network; carbon dioxide; chemical recycling; thiol ene reaction
Abstract :
[en] Finding new chemistry platforms for easily recyclable polymers has become a key challenge to face environmental concerns and the growing plastics demand. Here, we report a dynamic chemistry between CO2-sourced alkylidene oxazolidones and thiols, delivering circular non-isocyanate polyurethane networks embedding N,S-acetal bonds. The production of oxazolidone monomers from CO2 is facile and scalable starting from cheap reagents. Their copolymerization with a polythiol occurs under mild conditions in the presence of a catalytic amount of acid to furnish polymer networks. The polymer structure is easily tuned by virtue of monomer design, translating into a wide panel of mechanical properties similar to commodity plastics, ranging from PDMS-like elastomers [with Young's modulus (E) of 2.9 MPa and elongation at break (εbreak) of 159%] to polystyrene-like rigid plastics (with E = 2400 MPa, εbreak = 3%). The highly dissociative nature of the N,S-acetal bonds is demonstrated and exploited to offer three different recycling scenarios to the thermosets: (1) mechanical recycling by compression molding, extrusion, or injection molding─with multiple recycling (at least 10 times) without any material property deterioration, (2) chemical recycling through depolymerization, followed by repolymerization, also applicable to composites, and (3) upcycling of two different oxazolidone-based thermosets into a single one with distinct properties. This work highlights a new facile and scalable chemical platform for designing highly dynamic polymer networks containing elusive oxazolidone motifs. The versatility of this chemistry shows great potential for the preparation of materials (including composites) of tuneable structures and properties, with multiple end-of-life scenarios.
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège CERM - Center for Education and Research on Macromolecules - ULiège
Disciplines :
Materials science & engineering Chemistry
Author, co-author :
Habets, Thomas ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium
Seychal, Guillem ; University of Mons [UMons] - Center of Innovation and Research in Materials and Polymers [CIRMAP] - Laboratory of Polymeric and Composite Materials - Belgium ; University of the Basque Country - POLYMAT - Donostia/SanSebastian - Spain
Caliari, Marco ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium ; University of the Basque Country - POLYMAT - Donostia/SanSebastian - Spain
Raquez, Jean-Marie ; University of Mons [UMons] - Center of Innovation and Research in Materials and Polymers [CIRMAP] - Laboratory of Polymeric and Composite Materials - Belgium
Sardon, Haritz ; University of the Basque Country - POLYMAT - Donostia/SanSebastian - Spain
Grignard, Bruno ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium
Detrembleur, Christophe ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium
CÉCI : Consortium des Équipements de Calcul Intensif
Name of the research project :
The " Non-Isocyanate Polyurethanes - European Joint Doctorate " [ NIPU-EJD ]
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique European Union - Horizon 2020 - Marie Skłodowska-Curie Actions
Funding text :
The authors of Liege thank FNRS for the financial support in the frame of the COSwitch project under grant T.0075.20. C.D. is a F.R.S.-FNRS Research Director, and J.-M.R. is a F.R.S.-FNRS Senior Research Associate. Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under grant no. 2.5020.11 and by the Walloon Region. The authors would like to thank the financial support provided by the NIPU-EJD project; part of this project (composite preparation and recycling) has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no. 955700. 2
OECD . Global Plastics Outlook: Policy Scenarios to 2060; OECD, 2022.
