D ; McDonald Observatory, The University of Texas, Austin, TX, USA ; Center for Planetary Systems Habitability, The University of Texas, Austin, TX, USA
Collins, K A; Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA, USA
Crossfield, I J M; Department of Physics and Astronomy, University of Kansas, Lawrence, KS, USA
Csizmadia, Sz ; Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
Cubillos, P E; Space Research Institute, Austrian Academy of Sciences, Graz, Austria ; INAF - Osservatorio Astrofisico di Torino, Pino Torinese, Italy
Dai, F; Department of Astronomy, California Institute of Technology, Pasadena, CA, USA ; Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
Davies, M B; Centre for Mathematical Sciences, Lund University, Lund, Sweden
Deeg, H J ; Instituto de Astrofisica de Canarias, La Laguna, Tenerife, Spain ; Departamento de Astrofisica, Universidad de La Laguna, La Laguna, Tenerife, Spain
Deleuil, M ; Aix Marseille Univ., CNRS, CNES, LAM, Marseille, France
Deline, A; Observatoire Astronomique de l'Université de Genève, Versoix, Switzerland
Delrez, Laetitia ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Exoplanets in Transit: Identification and Characterization
Demangeon, O D S ; Instituto de Astrofisica e Ciencias do Espaco, Universidade do Porto, Porto, Portugal ; Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Porto, Portugal
Demory, B-O; Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland ; Center for Space and Habitability, University of Bern, Bern, Switzerland
Ehrenreich, D ; Observatoire Astronomique de l'Université de Genève, Versoix, Switzerland ; Centre Vie dans l'Univers, Faculté des sciences, Université de Genève, Genève 4, Switzerland
Erikson, A; Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
Esparza-Borges, E ; Instituto de Astrofisica de Canarias, La Laguna, Tenerife, Spain ; Departamento de Astrofisica, Universidad de La Laguna, La Laguna, Tenerife, Spain
Falk, B; Space Telescope Science Institute, Baltimore, MD, USA
Fortier, A; Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland ; Center for Space and Habitability, University of Bern, Bern, Switzerland
Fossati, L ; Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Fridlund, M; Leiden Observatory, University of Leiden, Leiden, The Netherlands ; Onsala Space Observatory, Department of Space, Earth and Environment, Chalmers University of Technology, Onsala, Sweden
Fukui, A; Instituto de Astrofisica de Canarias, La Laguna, Tenerife, Spain ; Komaba Institute for Science, The University of Tokyo, Tokyo, Japan
Garcia-Mejia, J ; Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA, USA
Gill, S; Department of Physics, University of Warwick, Coventry, UK
Gillon, Michaël ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Goffo, E; Dipartimento di Fisica, Universita degli Studi di Torino, Torino, Italy ; Thüringer Landessternwarte Tautenburg, Tautenburg, Germany
Gómez Maqueo Chew, Y ; Instituto de Astronomía, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
Güdel, M; Department of Astrophysics, University of Vienna, Vienna, Austria
Guenther, E W ; Thüringer Landessternwarte Tautenburg, Tautenburg, Germany
Günther, M N ; European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Noordwijk, The Netherlands
Hatzes, A P ; Thüringer Landessternwarte Tautenburg, Tautenburg, Germany
Helling, Ch; Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Hesse, K M; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA ; Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA, USA
Howell, S B; NASA Ames Research Center, Moffett Field, CA, USA
Hoyer, S; Aix Marseille Univ., CNRS, CNES, LAM, Marseille, France
Ikuta, K; Department of Multi-Disciplinary Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
Isaak, K G; European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Noordwijk, The Netherlands
Jenkins, J M ; NASA Ames Research Center, Moffett Field, CA, USA
Kagetani, T; Department of Multi-Disciplinary Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
Kiss, L L ; Konkoly Observatory, HUN-REN Research Centre for Astronomy and Earth Sciences, Budapest, Hungary ; Institute of Physics, ELTE Eötvös Loránd University, Budapest, Hungary
Kodama, T; Komaba Institute for Science, The University of Tokyo, Tokyo, Japan
Korth, J ; Lund Observatory, Division of Astrophysics, Department of Physics, Lund University, Lund, Sweden
Lam, K W F; Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
Laskar, J; IMCCE, UMR8028 CNRS, Observatoire de Paris, PSL Univ., Sorbonne Univ., Paris, France
Latham, D W ; Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA, USA
Lecavelier des Etangs, A; Institut d'Astrophysique de Paris, UMR7095 CNRS, Université Pierre & Marie Curie, Paris, France
Leon, J P D; Department of Multi-Disciplinary Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
Livingston, J H; Astrobiology Center, Tokyo, Japan ; National Astronomical Observatory of Japan, Tokyo, Japan ; Department of Astronomical Science, The Graduate University for Advanced Studies, SOKENDAI, Tokyo, Japan
Magrin, D; INAF - Osservatorio Astronomico di Padova, Padova, Italy
Matson, R A; United States Naval Observatory, Washington, DC, USA
Matthews, E C ; Max Planck Institute for Astronomy, Heidelberg, Germany
Mordasini, C ; Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland ; Center for Space and Habitability, University of Bern, Bern, Switzerland
Mori, M ; Department of Multi-Disciplinary Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
Moyano, M; Instituto de Astronomía, Universidad Católica del Norte, Antofagasta, Chile
Munari, M; INAF - Osservatorio Astrofisico di Catania, Catania, Italy
Murgas, F ; Instituto de Astrofisica de Canarias, La Laguna, Tenerife, Spain ; Departamento de Astrofisica, Universidad de La Laguna, La Laguna, Tenerife, Spain
Narita, N ; Instituto de Astrofisica de Canarias, La Laguna, Tenerife, Spain ; Komaba Institute for Science, The University of Tokyo, Tokyo, Japan ; Astrobiology Center, Tokyo, Japan
Nascimbeni, V; INAF - Osservatorio Astronomico di Padova, Padova, Italy
Olofsson, G; Department of Astronomy, Stockholm University, AlbaNova University Center, Stockholm, Sweden
Osborne, H L M; Mullard Space Science Laboratory, University College London, Dorking, UK
Ottensamer, R ; Department of Astrophysics, University of Vienna, Vienna, Austria
Pagano, I ; INAF - Osservatorio Astrofisico di Catania, Catania, Italy
Parviainen, H ; Instituto de Astrofisica de Canarias, La Laguna, Tenerife, Spain ; Departamento de Astrofisica, Universidad de La Laguna, La Laguna, Tenerife, Spain
Peter, G; Institute of Optical Sensor Systems, German Aerospace Center (DLR), Berlin, Germany
Piotto, G ; INAF - Osservatorio Astronomico di Padova, Padova, Italy ; Dipartimento di Fisica e Astronomia "Galileo Galilei", Universita degli Studi di Padova, Padova, Italy
Pollacco, D; Department of Physics, University of Warwick, Coventry, UK
Queloz, D ; Cavendish Laboratory, University of Cambridge, Cambridge, UK ; Department of Physics, ETH Zurich, Zurich, Switzerland
Quinn, S N; Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA, USA
Quirrenbach, A; Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Heidelberg, Germany
Ragazzoni, R; INAF - Osservatorio Astronomico di Padova, Padova, Italy ; Dipartimento di Fisica e Astronomia "Galileo Galilei", Universita degli Studi di Padova, Padova, Italy
Rando, N; European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Noordwijk, The Netherlands
Ratti, F; European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Noordwijk, The Netherlands
Rauer, H; Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany ; Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Berlin, Germany ; Institut für Geologische Wissenschaften, Freie Universität Berlin, Berlin, Germany
Redfield, S ; Astronomy Department, Wesleyan University, Middletown, CT, USA ; Van Vleck Observatory, Wesleyan University, Middletown, CT, USA
