Low-diversity bacterial microbiota in Southern Ocean representatives of lanternfish genera Electrona, Protomyctophum and Gymnoscopelus (family Myctophidae)
[en] Myctophids are among the most abundant mesopelagic teleost fishes worldwide. They are dominant in the Southern Ocean, an extreme environment where they are important both as consumers of zooplankton as well as food items for larger predators. Various studies have investigated myctophids diet, but no data is yet available regarding their associated microbiota, despite that the significance of bacterial communities to fish health and adaptation is increasingly acknowledged. In order to document microbiota in key fish groups from the Southern Ocean, the bacterial communities associated with the gut, fin, gills and light organs of members of six species within the three myctophid genera Electrona, Protomyctophum and Gymnoscopelus were characterized using a 16S rRNA-based metabarcoding approach. Gut communities display limited diversity of mostly fish-specific lineages likely involved in food processing. Fin and skin communities display diversity levels and compositions resembling more those found in surrounding seawater. Community compositions are similar between genera Electrona and Protomyctophum, that differ from those found in Gymnoscopelus and in water. Low abundances of potentially light-emitting bacteria in light organs support the hypothesis of host production of light. This first description of myctophid-associated microbiota, and among the first on fish from the Southern Ocean, emphasizes the need to extend microbiome research beyond economically-important species, and start addressing ecologically-relevant species.
Gallet, Alison; Muséum National d'Histoire Naturelle, CNRS, Molécules de Communication et Adaptation des Micro-organismes, MCAM, Muséum national d'Histoire naturelle, Paris, France
Koubbi, Philippe; IFREMER, Channel and North Sea Fisheries Research Unit, Boulogne-sur-Mer, France ; UFR 918 « Terre, Environnement, Biodiversité », Sorbonne Université, place Jussieu, Paris, France
Léger, Nelly; Sorbonne Université, Biologie des Organismes et Ecosystèmes Aquatiques BOREA, Paris, France
Scheifler, Mathilde ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs ; Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Banyuls/Mer, France
Ruiz-Rodriguez, Magdalena; Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Banyuls/Mer, France
Suzuki, Marcelino T; Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM Observatoire Océanologique, Banyuls/Mer, France
Desdevises, Yves; Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Banyuls/Mer, France
Duperron, Sébastien ; Muséum National d'Histoire Naturelle, CNRS, Molécules de Communication et Adaptation des Micro-organismes, MCAM, Muséum national d'Histoire naturelle, Paris, France ; Institut Universitaire de France, Paris, France
Language :
English
Title :
Low-diversity bacterial microbiota in Southern Ocean representatives of lanternfish genera Electrona, Protomyctophum and Gymnoscopelus (family Myctophidae)
McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Loso T, Douglas AE, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A. 2013; 110: 3229-3236. https://doi.org/10.1073/pnas.1218525110 PMID: 23391737
Llewellyn MS, Boutin S, Hoseinifar SH, Derome N. Teleost microbiomes: The state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Front Microbiol. 2014; 5. https://doi.org/10.3389/fmicb.2014.00207 PMID: 24917852
Egerton S, Culloty S, Whooley J, Stanton C, Ross RP. The Gut Microbiota of Marine Fish. Front Microbiol. 2018; 9. https://doi.org/10.3389/fmicb.2018.00873 PMID: 29780377
Lescak EA, Milligan-Myhre KC. Teleosts as Model Organisms To Understand Host-Microbe Interactions. J Bacteriol. 2017;199. https://doi.org/10.1128/JB.00868-16 PMID: 28439034
Cherel Y, Fontaine C, Richard P, Labat J-P. Isotopic niches and trophic levels of myctophid fishes and their predators in the Southern Ocean. Limnol Oceanogr. 2010; 55: 324-332. https://doi.org/10.4319/lo. 2010.55.1.0324
Duhamel G, Hulley PA, Causse R, Koubbi P, Vacchi M, Pruvost P, et al. Biogeographic patterns of fish. Biogeographic atlas of the Southern Ocean. Cambridge, UK: De Broyer C., Koubbi P., Griffith H.J., Raymond B., Udekem d'Acoz C. et al (eds); 2014. pp. 328-362.
