Host-microbiota-parasite interactions in two wild sparid fish species, Diplodus annularis and Oblada melanura (Teleostei, Sparidae) over a year: a pilot study
[en] [en] BACKGROUND: The microbiota in fish external mucus is mainly known for having a role in homeostasis and protection against pathogens, but recent evidence suggests it is also involved in the host-specificity of some ectoparasites. In this study, we investigated the influence of seasonality and environmental factors on both fish external microbiota and monogenean gill ectoparasites abundance and diversity and assessed the level of covariations between monogenean and bacterial communities across seasons. To do so, we assessed skin and gill microbiota of two sparid species, Oblada melanura and Diplodus annularis, over a year and collected their specific monogenean ectoparasites belonging to the Lamellodiscus genus.
RESULTS: Our results revealed that diversity and structure of skin and gill mucus microbiota were strongly affected by seasonality, mainly by the variations of temperature, with specific fish-associated bacterial taxa for each season. The diversity and abundance of parasites were also influenced by seasonality, with the abundance of some Lamellodiscus species significantly correlated to temperature. Numerous positive and negative correlations between the abundance of given bacterial genera and Lamellodiscus species were observed throughout the year, suggesting their differential interaction across seasons.
CONCLUSIONS: The present study is one of the first to demonstrate the influence of seasonality and related abiotic factors on fish external microbiota over a year. We further identified potential interactions between gill microbiota and parasite occurrence in wild fish populations, improving current knowledge and understanding of the establishment of host-specificity.
Scheifler, Mathilde ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs ; Sorbonne Université, CNRS, Biologie Intégrative Des Organismes Marins, BIOM, Banyuls-sur-Mer, F-66650, France. mathilde.scheifler@gmail.com
Magnanou, Elodie; Sorbonne Université, CNRS, Biologie Intégrative Des Organismes Marins, BIOM, Banyuls-sur-Mer, F-66650, France
Sanchez-Brosseau, Sophie; Sorbonne Université, CNRS, Biologie Intégrative Des Organismes Marins, BIOM, Banyuls-sur-Mer, F-66650, France
Desdevises, Yves; Sorbonne Université, CNRS, Biologie Intégrative Des Organismes Marins, BIOM, Banyuls-sur-Mer, F-66650, France
Language :
English
Title :
Host-microbiota-parasite interactions in two wild sparid fish species, Diplodus annularis and Oblada melanura (Teleostei, Sparidae) over a year: a pilot study
Ings T, Montoya J, Bascompte J, Blüthgen N, Brown L, Dormann C, et al. Ecological networks - beyond food webs. J Anim Ecol. 2009;78(1):253–69.
Bush A, Fernández J, Esch G, Seed J, Parasitism. The Diversity and Ecology of Animal parasites. 1st ed. Cambridge: Cambridge University Press; 2001.
Lafferty K, Allesina S, Arim M, Briggs C, De Leo G, Dobson A, et al. Parasites in food webs: the ultimate missing links. Ecol Lett. 2008;11(6):533–46.
Boutin S, Sauvage C, Bernatchez L, Audet C, Derome N. Inter individual variations of the fish skin microbiota: host genetics basis of mutualism? PLoS ONE. 2014;9(7): e102649.
Llewellyn M, Boutin S, Hoseinifar S, Derome N. Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Front Microbiol. 2014;5:207.
Hellio C, Pons A, Beaupoil C, Bourgougnon N, Gal Y. Antibacterial, antifungal and cytotoxic activities of extracts from fish epidermis and epidermal mucus. Int J Antimicrob Agents. 2002;20(3):214–9.
Archie E, Theis K. Animal behaviour meets microbial ecology. Anim Behav. 2011;82(3):425–36.
Naik S, Bouladoux N, Wilhelm C, Molloy M, Salcedo R, Kastenmuller W, et al. Compartmentalized control of skin immunity by resident commensals. Science. 2012;337(6098):1115–9.
Boutin S, Bernatchez L, Audet C, Derôme N. Network analysis highlights complex interactions between pathogen, host and commensal microbiota. PLoS ONE. 2013;8(12): e84772.
McFall-Ngai M, Hadfield M, Bosch T, Carey H, Domazet-Lošo T, Douglas A, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA. 2013;110(9):3229–36.