Ribas, I ; Institut de Ciencies de l'Espai (ICE-CSIC), Bellaterra, Spain ; Institut d'Estudis Espacials de Catalunya (IEEC), Barcelona, Spain
Ricker, G R ; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA ; Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA, USA
Rudat, A; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA ; Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA, USA
Sabin, L; Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada, Mexico
Salmon, S; Observatoire Astronomique de l'Université de Genève, Versoix, Switzerland
Santos, N C ; Instituto de Astrofisica e Ciencias do Espaco, Universidade do Porto, Porto, Portugal ; Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Porto, Portugal
Scandariato, G ; INAF - Osservatorio Astrofisico di Catania, Catania, Italy
Schanche, N; Center for Space and Habitability, University of Bern, Bern, Switzerland ; Department of Astronomy, University of Maryland, College Park, MD, USA
Schlieder, J E; NASA Goddard Space Flight Center, Greenbelt, MD, USA
Seager, S ; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA ; Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA, USA ; Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA ; Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA
Ségransan, D; Observatoire Astronomique de l'Université de Genève, Versoix, Switzerland
Shporer, A; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA ; Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA, USA
Simon, A E ; Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
Smith, A M S ; Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
Sousa, S G; Instituto de Astrofisica e Ciencias do Espaco, Universidade do Porto, Porto, Portugal
Stalport, Manu ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Szabó, Gy M; Gothard Astrophysical Observatory, ELTE Eötvös Loránd University, Szombathely, Hungary ; HUN-REN-ELTE Exoplanet Research Group, Szombathely, Hungary
Thomas, N; Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
Tuson, A ; Cavendish Laboratory, University of Cambridge, Cambridge, UK
Udry, S ; Observatoire Astronomique de l'Université de Genève, Versoix, Switzerland
Vanderburg, A M; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA ; Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA, USA
Van Eylen, V; Mullard Space Science Laboratory, University College London, Dorking, UK
Van Grootel, Valérie ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Astrophysique stellaire théorique et astérosismologie
Venturini, J; Observatoire Astronomique de l'Université de Genève, Versoix, Switzerland
Walter, I; Institute of Optical Sensor Systems, German Aerospace Center (DLR), Berlin, Germany
Walton, N A ; Institute of Astronomy, University of Cambridge, Cambridge, UK
Watanabe, N; Department of Multi-Disciplinary Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
Winn, J N ; Department of Astrophysical Sciences, Princeton University, Princeton, NJ, USA
Zingales, T ; Dipartimento di Fisica e Astronomia "Galileo Galilei", Universita degli Studi di Padova, Padova, Italy
We acknowledge the use of public TESS data from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center (SPOC). Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center for the production of the SPOC data products. The CHaracterising ExOPlanets Satellite (CHEOPS) is a European Space Agency (ESA) mission in partnership with Switzerland with important contributions to the payload and the ground segment from Austria, Belgium, France, Germany, Hungary, Italy, Portugal, Spain, Sweden and the United Kingdom. The CHEOPS Consortium would like to gratefully acknowledge the support received by all the agencies, offices, universities and industries involved. Their flexibility and willingness to explore new approaches were essential to the success of this mission. CARMENES acknowledges financial support from the Agencia Estatal de Investigación of the Ministerio de Ciencia e Innovación MCIN/AEI/10.13039/501100011033 and the European Regional Development Fund (ERDF) ‘A way of making Europe’ through projects PID2019-107061GB-C61, PID2019-107061GB-C66, PID2021-125627OB-C31 and PID2021-125627OB-C32, from the Centre of Excellence ‘Severo Ochoa’ award to the Instituto de Astrofísica de Canarias (IAC; CEX2019-000920-S), from the Centre of Excellence ‘María de Maeztu’ award to the Institut de Ciències de l’Espai (CEX2020-001058-M) and from the Generalitat de Catalunya/CERCA programme. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the Istituto Nazionale di Astrofisica (INAF) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. This article is based on observations made with the MuSCAT2 instrument, developed by the Astrobiology Center (ABC), at Telescopio Carlos Sánchez operated on the island of Tenerife by the IAC in the Spanish Observatorio del Teide. This paper is based on observations made with the MuSCAT3 instrument, developed by ABC and under financial supports by JSPS KAKENHI (JP18H05439) and JST PRESTO (JPMJPR1775), at Faulkes Telescope North on Maui, Hawaii, operated by the Las Cumbres Observatory. Tierras is supported by grants from the John Templeton Foundation and the Harvard Origins of Life Initiative. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. The Next Generation Transit Survey (NGTS) facility is operated by the consortium institutes with support from the UK Science and Technology Facilities Council (STFC) under projects ST/M001962/1 and ST/S002642/1. Some of the observations presented in this paper were carried out at the Observatorio Astronómico Nacional on the Sierra de San Pedro Mártir (OAN-SPM), Baja California, México. This work makes use of observations from the Las Cumbres Observatory global telescope network. Some of the observations in this paper made use of the High-Resolution Imaging instrument Alopeke and were obtained under Gemini LLP Proposal Number GN-S-2021A-LP-105. Alopeke was funded by the NASA Exoplanet Exploration Program and built at the NASA Ames Research Center by S. B. Howell, N. Scott, E. P. Horch and E. Quigley. Alopeke was mounted on the Gemini North telescope of the international Gemini Observatory, a programme of NSF OIR Lab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. On behalf of the Gemini partnership: the National Science Foundation (United States), National Research Council (Canada), Agencia Nacional de Investigación y Desarrollo (Chile), Ministerio de Ciencia, Tecnología e Innovación (Argentina), Ministério da Ciência, Tecnologia, Inovações e Comunicações (Brazil) and Korea Astronomy and Space Science Institute (Republic of Korea). This work was supported by the KESPRINT collaboration, an international consortium devoted to the characterization and research of exoplanets discovered with space-based missions. R.Lu. thanks D. Fabrycky for helpful discussions about the orbital dynamics of the HD 110067 system. R.Lu. acknowledges funding from University of La Laguna through the Margarita Salas Fellowship from the Spanish Ministry of Universities ref. UNI/551/2021-May 26 and under the EU Next Generation funds. This work has been carried out within the framework of the National Centre for Competence in Research (NCCR) PlanetS supported by the Swiss National Science Foundation (SNSF) under grants 51NF40_182901 and 51NF40_205606. A.C.Ca. and T.G.Wi. acknowledge support from STFC consolidated grant numbers ST/R000824/1 and ST/V000861/1 and UKSA grant number ST/R003203/1. O.Ba. acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 865624). M.Le. acknowledges support of the SNSF under grant number PCEFP2_194576. P.F.L.Ma. acknowledges support from STFC research grant number ST/M001040/1. Y.Al. acknowledges support from the SNSF under grant 200020_192038. D.Ga. gratefully acknowledges financial support from the CRT foundation under grant no. 2018.2323 ‘Gaseous or