Saunders RA, Collins MA, Ward P, Stowasser G, Shreeve R, Tarling GA. Distribution, population structure and trophodynamics of Southern Ocean Gymnoscopelus (Myctophidae) in the Scotia Sea. Polar Biol. 2015; 38: 287-308. https://doi.org/10.1007/s00300-014-1584-9
Pakhomov EA, Perissinotto R, McQuaid CD. Prey composition and daily rations of myctophid fishes in the Southern Ocean. Mar Ecol Prog Ser. 1996; 134: 1-14. https://doi.org/10.3354/meps134001
Saunders RA, Collins MA, Ward P, Stowasser G, Hill SL, Shreeve R, et al. Predatory impact of the myctophid fish community on zooplankton in the Scotia Sea (Southern Ocean). Mar Ecol Prog Ser. 2015; 541: 45-64. https://doi.org/10.3354/meps11527
Eastman JT. The nature of the diversity of Antarctic fishes. Polar Biol. 2005; 28: 93-107. https://doi.org/10.1007/s00300-004-0667-4
Ward NL, Steven B, Penn K, Methe BA, Detrich WH. Characterization of the intestinal microbiota of two Antarctic notothenioid fish species. Extremophiles. 2009; 13: 679-685. https://doi.org/10.1007/s00792-009-0252-4 PMID: 19472032
Song W, Li L, Huang H, Jiang K, Zhang F, Chen X, et al. The Gut Microbial Community of Antarctic Fish Detected by 16S rRNA Gene Sequence Analysis. In: BioMed Research International [Internet]. 2016 [cited 21 May 2019]. https://doi.org/10.1155/2016/3241529 PMID: 27957494
Gutowska MA, Drazen JC, Robison BH. Digestive chitinolytic activity in marine fishes of Monterey Bay, California. Comp Biochem Physiol -Mol Integr Physiol. 2004; 139: 351-358. https://doi.org/10.1016/j. cbpb.2004.09.020 PMID: 15556391
Widder EA. Bioluminescence in the Ocean: Origins of Biological, Chemical, and Ecological Diversity. Science. 2010; 328: 704-708. https://doi.org/10.1126/science.1174269 PMID: 20448176
Deshmukh A. Control of bioluminescence in Myctophid fishes. IJMS Vol 4607 July 2017. 2017; Available: Http://nopr.niscair.res.in/handle/123456789/42233
Collins MA, Stowasser G, Fielding S, Shreeve R, Xavier JC, Venables HJ, et al. Latitudinal and bathymetric patterns in the distribution and abundance of mesopelagic fish in the Scotia Sea. Deep Sea Res Part II Top Stud Oceanogr. 2012; 59-60: 189-198. https://doi.org/10.1016/j.dsr2.2011.07.003
Hulley PA. Myctophidae. Grahamstown: J.L.B. Smith Institute of Ichthyology.; 1990.