Lowrey L, Woodhams D, Tacchi L, Salinas I. Topographical mapping of the rainbow trout (Oncorhynchus mykiss) microbiome reveals a diverse bacterial community with antifungal properties in the skin. Appl Environ Microbiol. 2015;81(19):6915–6125.
Kelly C, Salinas I. Under pressure: interactions between commensal microbiota and the teleost immune system. Front Immunol. 2017;8: 559.
Larsen A, Tao Z, Bullard S, Arias C. Diversity of the skin microbiota of fishes: evidence for host species specificity. FEMS Microbiol Ecol. 2013;85(3):483–94.
Llewellyn M, McGinnity P, Dionne M, Letourneau J, Thonier F, Carvalho G, et al. The biogeography of the atlantic salmon (Salmo salar) gut microbiome. ISME J. 2016;10(5):1280–4.
Chiarello M, Auguet J, Bettarel Y, Bouvier C, Claverie T, Graham N, et al. Skin microbiome of coral reef fish is highly variable and driven by host phylogeny and diet. Microbiome. 2018;6(1):147.
Reinhart E, Korry B, Rowan-Nash A, Belenky P. Defining the distinct skin and Gut Microbiomes of the Northern Pike (Esox lucius). Front Microbiol. 2019;10: 2118.
Ruiz-Rodríguez M, Scheifler M, Sanchez-Brosseau S, Magnanou E, West N, Suzuki M, et al. Host species and body site explain the variation in the Microbiota associated to wild sympatric mediterranean teleost fishes. Microb Ecol. 2020;80:212–22.
Scheifler M, Sanchez-Brosseau S, Magnanou E, Desdevises Y. Diversity and structure of sparids external microbiota (Teleostei) and its link with monogenean ectoparasites. Anim Microbiome. 2022;4:27.
Schmidt V, Smith K, Melvin D, Amaral-Zettler L. Community assembly of a euryhaline fish microbiome during salinity acclimation. Mol Ecol. 2015;24(10):2537–2350.
Lokesh J, Kiron V. Transition from freshwater to seawater reshapes the skin-associated microbiota of Atlantic salmon. Sci Rep. 2016;6: 19707.
Tarnecki A, Burgos F, Ray C, Arias C. Fish intestinal microbiome: diversity and symbiosis unravelled by metagenomics. J Appl Microbiol. 2017;123(1):2–17.
Li X, Ringø E, Hoseinifar S, Lauzon H, Birkbeck H, Yang D. The adherence and colonization of microorganisms in fish gastrointestinal tract. Rev Aquac. 2018;11(3):603–18.
Larsen A, Bullard S, Womble M, Arias C. Community structure of skin microbiome of gulf killifish, Fundulus grandis, is driven by seasonality and not exposure to oiled sediments in a Louisiana Salt Marsh. Microb Ecol. 2015;70(2):534–44.
Ray L, Cai W, Willmon E, Arias C. Fish are not alone: characterization of the gut and skin microbiomes of Largemouth Bass (Micropterus salmoides), Bluegill (Lepomis macrochirus), and spotted Gar (Lepisosteus oculatus). J Aquac Fish Sci. 2019;2:138–54.
Minich J, Petrus S, Michael J, Michael T, Knight R, Allen E. Temporal, environmental, and Biological drivers of the mucosal microbiome in a wild Marine Fish, Scomber japonicus. mSphere. 2020;5(3):e00401-00420.
Reverter M, Sasal P, Tapissier-Bontemps N, Lecchini D, Suzuki M. Characterisation of the gill mucosal bacterial communities of four butterflyfish species: a reservoir of bacterial diversity in coral reef ecosystems. FEMS Microbiol Ecol. 2017;93(6):fix051.
Pratte Z, Besson M, Hollman R, Stewarta F. The gills of reef fish support a distinct microbiome influenced by host-specific factors. Appl Environ Microbiol. 2018;84(9):e00063-00018.
Guivier E, Pech N, Chappaz R, Gilles A. Microbiota associated with the skin, gills, and gut of the fish Parachondrostoma toxostoma from the Rhône basin. Freshw Biol. 2020;65(3):446–59.