rocky? Unveiling the nature of small worlds’. J.A.Eg. acknowledges support from the SNSF under grant 200020_192038. G.No. is grateful for the research funding from the Ministry of Education and Science programme ‘The Excellence Initiative – Research University’ conducted at the Centre of Excellence in Astrophysics and Astrochemistry of the Nicolaus Copernicus University in Torun, Poland. D.Ra. was supported by NASA under award number NNA16BD14C for NASA Academic Mission Services. M.La. acknowledges funding from a UKRI Future Leader Fellowship, grant number MR/S035214/1. V.Ad. is supported by Fundação para a Ciência e a Tecnologia (FCT) through national funds by grants UIDB/04434/2020, UIDP/04434/2020 and 2022.06962.PTDC. P.J.Am. acknowledges financial support from grants CEX2021-001131-S and PID2019-109522GB-C52, both funded by MCIN/AEI/ 10.13039/501100011033 and by the ERDF ‘A way of making Europe’. S.C.C.Ba. acknowledges support from FCT through FCT contract no. IF/01312/2014/CP1215/CT0004. X.Bo., S.Ch., D.Ga., M.Fr. and J.La. acknowledge their role as ESA-appointed CHEOPS science team members. L.Bo., V.Na., I.Pa., G.Pi., R.Ra., G.Sc., and T.Zi. acknowledge support from CHEOPS ASI-INAF agreement no. 2019-29-HH.0. A.Br. was supported by the Swedish National Space Agency (SNSA). Contributions at the Mullard Space Science Laboratory by E.M.Br. were supported by STFC through the consolidated grant ST/W001136/1. S.C.-G. acknowledges support from UNAM PAPIIT-IG101321. D.Ch. and J.G.-M. thank the staff at the F. L. Whipple Observatory for their assistance in the refurbishment and maintenance of the 1.3-m telescope. W.D.Co. acknowledges support from NASA grant 80NSSC23K0429. This is University of Texas Center for Planetary Systems Habitability Contribution 0063. K.A.Co. acknowledges support from the TESS mission through subaward s3449 from MIT. H.J.De. acknowledges support from the Spanish Research Agency of the Ministry of Science and Innovation (AEI-MICINN) under grant PID2019-107061GB-C66, doi:10.13039/501100011033. This project was supported by the CNES. The Belgian participation to CHEOPS has been supported by the Belgian Federal Science Policy Office (BELSPO) in the framework of the PRODEX Program and by the University of Liège through an ARC grant for Concerted Research Actions financed by the Wallonia-Brussels Federation. L.De. is an F.R.S.-FNRS Postdoctoral Researcher. This work was supported by FCT through national funds and by FEDER through COMPETE2020 – Programa Operacional Competitividade e Internacionalizacão by these grants: UID/FIS/04434/2019, UIDB/04434/2020, UIDP/04434/2020, PTDC/FIS-AST/32113/2017 and POCI-01-0145-FEDER-032113, PTDC/FIS-AST/28953/2017 and POCI-01-0145-FEDER-028953, PTDC/FIS-AST/28987/2017 and POCI-01-0145-FEDER-028987. O.D.S.De. is supported in the form of work contract (DL 57/2016/CP1364/CT0004) funded by national funds through FCT. B.-O.De. acknowledges support from the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number MB22.00046. This project has received funding from the ERC under the European Union’s Horizon 2020 research and innovation programme (project Four Aces grant agreement no. 724427). It has also been carried out in the frame of the NCCR PlanetS supported by the SNSF. D.Eh. acknowledges financial support from the SNSF for project 200021_200726. E.E.-B. acknowledges financial support from the European Union and the State Agency of Investigation of the Spanish Ministry of Science and Innovation (MICINN) under the grant PRE2020-093107 of the Pre-Doc Program for the Training of Doctors (FPI-SO) through FSE funds. M.Fr. gratefully acknowledges the support of the Swedish National Space Agency (DNR 65/19, 174/18). J.G.-M. acknowledges support by the National Science Foundation through a Graduate Research Fellowship under grant no. DGE1745303 and by the Ford Foundation through a Ford Foundation Predoctoral Fellowship, administered by the National Academies of Sciences, Engineering, and Medicine. The contributions at the University of Warwick by S.Gi. have been supported by STFC through consolidated grants ST/L000733/1 and ST/P000495/1. M.Gi. is F.R.S.-FNRS Research Director. Y.G.M.Ch. acknowledges support from UNAM PAPIIT-IG101321. E.Go. acknowledges support by the Thueringer Ministerium füër Wirtschaft, Wissenschaft und Digitale Gesellschaft. M.N.Gu. is the ESA CHEOPS Project Scientist and Mission Representative and, as such, is also responsible for the Guest Observers (GO) Programme. M.N.Gu. does not relay proprietary information between the GO and Guaranteed Time Observation (GTO) Programmes, and does not decide on the definition and target selection of the GTO Programme. A.P.Ha. acknowledges support by DFG grant HA 3279/12-1 within the DFG Schwerpunkt SPP 1992. Ch.He. acknowledges support from the European Union H2020-MSCA-ITN-2019 under grant agreement no. 860470 (CHAMELEON). S.Ho. gratefully acknowledges CNES funding through the grant 837319. This work is partly supported by JST CREST grant number JPMJCR1761. K.G.Is. is the ESA CHEOPS Project Scientist and is responsible for the ESA CHEOPS GO Programme. She does not participate in, or contribute to, the definition of the Guaranteed Time Programme of the CHEOPS mission through which observations described in this paper have been taken nor to any aspect of target selection for the programme. J.Ko. gratefully acknowledges the support of the SNSA (DNR 2020-00104) and of the Swedish Research Council (VR: Etableringsbidrag 2017-04945). K.W.F.La. was supported by Deutsche Forschungsgemeinschaft grants RA714/14-1 within the DFG Schwerpunkt SPP 1992, Exploring the Diversity of Extrasolar Planets. This work was granted access to the HPC resources of MesoPSL financed by the Region Ile de France and the project Equip@Meso (reference ANR-10-EQPX-29-01) of the programme Investissements d’Avenir supervised by the Agence Nationale pour la Recherche. A.L.desE. acknowledges support from the CNES (Centre national d’études spatiales, France). This work is partly supported by Astrobiology Center SATELLITE Research project AB022006. This work is partly supported by JSPS KAKENHI grant number JP18H05439 and JST CREST grant number JPMJCR1761. H.L.M.Os. acknowledges funding support by STFC through a PhD studentship. H.Pa. acknowledges the support by the Spanish Ministry of Science and Innovation with the Ramon y Cajal fellowship number RYC2021-031798-I. This work was also partially supported by a grant from the Simons Foundation (PI: Queloz, grant number 327127). S.N.Qu. acknowledges support from the TESS mission through subaward s3449 from MIT. S.N.Qu. acknowledges support from the TESS GI Program under award 80NSSC21K1056 (G03268). L.Sa. acknowledges support from UNAM PAPIIT project IN110122. N.C.Sa. acknowledges funding by the European Union (ERC, FIERCE, 101052347). Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union or the ERC. Neither the European Union nor the granting authority can be held responsible for them. N.Sc. acknowledges support from the SNSF (PP00P2-163967 and PP00P2-190080) and NASA under award number 80GSFC21M0002. S.G.So. acknowledges support from FCT through FCT contract no. CEECIND/00826/2018 and POPH/FSE (EC). Gy.M.Sz. acknowledges the support of the Hungarian National Research, Development and Innovation Office (NKFIH) grant K-125015, a PRODEX Experiment Agreement no. 4000137122, the Lendület LP2018-7/2021 grant of the Hungarian Academy of Science and the support of the city of Szombathely. A.Tu. acknowledges funding support from the STFC through a PhD studentship. V.V.Ey. acknowledges support by the STFC through the consolidated grant ST/W001136/1. V.V.Gr. is an F.R.S.-FNRS Research Associate. J.Ve. acknowledges support from the SNSF under grant PZ00P2_208945. N.A.Wa. acknowledges UKSA grant ST/R004838/1. N.Wa. is partly supported by JSPS KAKENHI grant number JP21K20376.