Koubbi P, Moteki M, Duhamel G, Goarant A, Hulley P-A, O'Driscoll R, et al. Ecoregionalization of myctophid fish in the Indian sector of the Southern Ocean: Results from generalized dissimilarity models. Deep Sea Res Part II Top Stud Oceanogr. 2011; 58: 170-180. https://doi.org/10.1016/j.dsr2.2010.09. 007
Toullec JY, Koubbi P. VT 155/REPCCOAI Cruise, RV Marion Dufresne [Internet]. 2017. Available: Https://doi.org/10.17600/17017100
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013; 41: E1. https://doi.org/10.1093/nar/gks808 PMID: 22933715
Sinclair L, Osman OA, Bertilsson S, Eiler A. Microbial Community Composition and Diversity via 16S rRNA Gene Amplicons: Evaluating the Illumina Platform. PLOS ONE. 2015; 10: E0116955. https://doi. org/10.1371/journal.pone.0116955 PMID: 25647581
Hall M, Beiko RG. 16S rRNA Gene Analysis with QIIME2. Methods Mol Biol Clifton NJ. 2018; 1849: 113-129. https://doi.org/10.1007/978-1-4939-8728-3_8 PMID: 30298251
Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017; 11: 2639. https://doi.org/10.1038/ismej.2017.119 PMID: 28731476
Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, et al. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007; 35: 7188-7196. https://doi.org/10.1093/nar/gkm864 PMID: 17947321
Lozupone C, Knight R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005; 71: 8228-8235. https://doi.org/10.1128/AEM.71.12.8228-8235.2005 PMID: 16332807
Sedlacek I, Stankova E, Svec P. Composition of cultivable enteric bacteria from the intestine of Antarctic fish (family Nototheniidae). Czech J Anim Sci. 2016; 61: 127-132. https://doi.org/10.17221/8785-CJAS
Duperron S, Halary S, Habiballah M, Gallet A, Huet H, Duval C, et al. Response of Fish Gut Microbiota to Toxin-Containing Cyanobacterial Extracts: A Microcosm Study on the Medaka (Oryzias latipes). Environ Sci Technol Lett. 2019; 6: 341-347. https://doi.org/10.1021/acs.estlett.9b00297
Brown RM, Wiens GD, Salinas I. Analysis of the gut and gill microbiome of resistant and susceptible lines of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2019; 86: 497-506. https://doi. org/10.1016/j.fsi.2018.11.079 PMID: 30513381
Lowrey L, Woodhams DC, Tacchi L, Salinas I. Topographical Mapping of the Rainbow Trout (Oncorhynchus mykiss) Microbiome Reveals a Diverse Bacterial Community with Antifungal Properties in the Skin. Appl Environ Microbiol. 2015; 81: 6915-6925. https://doi.org/10.1128/AEM.01826-15 PMID: 26209676
Kelly C, Salinas I. Under Pressure: Interactions between Commensal Microbiota and the Teleost Immune System. Front Immunol. 2017; 8: 559. https://doi.org/10.3389/fimmu.2017.00559 PMID: 28555138
Rosado D, Pérez-Losada M, Severino R, Cable J, Xavier R. Characterization of the skin and gill microbiomes of the farmed seabass (Dicentrarchus labrax) and seabream (Sparus aurata). Aquaculture. 2019; 500:57-64. https://doi.org/10.1016/j.aquaculture.2018.09.063
Chiarello M, Villéger S, Bouvier C, Bettarel Y, Bouvier T. High diversity of skin-associated bacterial communities of marine fishes is promoted by their high variability among body parts, individuals and species. FEMS Microbiol Ecol. 2015; 91: Fiv061. https://doi.org/10.1093/femsec/fiv061 PMID: 26048284
Holben WE, Williams P, Gilbert MA, Saarinen M, Särkilahti LK, Apajalahti JHA. Phylogenetic analysis of intestinal microflora indicates a novel Mycoplasma phylotype in farmed and wild salmon. Microb Ecol. 2002; 44: 175-185. https://doi.org/10.1007/s00248-002-1011-6 PMID: 12082453
Ciric M, Waite D, Draper J, Jones JB. Characterisation of gut microbiota of farmed Chinook salmon using metabarcoding. bioRxiv. 2018; 288761. https://doi.org/10.1101/288761
Rimoldi S, Gini E, Iannini F, Gasco L, Terova G. The effect of dietary insect meal from Hermetia illucens prepupae on autochtonous gut microbiota of Rainbow trout (Oncorhynchus mykiss). Animals. 2019; 9:143. https://doi.org/10.3390/ani9040143 PMID: 30987067
Dubilier N, Bergin C, Lott C. Symbiotic diversity in marine animals: The art of harnessing chemosynthesis. Nat Rev Microbiol. 2008; 6: 725-740. https://doi.org/10.1038/nrmicro1992 PMID: 18794911
Foran D. Evidence of luminous bacterial symbionts in the light organs of myctophid and stomiiform fishes. J Exp Zool. 1991; 259: 1-8. https://doi.org/10.1002/jez.1402590102 PMID: 2072087
Haygood M, Edwards D, Mowlds G, Rosenblatt R. Bioluminescence of Myctophid and Stomiiform Fishes Is Not Due to Bacterial Luciferase. J Exp Zool. 1994; 270: 225-231. https://doi.org/10.1002/jez. 1402700212