Sylvain F, Cheaib B, Llewellyn M, Gabriel Correia T, Barros Fagundes D, Luis Val A, et al. pH drop impacts differentially skin and gut microbiota of the amazonian fish tambaqui (Colossoma macropomum). Sci Rep. 2016;6: 32032.
Perez T, Balcázar J, Ruiz-Zarzuela I, Halaihel N, Vendrell D, De Blas I, et al. Host-microbiota interactions within the fish intestinal ecosystem. Mucosal Immunol. 2010;3(4):355–60.
Gomez D, Sunyer J, Salinas I. The mucosal immune system of fish: the evolution of tolerating commensals while fighting pathogens. Fish Shellfish Immunol. 2013;35(6):1729–39.
Sasal P, Trouvé S, Müller-Graf C, Morand S. Specificity and host predictability: a comparative analysis among monogenean parasites of fish. J Anim Ecol. 1999;68(3):437–44.
Rohde K. Marine parasitology. Victoria, Australia: Csiro Publishing; 2005.
Kearn G. Experiments on host-finding and host specificity in the monogenean skin parasite Entobdella soleae. Parasitology. 1967;57(3):585–605.
Buchmann K, Lindenstrøm T. Interactions between monogenean parasites and their fish hosts. Int J Parasitol. 2002;32(3):309–19.
Reverter M, Sasal P, Banaigs B, Lecchini D, Lecellier G, Tapissier-Bontemps N. Fish mucus metabolome reveals fish life-history traits. Coral Reefs. 2017;36:463–75.
Llewellyn M, Leadbeater S, Garcia C, Sylvain F, Custodio M, Ang K, et al. Parasitism perturbs the mucosal microbiome of Atlantic Salmon. Sci Rep. 2017;7: 43465.
Vasemägi A, Visse M, Kisand V. Effect of environmental factors and an emerging parasitic disease on gut microbiome of wild salmonid fish. mSphere. 2017;2(6):e00418-00417.
Afrin T, Murase K, Kounosu A, Hunt V, Bligh M, Maeda Y, et al. Sequential changes in the host gut microbiota during Infection with the intestinal parasitic nematode Strongyloides venezuelensis. Front Cell Infect Microbiol. 2019;9: 217.
Hennersdorf P, Kleinertz S, Theisen S, Abdul-Aziz M, Mrotzek G, Palm H, et al. Microbial diversity and parasitic load in tropical fish of different environmental conditions. PLoS ONE. 2016;11(3): e0151594.
Fu P, Xiong F, Feng W, Zou H, Wu S, Li M, et al. Effect of intestinal tapeworms on the gut microbiota of the common carp, Cyprinus carpio. Parasit Vectors. 2019;12(1):252.
Gaulke C, Martins M, Watral V, Humphreys I, Spagnoli S, Kent M, et al. A longitudinal assessment of host-microbe-parasite interactions resolves the zebrafish gut microbiome’s link to Pseudocapillaria tomentosa Infection and pathology. Microbiome. 2019;7(1):10.
Euzet L, Oliver G. Diplectanidae (Monogenea) des Téléostéens de la Méditerranée occidentale. III. Quelques Lamellodiscus Jonhston et Tiegs, 1922, parasites de poissons du genre Diplodus (Sparidae). Ann Parasitol Hum Comp. 1966;41:573–98.
Oliver G. Les Diplectanidae Bychowsky, 1957 (Monogenea, Monopisthocotylea, Dactylogyridea), Systématique, Biologie, Ontogénie, Écologie, essai de phylogenèse. Montpellier: Université des Sciences et Techniques du Languedoc; 1987. (Thèse d’État).
Euzet L, Combes C, Caro C. A check list of Monogenea of Mediterranean fish. Second International Symposium on Monogenea, Montpellier/Sète (France). 1993.
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41(1):e1.
Sinclair L, Osman O, Bertilsson S, Eiler A. Microbial Community Composition and Diversity via 16S rRNA gene amplicons: evaluating the Illumina platform. PLoS ONE. 2015;10(2): e0116955.
Caporaso J, Kuczynski J, Stombaugh J, Bittinger K, Bushman F, Costello E, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6.
Hall M, Beiko R. 16S rRNA gene analysis with QIIME2. Methods Mol Biol. 2018;1849:113–29.