Howard, A. W. et al. Planet occurrence within 0.25 AU of solar-type stars from Kepler. Astrophys. J. Suppl. 201, 15 (2012). DOI: 10.1088/0067-0049/201/2/15
Fressin, F. et al. The false positive rate of Kepler and the occurrence of planets. Astrophys. J. 766, 81 (2013). DOI: 10.1088/0004-637X/766/2/81
Bean, J. L., Raymond, S. N. & Owen, J. E. The nature and origins of sub-Neptune size planets. J. Geophys. Res. Planets 126, e06639 (2021). DOI: 10.1029/2020JE006639
Ricker, G. R. et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. Instrum. Syst. 1, 014003 (2015). DOI: 10.1117/1.JATIS.1.1.014003
Jenkins, J. M. et al. in Software and Cyberinfrastructure for Astronomy IV (eds Chiozzi, G. & Guzman, J. C.) 99133E (SPIE, 2016).
Benz, W. et al. The CHEOPS mission. Exp. Astron. 51, 109–151 (2021). DOI: 10.1007/s10686-020-09679-4
Sinclair, A. T. The orbital resonance amongst the Galilean satellites of Jupiter. Mon. Not. R. Astron. Soc. 171, 59–72 (1975). DOI: 10.1093/mnras/171.1.59
Morbidelli, A. Modern Celestial Mechanics: Aspects of Solar System Dynamics (Taylor & Francis, 2002).
Papaloizou, J. C. B. Three body resonances in close orbiting planetary systems: tidal dissipation and orbital evolution. Int. J. Astrobiol. 14, 291–304 (2015). DOI: 10.1017/S1473550414000147
Leleu, A. et al. Six transiting planets and a chain of Laplace resonances in TOI-178. Astron. Astrophys. 649, A26 (2021). DOI: 10.1051/0004-6361/202039767
Luger, R. et al. A seven-planet resonant chain in TRAPPIST-1. Nat. Astron. 1, 0129 (2017). DOI: 10.1038/s41550-017-0129
Goździewski, K., Migaszewski, C., Panichi, F. & Szuszkiewicz, E. The Laplace resonance in the Kepler-60 planetary system. Mon. Not. R. Astron. Soc. 455, L104–L108 (2016). DOI: 10.1093/mnrasl/slv156
Agol, E. et al. Refining the transit-timing and photometric analysis of TRAPPIST-1: masses, radii, densities, dynamics, and ephemerides. Planet Sci. J. 2, 1 (2021). DOI: 10.3847/PSJ/abd022
Dai, F. et al. TOI-1136 is a young, coplanar, aligned planetary system in a pristine resonant chain. Astron. J. 165, 33 (2023). DOI: 10.3847/1538-3881/aca327
Quirrenbach, A. et al. in Ground-based and Airborne Instrumentation for Astronomy VIII, (eds Evans, C. J., Bryant, J. J. & Motohara, K.) 114473C (SPIE, 2020).
Cosentino, R. et al. in Ground-based and Airborne Instrumentation for Astronomy IV (eds McLean, I. S., Ramsay, S. K. & Takami, H.) 84461V (SPIE,. 2012)
Holman, M. J. & Murray, N. W. The use of transit timing to detect terrestrial-mass extrasolar planets. Science 307, 1288–1291 (2005). DOI: 10.1126/science.1107822
Fulton, B. J. et al. The California-Kepler survey. III. A gap in the radius distribution of small planets. Astron. J. 154, 109 (2017). DOI: 10.3847/1538-3881/aa80eb
Van Eylen, V. et al. An asteroseismic view of the radius valley: stripped cores, not born rocky. Mon. Not. R. Astron. Soc. 479, 4786–4795 (2018). DOI: 10.1093/mnras/sty1783
Kasting, J. F., Whitmire, D. P. & Reynolds, R. T. Habitable zones around main sequence stars. Icarus 101, 108–128 (1993). DOI: 10.1006/icar.1993.1010
Kopparapu, R. K. et al. Habitable zones around main-sequence stars: dependence on planetary mass. Astrophys. J. Lett. 787, L29 (2014). DOI: 10.1088/2041-8205/787/2/L29
Izidoro, A. et al. Formation of planetary systems by pebble accretion and migration. Hot super-Earth systems from breaking compact resonant chains. Astron. Astrophys. 650, A152 (2021). DOI: 10.1051/0004-6361/201935336
Fabrycky, D. C. et al. Architecture of Kepler’s multi-transiting systems. II. New investigations with twice as many candidates. Astrophys. J. 790, 146 (2014). DOI: 10.1088/0004-637X/790/2/146
Zeng, L. et al. Growth model interpretation of planet size distribution. Proc. Natl Acad. Sci. USA 116, 9723–9728 (2019). DOI: 10.1073/pnas.1812905116
Kempton, E. M. R. et al. A framework for prioritizing the TESS planetary candidates most amenable to atmospheric characterization. Proc. Acad. Sci. Pac. 130, 114401 (2018).
Otegi, J. F., Bouchy, F. & Helled, R. Revisited mass-radius relations for exoplanets below 120 M ⊕. Astron. Astrophys. 634, A43 (2020). DOI: 10.1051/0004-6361/201936482
Stassun, K. G. et al. The TESS input catalog and candidate target list. Astron. J. 156, 102 (2018). DOI: 10.3847/1538-3881/aad050
Stumpe, M. C. et al. Kepler Presearch Data Conditioning I—architecture and algorithms for error correction in Kepler light curves. Proc. Acad. Sci. Pac. 124, 985 (2012).
Stumpe, M. C. et al. Multiscale systematic error correction via wavelet-based bandsplitting in Kepler data. Proc. Acad. Sci. Pac. 126, 100 (2014).
Smith, J. C. et al. Kepler Presearch Data Conditioning II - a Bayesian approach to systematic error correction. Proc. Acad. Sci. Pac. 124, 1000 (2012).
Jenkins, J. M. The impact of solar-like variability on the detectability of transiting terrestrial planets. Astrophys. J. 575, 493–505 (2002). DOI: 10.1086/341136
Jenkins, J. M. et al. in Software and Cyberinfrastructure for Astronomy (eds Radziwill, N. M. & Bridger, A.) 77400D (SPIE, 2010).
Jenkins, J. M. Kepler Data Processing Handbook: Transiting Planet Search. Kepler Science Document KSCI-19081-003 (2020).
Twicken, J. D. et al. Kepler data validation I—architecture, diagnostic tests, and data products for vetting transiting planet candidates. Proc. Acad. Sci. Pac. 130, 064502 (2018).
Li, J. et al. Kepler data validation II-transit model fitting and multiple-planet search. Proc. Acad. Sci. Pac. 131, 024506 (2019).
Guerrero, N. M. et al. The TESS Objects of Interest Catalog from the TESS Prime Mission. Astrophys. J. Suppl. Ser. 254, 39 (2021). DOI: 10.3847/1538-4365/abefe1
Fausnaugh, M. M., Burke, C. J., Ricker, G. R. & Vanderspek, R. Calibrated full-frame images for the TESS Quick Look Pipeline. Res. Notes AAS 4, 251 (2020). DOI: 10.3847/2515-5172/abd63a
Hedges, C. et al. TOI-2076 and TOI-1807: two young, comoving planetary systems within 50 pc identified by TESS that are ideal candidates for further follow up. Astron. J. 162, 54 (2021). DOI: 10.3847/1538-3881/ac06cd
Osborn, H. et al. Two warm Neptunes transiting HIP 9618 revealed by TESS & Cheops. Mon. Not. R. Astron. Soc. 523, 3069–3089 (2023). DOI: 10.1093/mnras/stad1319
Vanderburg, A. et al. TESS spots a compact system of super-Earths around the naked-eye star HR 858. Astrophys. J. Lett. 881, L19 (2019). DOI: 10.3847/2041-8213/ab322d
Deming, D. et al. Spitzer secondary eclipses of the dense, modestly-irradiated, giant exoplanet HAT-P-20b using pixel-level decorrelation. Astrophys. J. 805, 132 (2015). DOI: 10.1088/0004-637X/805/2/132
Luger, R. et al. EVEREST: pixel level decorrelation of K2 light curves. Astron. J. 152, 100 (2016). DOI: 10.3847/0004-6256/152/4/100
Luger, R. et al. starry: analytic occultation light curves. Astron. J. 157, 64 (2019). DOI: 10.3847/1538-3881/aae8e5
Lightkurve Collaboration et al. Lightkurve: Kepler and TESS time series analysis in Python. Astrophysics Source Code Library, record ascl:1812.013 (2018).
Gilliland, R. L. et al. Kepler mission stellar and instrument noise properties. Astrophys. J. Suppl. Ser. 197, 6 (2011). DOI: 10.1088/0067-0049/197/1/6
Van Cleve, J. E. et al. That’s how we roll: the NASA K2 mission science products and their performance metrics. Proc. Acad. Sci. Pac. 128, 075002 (2016).
Schanche, N. et al. TOI-2257 b: a highly eccentric long-period sub-Neptune transiting a nearby M dwarf. Astron. Astrophys. 657, A45 (2022). DOI: 10.1051/0004-6361/202142280
Ulmer-Moll, S. et al. Two long-period transiting exoplanets on eccentric orbits: NGTS-20 b (TOI-5152 b) and TOI-5153 b. Astron. Astrophys. 666, A46 (2022). DOI: 10.1051/0004-6361/202243583
Osborn, A. et al. TOI-431/HIP 26013: a super-Earth and a sub-Neptune transiting a bright, early K dwarf, with a third RV planet. Mon. Not. R. Astron. Soc. 507, 2782–2803 (2021). DOI: 10.1093/mnras/stab2313
Tuson, A. et al. TESS and CHEOPS discover two warm sub-Neptunes transiting the bright K-dwarf HD 15906. Mon. Not. R. Astron. Soc. 523, 3090–3118 (2023). DOI: 10.1093/mnras/stad1369
Szabó, G. M. et al. The changing face of AU Mic b: stellar spots, spin-orbit commensurability, and transit timing variations as seen by CHEOPS and TESS. Astron. Astrophys. 654, A159 (2021). DOI: 10.1051/0004-6361/202140345
Morris, B. M. et al. CHEOPS precision phase curve of the Super-Earth 55 Cancri e. Astron. Astrophys. 653, A173 (2021). DOI: 10.1051/0004-6361/202140892
Hoyer, S. et al. Expected performances of the Characterising Exoplanet Satellite (CHEOPS). III. Data reduction pipeline: architecture and simulated performances. Astron. Astrophys. 635, A24 (2020). DOI: 10.1051/0004-6361/201936325
Narita, N. et al. MuSCAT2: four-color simultaneous camera for the 1.52-m Telescopio Carlos Sánchez. J. Astron. Telesc. Instrum. Syst. 5, 015001 (2019).
Parviainen, H. et al. MuSCAT2 multicolour validation of TESS candidates: an ultra-short-period substellar object around an M dwarf. Astron. Astrophys. 633, A28 (2020). DOI: 10.1051/0004-6361/201935958
Brown, T. M. et al. Las Cumbres Observatory global telescope network. Proc. Acad. Sci. Pac. 125, 1031 (2013).
McCully, C. in Software and Cyberinfrastructure for Astronomy V (eds Guzman, J. C. & Ibsen, J.) 107070K (2018).
Collins, K. A., Kielkopf, J. F., Stassun, K. G. & Hessman, F. V. AstroImageJ: image processing and photometric extraction for ultra-precise astronomical light curves. Astron. J. 153, 77 (2017). DOI: 10.3847/1538-3881/153/2/77
Wheatley, P. J. et al. The Next Generation Transit Survey (NGTS). Mon. Not. R. Astron. Soc. 475, 4476–4493 (2018). DOI: 10.1093/mnras/stx2836
Garcia-Mejia, J. et al. in Ground-based and Airborne Telescopes VIII (eds Marshall, H. K., Spyromilio, J. & Usuda, T.) 114457R (SPIE, 2020).
Demory, B. O. et al. A super-Earth and a sub-Neptune orbiting the bright, quiet M3 dwarf TOI-1266. Astron. Astrophys. 642, A49 (2020). DOI: 10.1051/0004-6361/202038616
Narita, N. et al. in Ground-based and Airborne Instrumentation for Astronomy VIII (eds Evans, C. J., Bryant, J. J. & Motohara, K.) 114475K (SPIE, 2020).