Callahan B, McMurdie P, Holmes S. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11(12):2639–43.
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590-596.
Yilmaz P, Parfrey L, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and allspecies living Tree Project (LTP) taxonomic frameworks. Nucleic Acids Res. 2014;42:D643-648.
McMurdie P, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8(4): e61217.
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett W, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6): R60.
Bush A, Lafferty K, Lotz J, Shostak A, et al. Parasitology meets Ecology on its own terms: Margolis et al. revisited. J Parasitol. 1997;83(4):575–83.
Crofton H. A quantitative approach to parasitism. Parasitology. 1971;62(2):179–93.
Froese R, Pauly D, FishBase. World Wide Web electronic publication. www.fishbase.org08/2022).
Bowden T, Thompson K, Morgan A, Gratacap R, Nikoskelainen S. Seasonal variation and the immune response: a fish perspective. Fish Shellfish Immunol. 2007;22(6):695–706.
Hagi T, Tanaka D, Iwamura Y, Hoshino T. Diversity and seasonal changes in lactic acid bacteria in the intestinal tract of cultured freshwater fish. Aquaculture. 2004;234(1–4):335–46.
Hovda M, Lunestad B, Fontanillas R, Rosnes J. Molecular characterisation of the intestinal microbiota of farmed Atlantic salmon (Salmo salar L). Aquaculture. 2007;272(1–4):581–8.
Sullam K, Essinger S, Lozupone C, O’Connor M, Rosen G, Knight R, et al. Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol Ecol. 2012;21(13):3363–78.
Zarkasi K, Abell G, Taylor R, Neuman C, Hatje E, Tamplin M, et al. Pyrosequencing-based characterization of gastrointestinal bacteria of Atlantic salmon (Salmo salar L.) within a commercial mariculture system. J Appl Microbiol. 2014;117(1):18–27.
Neuman C, Hatje E, Zarkasi K, Smullen R, Bowman J, Katouli M. The effect of diet and environmental temperature on the faecal microbiota of farmed Tasmanian Atlantic Salmon (Salmo salar L). Aquac Res. 2016;47(2):660–72.
Zhang M, Sun Y, Liu Y, Qiao F, Chen L, Liu W, et al. Response of gut microbiota to salinity change in two euryhaline aquatic animals with reverse salinity preference. Aquaculture. 2016;454:72–80.
Dehler C, Secombes C, Martin S. Environmental and physiological factors shape the gut microbiota of Atlantic salmon parr (Salmo salar L). Aquaculture. 2017;467:149–57.
Dulski T, Kozłowski K, Ciesielski S. Habitat and seasonality shape the structure of tench (Tinca tinca L.) gut microbiome. Sci Rep. 2020;10(1):4460.
Kashinskaya E, Belkova N, Izvekova G, Simonov E, Andree K, Glupov V, et al. A comparative study on microbiota from the intestine of prussian carp (Carassius gibelio) and their aquatic environmental compartments, using different molecular methods. J Appl Microbiol. 2015;119(4):948–61.
Minniti G, Hagen L, Porcellato D, Jørgensen S, Pope P, Vaaje-Kolstad G. The skin-mucus microbial community of farmed Atlantic salmon (Salmo salar). Front Microbiol. 2017;8: 2043.
Schauer M, Balagué V, Pedrós-Alió C, Massana R. Seasonal changes in the taxonomic composition of bacterioplankton in a coastal oligotrophic system. Aquat Microb Ecol. 2003;31(2):163–74.
Cram J, Chow C, Sachdeva R, Needham D, Parada A, Steele J, et al. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. 2015;9(3):563–80.
Tonkin J, Bogan M, Bonada N, Rios-Touma B, Lytle D. Seasonality and predictability shape temporal species diversity. Ecology. 2017;98(5):1201–16.
Lambert S, Tragin M, Lozano J, Ghiglione J, Vaulot D, Bouget F, et al. Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations. ISME J. 2019;13(2):388–401.
Corkrey R, Olley J, Ratkowsky D, McMeekin T, Ross T. Universality of thermodynamic constants governing biological growth rates. PLoS ONE. 2012;7(2):e320003.