Fukui, A. et al. Measurements of transit timing variations for WASP-5b. Pub. Astron. Soc. Jpn. 63, 287–300 (2011). DOI: 10.1093/pasj/63.1.287
Ciardi, D. R., Beichman, C. A., Horch, E. P. & Howell, S. B. Understanding the effects of stellar multiplicity on the derived planet radii from transit surveys: implications for Kepler, K2, and TESS. Astrophys. J. 805, 16 (2015). DOI: 10.1088/0004-637X/805/1/16
Hayward, T. L. et al. PHARO: a near-infrared camera for the Palomar Adaptive Optics System. Proc. Acad. Sci. Pac. 113, 105–118 (2001).
Dekany, R. et al. PALM-3000: exoplanet adaptive optics for the 5 m Hale telescope. Astrophys. J. 776, 130 (2013). DOI: 10.1088/0004-637X/776/2/130
Furlan, E. et al. The Kepler follow-up observation program. I. A catalog of companions to Kepler stars from high-resolution imaging. Astron. J. 153, 71 (2017). DOI: 10.3847/1538-3881/153/2/71
Scott, N. J. et al. Twin high-resolution, high-speed imagers for the Gemini telescopes: instrument description and science verification results. Front. Astron. Space Sci. 8, 138 (2021). DOI: 10.3389/fspas.2021.716560
Howell, S. B., Everett, M. E., Sherry, W., Horch, E. & Ciardi, D. R. Speckle camera observations for the NASA Kepler Mission Follow-up Program. Astron. J. 142, 19 (2011). DOI: 10.1088/0004-6256/142/1/19
Mugrauer, M. & Michel, K.-U. Gaia search for stellar companions of TESS Objects of Interest. Astron. Nachr. 341, 996–1030 (2020). DOI: 10.1002/asna.202013825
Mugrauer, M. & Michel, K.-U. Gaia search for stellar companions of TESS Objects of Interest II. Astron. Nachr. 342, 840–864 (2021). DOI: 10.1002/asna.202113972
Ziegler, C. et al. SOAR TESS survey. I. Sculpting of TESS planetary systems by stellar companions. Astron. J. 159, 19 (2020). DOI: 10.3847/1538-3881/ab55e9
Lafarga, M. et al. The CARMENES search for exoplanets around M dwarfs. Radial velocities and activity indicators from cross-correlation functions with weighted binary masks. Astron. Astrophys. 636, A36 (2020). DOI: 10.1051/0004-6361/201937222
Zechmeister, M. et al. Spectrum radial velocity analyser (SERVAL). High-precision radial velocities and two alternative spectral indicators. Astron. Astrophys. 609, A12 (2018). DOI: 10.1051/0004-6361/201731483
Cosentino, R. et al. in Ground-based and Airborne Instrumentation for Astronomy V (eds Ramsay, S. K., McLean, I. S. & Takami, H.) 91478C (SPIE, 2014).
Santos, N. C. et al. SWEET-Cat: a catalogue of parameters for Stars With ExoplanETs. I. New atmospheric parameters and masses for 48 stars with planets. Astron. Astrophys. 556, A150 (2013). DOI: 10.1051/0004-6361/201321286
Sousa, S. G. ARES + MOOG: A Practical Overview of an Equivalent Width (EW) Method to Derive Stellar Parameters 297–310 (Springer, 2014).
Sousa, S. G. et al. SWEET-Cat 2.0: The Cat just got SWEETer. Higher quality spectra and precise parallaxes from Gaia eDR3. Astron. Astrophys. 656, A53 (2021). DOI: 10.1051/0004-6361/202141584
Sousa, S. G., Santos, N. C., Israelian, G., Mayor, M. & Monteiro, M. J. P. F. G. A new code for automatic determination of equivalent widths: Automatic Routine for line Equivalent widths in stellar Spectra (ARES). Astron. Astrophys. 469, 783–791 (2007). DOI: 10.1051/0004-6361:20077288
Sousa, S. G., Santos, N. C., Adibekyan, V., Delgado-Mena, E. & Israelian, G. ARES v2: new features and improved performance. Astron. Astrophys. 577, A67 (2015). DOI: 10.1051/0004-6361/201425463
Sneden, C. A. Carbon and Nitrogen Abundances in Metal-Poor Stars. PhD thesis, Univ. Texas at Austin (1973).
Kurucz, R. L. SYNTHE spectrum synthesis programs and line data. Astrophysics Source Code Library (1993).
Brahm, R., Jordán, A., Hartman, J. & Bakos, G. ZASPE: a code to measure stellar atmospheric parameters and their covariance from spectra. Mon. Not. R. Astron. Soc. 467, 971–984 (2017).
Adibekyan, V. Zh. et al. Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program. Galactic stellar populations and planets. Astron. Astrophys. 545, A32 (2012). DOI: 10.1051/0004-6361/201219401
Adibekyan, V. et al. Identifying the best iron-peak and α-capture elements for chemical tagging: the impact of the number of lines on measured scatter. Astron. Astrophys. 583, A94 (2015). DOI: 10.1051/0004-6361/201527120
Castelli, F. & Kurucz, R. L. in Modelling of Stellar Atmospheres, Proc. 210th Symposium of the International Astronomical Union (eds Piskunov, N., Weiss, W. W. & Gray, D. F.) A20 (Astronomical Society of the Pacific, 2003).
Allard, F. in Exploring the Formation and Evolution of Planetary Systems, Proc. IAU Symposium No. 299 (eds Booth, M., Matthews, B. C. & Graham, J. R.) 271–272 (International Astronomical Union, 2014).
Blackwell, D. E. & Shallis, M. J. Stellar angular diameters from infrared photometry. Application to Arcturus and other stars; with effective temperatures. Mon. Not. R. Astron. Soc. 180, 177–191 (1977). DOI: 10.1093/mnras/180.2.177
Schanche, N. et al. WASP-186 and WASP-187: two hot Jupiters discovered by SuperWASP and SOPHIE with additional observations by TESS. Mon. Not. R. Astron. Soc. 499, 428–440 (2020). DOI: 10.1093/mnras/staa2848
Wilson, T. G. et al. A pair of sub-Neptunes transiting the bright K-dwarf TOI-1064 characterized with CHEOPS. Mon. Not. R. Astron. Soc. 511, 1043–1071 (2022). DOI: 10.1093/mnras/stab3799
Lindegren, L. et al. Gaia Early Data Release 3. Parallax bias versus magnitude, colour, and position. Astron. Astrophys. 649, A4 (2021). DOI: 10.1051/0004-6361/202039653
Bonfanti, A. et al. CHEOPS observations of the HD 108236 planetary system: a fifth planet, improved ephemerides, and planetary radii. Astron. Astrophys. 646, A157 (2021). DOI: 10.1051/0004-6361/202039608
Bonfanti, A., Ortolani, S., Piotto, G. & Nascimbeni, V. Revising the ages of planet-hosting stars. Astron. Astrophys. 575, A18 (2015). DOI: 10.1051/0004-6361/201424951
Bonfanti, A., Ortolani, S. & Nascimbeni, V. Age consistency between exoplanet hosts and field stars. Astron. Astrophys. 585, A5 (2016). DOI: 10.1051/0004-6361/201527297
Marigo, P. et al. A new generation of PARSEC-COLIBRI stellar isochrones including the TP-AGB phase. Astrophys. J. 835, 77 (2017). DOI: 10.3847/1538-4357/835/1/77
Scuflaire, R. et al. CLÉS, Code Liégeois d’Évolution Stellaire. Astrophys. Space Sci. 316, 83–91 (2008). DOI: 10.1007/s10509-007-9650-1
Salmon, S. J. A. J., Van Grootel, V., Buldgen, G., Dupret, M. A. & Eggenberger, P. Reinvestigating α Centauri AB in light of asteroseismic forward and inverse methods. Astron. Astrophys. 646, A7 (2021). DOI: 10.1051/0004-6361/201937174
Reddy, B. E., Lambert, D. L. & Allende Prieto, C. Elemental abundance survey of the Galactic thick disc. Mon. Not. R. Astron. Soc. 367, 1329–1366 (2006). DOI: 10.1111/j.1365-2966.2006.10148.x
Foreman-Mackey, D. et al. dfm/exoplanet: exoplanet v0.2.1. Zenodo https://zenodo.org/record/3462740 (2019).
Delrez, L. et al. Transit detection of the long-period volatile-rich super-Earth ν 2 Lupi d with CHEOPS. Nat. Astron. 5, 775–787 (2021). DOI: 10.1038/s41550-021-01381-5
Claret, A. A new method to compute limb-darkening coefficients for stellar atmosphere models with spherical symmetry: the space missions TESS, Kepler, CoRoT, and MOST. Astron. Astrophys. 618, A20 (2018). DOI: 10.1051/0004-6361/201833060
Claret, A. Limb and gravity-darkening coefficients for the Space Mission CHEOPS. Res. Notes AAS 5, 13 (2021). DOI: 10.3847/2515-5172/abdcb3
Van Eylen, V. & Albrecht, S. Eccentricity from transit photometry: small planets in Kepler multi-planet systems have low eccentricities. Astrophys. J. 808, 126 (2015). DOI: 10.1088/0004-637X/808/2/126
Xie, J.-W. et al. Exoplanet orbital eccentricities derived from LAMOST–Kepler analysis. Proc. Natl Acad. Sci. USA 113, 11431–11435 (2016). DOI: 10.1073/pnas.1604692113
Hadden, S. & Lithwick, Y. Kepler planet masses and eccentricities from TTV analysis. Astron. J. 154, 5 (2017). DOI: 10.3847/1538-3881/aa71ef
Osborn, H. P. MonoTools: planets of uncertain periods detector and modeler. Astrophysics Source Code Library, record ascl:2204.020 (2022).
Kipping, D. The orbital period prior for single transits. Res. Notes AAS 2, 223 (2018). DOI: 10.3847/2515-5172/aaf50c
Van Eylen, V. et al. The orbital eccentricity of small planet systems. Astron. J. 157, 61 (2019). DOI: 10.3847/1538-3881/aaf22f
Osborn, H. P. et al. Uncovering the true periods of the young sub-Neptunes orbiting TOI-2076. Astron. Astrophys. 664, A156 (2022). DOI: 10.1051/0004-6361/202243065
Mills, S. M. et al. A resonant chain of four transiting, sub-Neptune planets. Nature 533, 509–512 (2016). DOI: 10.1038/nature17445
Siegel, J. C. & Fabrycky, D. Resonant chains of exoplanets: libration centers for three-body angles. Astron. J. 161, 290 (2021). DOI: 10.3847/1538-3881/abf8a6
Lopez, T. A. et al. Exoplanet characterisation in the longest known resonant chain: the K2-138 system seen by HARPS. Astron. Astrophys. 631, A90 (2019). DOI: 10.1051/0004-6361/201936267
Rein, H. & Liu, S. F. REBOUND: an open-source multi-purpose N-body code for collisional dynamics. Astron. Astrophys. 537, A128 (2012). DOI: 10.1051/0004-6361/201118085
Leleu, A. et al. Removing biases on the density of sub-Neptunes characterised via transit timing variations. Update on the mass-radius relationship of 34 Kepler planets. Astron. Astrophys. 669, A117 (2023). DOI: 10.1051/0004-6361/202244132
Parviainen, H. & Aigrain, S. ldtk: Limb Darkening Toolkit. Mon. Not. R. Astron. Soc. 453, 3821–3826 (2015). DOI: 10.1093/mnras/stv1857
Salvatier, J., Wiecki, T. V. & Fonnesbeck, C. Probabilistic programming in Python using PyMC3. PeerJ Comput. Sci. 2, e55 (2016). DOI: 10.7717/peerj-cs.55
Watanabe, S. & Opper, M. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594 (2010).
Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017). DOI: 10.1007/s11222-016-9696-4
ArviZ Developers. ArviZ: exploratory analysis of Bayesian models. Astrophysics Source Code Library, record ascl:2004.012 (2020).
Zechmeister, M. & Kürster, M. The generalised Lomb-Scargle periodogram. A new formalism for the floating-mean and Keplerian periodograms. Astron. Astrophys. 496, 577–584 (2009). DOI: 10.1051/0004-6361:200811296
Saar, S. H. & Donahue, R. A. Activity-related radial velocity variation in cool stars. Astrophys. J. 485, 319–327 (1997). DOI: 10.1086/304392
Hatzes, A. P. Starspots and exoplanets. Astron. Nachr. 323, 392–394 (2002). DOI: 10.1002/1521-3994(200208)323:3/4<392::AID-ASNA392>3.0.CO;2-M
Meunier, N., Desort, M. & Lagrange, A. M. Using the Sun to estimate Earth-like planets detection capabilities. II. Impact of plages. Astron. Astrophys. 512, A39 (2010). DOI: 10.1051/0004-6361/200913551
Dumusque, X., Boisse, I. & Santos, N. C. SOAP 2.0: a tool to estimate the photometric and radial velocity variations induced by stellar spots and plages. Astrophys. J. 796, 132 (2014). DOI: 10.1088/0004-637X/796/2/132
Queloz, D. et al. No planet for HD 166435. Astron. Astrophys. 379, 279–287 (2001). DOI: 10.1051/0004-6361:20011308
Boisse, I. et al. Stellar activity of planetary host star HD 189 733. Astron. Astrophys. 495, 959–966 (2009). DOI: 10.1051/0004-6361:200810648
Dumusque, X. Radial velocity fitting challenge. I. Simulating the data set including realistic stellar radial-velocity signals. Astron. Astrophys. 593, A5 (2016). DOI: 10.1051/0004-6361/201628672
Simola, U., Dumusque, X. & Cisewski-Kehe, J. Measuring precise radial velocities and cross-correlation function line-profile variations using a Skew Normal density. Astron. Astrophys. 622, A131 (2019). DOI: 10.1051/0004-6361/201833895
Simola, U. et al. Accounting for stellar activity signals in radial-velocity data by using change point detection techniques. Astron. Astrophys. 664, A127 (2022). DOI: 10.1051/0004-6361/202142941
Bonfanti, A. et al. TOI-1055 b: Neptunian planet characterised with HARPS, TESS, and CHEOPS. Astron. Astrophys. 671, L8 (2023).