Ward C, Yung C, Davis K, Blinebry S, Williams T, Johnson Z, et al. Annual community patterns are driven by seasonal switching between closely related marine bacteria. ISME J. 2017;11(6):1412–22.
Mouquet N, Hoopes M, Amarasekare P. The world is patchy and heterogeneous! Trade-off and source-sink dynamics in competitive metacommunities. In: Metacommunities: Spatial Dynamics and Ecological Communities. 2005. p. 237 – 62.
Collazos M, Barriga C, Ortega E. Optimum conditions for the activation of the alternative complement pathway of a cyprinid fish (Tinca tinca L.). Seasonal variations in the titres. Fish Shellfish Immunol. 1994;4(7):499–506.
Collazos M, Barriga C, Ortega E. Seasonal variations in the immune system of the cyprinid Tinca tinca. Phagocytic function. Comp Immunol Microbiol Infect Dis. 1995;18(2):105–13.
Bowden T, Butler R, Bricknell I. Seasonal variation of serum lysozyme levels in Atlantic halibut (Hippoglossus hippoglossus L). Fish Shellfish Immunol. 2004;17(2):129–35.
Huang Z, Ma A, Wang X. The immune response of turbot, Scophthalmus maximus (L.), skin to high water temperature. J Fish Dis. 2011;34(8):619–27.
Sugahara K, Eguchi M. The use of warmed water treatment to induce protective immunity against the bacterial cold-water Disease pathogen Flavobacterium psychrophilum in ayu (Plecoglossus altivelis). Fish Shellfish Immunol. 2012;32(3):489–93.
Magadan S, Sunyer O, Boudinot P. Unique features of fish immune repertoires: Particularities of adaptive immunity within the largest group of vertebrates. In: Results and Problems in Cell Differentiation. 2015. p. 235 – 64.
Abram Q, Dixon B, Katzenback B. Impacts of low temperature on the teleost immune system. Biology. 2017;6(4): 39.
Li J, Woo N. Pathogenicity of vibrios in fish: an overview. J Ocean Univ China. 2003;2(2):117–28.
Chatterjee C, Haldar S. Vibrio related diseases in aquaculture and development of rapid and accurate identification methods. J Mar Sci Res Dev. 2012;13.
Morgan A, Thompson K, Auchinachie N, Migaud H. The effect of seasonality on normal haematological and innate immune parameters of rainbow trout Oncorhynchus mykiss L. Fish Shellfish Immunol. 2008;25(6):791–9.
Bowden T. Modulation of the immune system of fish by their environment. Fish Shellfish Immunol. 2008;25(4):373–83.
Makrinos D, Bowden T. Natural environmental impacts on teleost immune function. Fish Shellfish Immunol. 2016;53:50–7.
Merella P, Cherchi S, Salati F, Garippa G. Parasitological survey of sharpsnout seabream Diplodus puntazzo (Cetti, 1777) reared in sea cages in Sardinia (western Mediterranean). Bull Eur Assoc Fish Pathol. 2005;25(4):140–7.
Mladineo I, Maršić-Lučić J. Host switch of Lamellodiscus elegans (Monogenea: Monopisthocotylea) and Sparicotyle chrysophrii (Monogenea: Polyopisthocotylea) between cage-reared sparids. Vet Res Commun. 2007;31(2):153–60.
Emre Y, Emre N, Aydogdu A, Bušelić I, Smales L, Mladineo I. Population dynamics of two diplectanid species (Monogenea) parasitising sparid hosts (Sparidae). Parasitol Res. 2015;114(3):1079–86.
Valtonen E, Prost M, Rahkonen R. Seasonality of two gill monogeneans from two freshwater fish from an oligotrophic lake in Northeast Finland. Int J Parasitol. 1990;20(1):101–7.
Tubbs L, Poortenaar C, Sewell M, Diggles B. Effects of temperature on fecundity in vitro, egg hatching and reproductive development of Benedenia seriolae and Zeuxapta seriolae (Monogenea) parasitic on yellowtail kingfish Seriola lalandi. Int J Parasitol. 2005;35(5):315–27.
Lackenby J, Chambers C, Ernst I, Whittington I. Effect of water temperature on reproductive development of Benedenia seriolae (Monogenea: Capsalidae) from Seriola lalandi in Australia. Dis Aquat Organ. 2007;74(3):235–42.