Bonfanti, A. & Gillon, M. MCMCI: a code to fully characterise an exoplanetary system. Astron. Astrophys. 635, A6 (2020). DOI: 10.1051/0004-6361/201936326
Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978). DOI: 10.1214/aos/1176344136
Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992). DOI: 10.1214/ss/1177011136
Rajpaul, V., Aigrain, S., Osborne, M. A., Reece, S. & Roberts, S. A Gaussian process framework for modelling stellar activity signals in radial velocity data. Mon. Not. R. Astron. Soc. 452, 2269–2291 (2015). DOI: 10.1093/mnras/stv1428
Barragán, O., Aigrain, S., Rajpaul, V. M. & Zicher, N. PYANETI - II. A multidimensional Gaussian process approach to analysing spectroscopic time-series. Mon. Not. R. Astron. Soc. 509, 866–883 (2022). DOI: 10.1093/mnras/stab2889
Barragán, O. et al. The young HD 73583 (TOI-560) planetary system: two 10-M⊕ mini-Neptunes transiting a 500-Myr-old, bright, and active K dwarf. Mon. Not. R. Astron. Soc. 514, 1606–1627 (2022). DOI: 10.1093/mnras/stac638
Zicher, N. et al. One year of AU Mic with HARPS – I. Measuring the masses of the two transiting planets. Mon. Not. R. Astron. Soc. 512, 3060–3078 (2022). DOI: 10.1093/mnras/stac614
Barragán, O., Gandolfi, D. & Antoniciello, G. PYANETI: a fast and powerful software suite for multiplanet radial velocity and transit fitting. Mon. Not. R. Astron. Soc. 482, 1017–1030 (2019). DOI: 10.1093/mnras/sty2472
Cale, B. L. et al. Diving beneath the sea of stellar activity: chromatic radial velocities of the young AU Mic planetary system. Astron. J. 162, 295 (2021). DOI: 10.3847/1538-3881/ac2c80
Blunt, S. et al. Overfitting affects the reliability of radial velocity mass estimates of the V1298 Tau planets. Astron. J. 166, 62 (2023).
Dorn, C. et al. Can we constrain the interior structure of rocky exoplanets from mass and radius measurements? Astron. Astrophys. 577, A83 (2015). DOI: 10.1051/0004-6361/201424915
Dorn, C. et al. A generalized Bayesian inference method for constraining the interiors of super Earths and sub-Neptunes. Astron. Astrophys. 597, A37 (2017). DOI: 10.1051/0004-6361/201628708
Haldemann, J., Alibert, Y., Mordasini, C. & Benz, W. AQUA: a collection of H2O equations of state for planetary models. Astron. Astrophys. 643, A105 (2020). DOI: 10.1051/0004-6361/202038367
Hakim, K. et al. A new ab initio equation of state of hcp-Fe and its implication on the interior structure and mass-radius relations of rocky super-Earths. Icarus 313, 61–78 (2018). DOI: 10.1016/j.icarus.2018.05.005
Sotin, C., Grasset, O. & Mocquet, A. Mass radius curve for extrasolar Earth-like planets and ocean planets. Icarus 191, 337–351 (2007). DOI: 10.1016/j.icarus.2007.04.006
Lopez, E. D. & Fortney, J. J. Understanding the mass–radius relation for sub-Neptunes: radius as a proxy for composition. Astrophys. J. 792, 1 (2014). DOI: 10.1088/0004-637X/792/1/1
Thiabaud, A. et al. From stellar nebula to planets: the refractory components. Astron. Astrophys. 562, A27 (2014). DOI: 10.1051/0004-6361/201322208
Marboeuf, U., Thiabaud, A., Alibert, Y., Cabral, N. & Benz, W. From planetesimals to planets: volatile molecules. Astron. Astrophys. 570, A36 (2014). DOI: 10.1051/0004-6361/201423431
Venturini, J., Guilera, O. M., Haldemann, J., Ronco, M. P. & Mordasini, C. The nature of the radius valley. Hints from formation and evolution models. Astron. Astrophys. 643, L1 (2020). DOI: 10.1051/0004-6361/202039141
Emsenhuber, A. et al. The New Generation Planetary Population Synthesis (NGPPS). II. Planetary population of solar-like stars and overview of statistical results. Astron. Astrophys. 656, A70 (2021). DOI: 10.1051/0004-6361/202038863
Izidoro, A. et al. The exoplanet radius valley from gas-driven planet migration and breaking of resonant chains. Astrophys. J. 939, L19 (2022). DOI: 10.3847/2041-8213/ac990d
Hu, R. et al. Unveiling shrouded oceans on temperate sub-Neptunes via transit signatures of solubility equilibria versus gas thermochemistry. Astrophys. J. 921, L8 (2021). DOI: 10.3847/2041-8213/ac1f92
Tsai, S.-M. et al. Inferring shallow surfaces on sub-Neptune exoplanets with JWST. Astrophys. J. 922, L27 (2021). DOI: 10.3847/2041-8213/ac399a
Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020). DOI: 10.1038/s41586-020-2649-2
Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007). DOI: 10.1109/MCSE.2007.55
The Astropy Collaboration et al. The Astropy Project: sustaining and growing a community-oriented open-source project and the latest major release (v5.0) of the core package. Astrophys. J. 935, 167 (2022). DOI: 10.3847/1538-4357/ac7c74
Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Proc. Acad. Sci. Pac. 125, 306 (2013).
MacDonald, M. G., Shakespeare, C. J. & Ragozzine, D. A five-planet resonant chain: reevaluation of the Kepler-80 system. Astron. J. 162, 114 (2021). DOI: 10.3847/1538-3881/ac12d5
Cannon, A. J. & Pickering, E. C. The Henry Draper catalogue 0h, 1h, 2h, and 3h. Ann. Harvard College Observatory 91, 1–290 (1918).
Gaia Collaboration et al. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 649, A1 (2021). DOI: 10.1051/0004-6361/202039657
Yoss, K. M. & Griffin, R. F. Radial velocities and DDO, BV photometry of Henry Draper G5-M stars near the North Galactic Pole. J. Astrophys. Astron. 18, 161–227 (1997). DOI: 10.1007/BF02714877
Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163–1183 (2006). DOI: 10.1086/498708
Delisle, J. B. Analytical model of multi-planetary resonant chains and constraints on migration scenarios. Astron. Astrophys. 605, A96 (2017). DOI: 10.1051/0004-6361/201730857