Brazenor A, Hutson K. Effects of temperature and salinity on the life cycle of Neobenedenia sp. (Monogenea: Capsalidae) infecting farmed barramundi (Lates calcarifer). Parasitol Res. 2015;114(5):1875–86.
Cecchini S, Saroglia M, Berni P, Cognetti-Varriale A. Influence of temperature on the life cycle of Diplectanum aequans (Monogenea, Diplectanidae), parasitic on sea bass, Dicentrarchus labrax (L). J Fish Dis. 1998;21(1):73–5.
Simková A, Sasal P, Kadlec D, Gelnar M. Water temperature influencing dactylogyrid species communities in roach, Rutilus rutilus, in the Czech Republic. J Helminthol. 2001;75(4):373–83.
Chubb J. Seasonal occurrence of Helminths in Freshwater fishes Part I. Monogenea. Adv Parasitol. 1977;15(C):133–99.
Kim K, Ahn K, Kim C. Seasonal abundances of Prosomicrocotyla gotoi (monogenea) and Opecoelus sphaericus (digenea) from greenlings Hexagrammos otakii in a southern coastal area in Korea. Aquaculture. 2001;192(2–4):147–53.
Zhang X, Shang B, Wang G, Li W, Yang X, Li Z. The effects of temperature on Egg Laying, Egg Hatching and Larval Development of Dactylogyrus vastator. Acta Hydrobiol. 2015;39(6):1177–83.
Yang B, Zou H, Zhou S, Wu S, Wang G, Li W. Seasonal dynamics and spatial distribution of the Dactylogyrus species on the gills of grass carp (Ctenopharyngodon idellus) from a Fish Pond in Wuhan, China. J Parasitol. 2016;102(5):507–13.
Paperna I. Parasites, infections et maladies du poisson en Afrique. 1982. p.202.
Umeda N, Hirazawa N. Response of the monogenean Neobenedenia girellae to low salinities. Fish Pathol. 2004;39(2):105–7.
Ernst I, Whittington I, Corneillie S, Talbot C. Effects of temperature, salinity, desiccation and chemical treatments on egg embryonation and hatching success of Benedenia seriolae (Monogenea: Capsalidae), a parasite of farmed Seriola spp. J Fish Dis. 2005;28(3):157–64.
Zander C. Ecology of host parasite relationships in the Baltic Sea. Sci Nat. 1998;85(9):426–36.
Mo T. Variations of opisthaptoral hard parts of Gyrodactylus salaris Malmberg, 1957 (Monogenea: Gyrodactylidae) on rainbow trout Oncorhynchus mykiss (Walbaum, 1792) in a fish farm, with comments on the spreading of the parasite in south-eastern Norway. Syst Parasitol. 1991;20:1–9.
Mo T. Variations of opisthaptoral hard parts of Gyrodactylus salaris Malmberg, 1957 (Monogenea: Gyrodactylidae) on parr of Atlantic salmon Salmo salar L. in laboratory experiments. Syst Parasitol. 1991b;20:11–9.
Mo T. Seasonal variations in the prevalence and infestation intensity of Gyrodactylus salaris Malmberg, 1957 (Monogenea: Gyrodactylidae) on Atlantic salmon parr, Salmo salar L., in the River Batnfjordselva, Norway. J Fish Biol. 1992;41(5):697–707.
Ito K, Okabe S, Asakawa M, Bessho K, Taniyama S, Shida Y, et al. Detection of tetrodotoxin (TTX) from two copepods infecting the grass puffer Takifugu niphobles: TTX attracting the parasites? Toxicon. 2006;48(6):620–6.
Ohashi H, Umeda N, Hirazawa N, Ozaki Y, Miura C, Miura T. Purification and identification of a glycoprotein that induces the attachment of oncomiracidia of Neobenedenia girellae (Monogenea, Capsalidae). Int J Parasitol. 2007;37(13):1483–90.
Rohlenová K, Morand S, Hyrl P, Tolarová S, Flajhans M, Simková A. Are fish immune systems really affected by parasites? An immunoecological study of common carp (Cyprinus carpio). Parasites Vectors. 2011;4: 120.