Grignard, B.; Gennen, S.; Jérôme, C.; Kleij, A. W.; Detrembleur, C. Advances in the Use of CO2 as a Renewable Feedstock for the Synthesis of Polymers. Chem. Soc. Rev. 2019, 48 ( 16), 4466- 4514, 10.1039/C9CS00047J
Xu, Y.; Lin, L.; Xiao, M.; Wang, S.; Smith, A. T.; Sun, L.; Meng, Y. Synthesis and Properties of CO2-Based Plastics: Environmentally-Friendly, Energy-Saving and Biomedical Polymeric Materials. Prog. Polym. Sci. 2018, 80, 163- 182, 10.1016/j.progpolymsci.2018.01.006
Cywar, R. M.; Rorrer, N. A.; Hoyt, C. B.; Beckham, G. T.; Chen, E. Y.-X. Bio-Based Polymers with Performance-Advantaged Properties. Nat. Rev. Mater. 2022, 7 ( 2), 83- 103, 10.1038/s41578-021-00363-3
Hayes, G.; Laurel, M.; MacKinnon, D.; Zhao, T.; Houck, H. A.; Becer, C. R. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem. Rev. 2023, 123 ( 5), 2609- 2734, 10.1021/acs.chemrev.2c00354
Zhao, X.-L.; Tian, P.-X.; Li, Y.-D.; Zeng, J.-B. Biobased Covalent Adaptable Networks: Towards Better Sustainability of Thermosets. Green Chem. 2022, 24 ( 11), 4363- 4387, 10.1039/D2GC01325H
Jehanno, C.; Alty, J. W.; Roosen, M.; De Meester, S.; Dove, A. P.; Chen, E. Y.-X.; Leibfarth, F. A.; Sardon, H. Critical Advances and Future Opportunities in Upcycling Commodity Polymers. Nature 2022, 603 ( 7903), 803- 814, 10.1038/s41586-021-04350-0
Coates, G. W.; Getzler, Y. D. Y. L. Chemical Recycling to Monomer for an Ideal, Circular Polymer Economy. Nat. Rev. Mater. 2020, 5 ( 7), 501- 516, 10.1038/s41578-020-0190-4
Kosloski-Oh, S. C.; Wood, Z. A.; Manjarrez, Y.; De Los Rios, J. P.; Fieser, M. E. Catalytic Methods for Chemical Recycling or Upcycling of Commercial Polymers. Mater. Horiz. 2021, 8 ( 4), 1084- 1129, 10.1039/D0MH01286F
Korley, L. T. J.; Epps, T. H.; Helms, B. A.; Ryan, A. J. Toward Polymer Upcycling─Adding Value and Tackling Circularity. Science 2021, 373 ( 6550), 66- 69, 10.1126/science.abg4503
Zheng, N.; Xu, Y.; Zhao, Q.; Xie, T. Dynamic Covalent Polymer Networks: A Molecular Platform for Designing Functions beyond Chemical Recycling and Self-Healing. Chem. Rev. 2021, 121 ( 3), 1716- 1745, 10.1021/acs.chemrev.0c00938
Zhang, V.; Kang, B.; Accardo, J. V.; Kalow, J. A. Structure-Reactivity-Property Relationships in Covalent Adaptable Networks. J. Am. Chem. Soc. 2022, 144 ( 49), 22358- 22377, 10.1021/jacs.2c08104
Kloxin, C. J.; Bowman, C. N. Covalent Adaptable Networks: Smart, Reconfigurable and Responsive Network Systems. Chem. Soc. Rev. 2013, 42 ( 17), 7161- 7173, 10.1039/C3CS60046G
Scheutz, G. M.; Lessard, J. J.; Sims, M. B.; Sumerlin, B. S. Adaptable Crosslinks in Polymeric Materials: Resolving the Intersection of Thermoplastics and Thermosets. J. Am. Chem. Soc. 2019, 141 ( 41), 16181- 16196, 10.1021/jacs.9b07922
Podgórski, M.; Fairbanks, B. D.; Kirkpatrick, B. E.; McBride, M.; Martinez, A.; Dobson, A.; Bongiardina, N. J.; Bowman, C. N. Toward Stimuli-Responsive Dynamic Thermosets through Continuous Development and Improvements in Covalent Adaptable Networks (CANs). Adv. Mater. 2020, 32 ( 20), 1906876, 10.1002/adma.201906876
Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-Like Malleable Materials from Permanent Organic Networks. Science 2011, 334 ( 6058), 965- 968, 10.1126/science.1212648
Clarke, R. W.; Sandmeier, T.; Franklin, K. A.; Reich, D.; Zhang, X.; Vengallur, N.; Patra, T. K.; Tannenbaum, R. J.; Adhikari, S.; Kumar, S. K.; Rovis, T.; Chen, E. Y.-X. Dynamic Crosslinking Compatibilizes Immiscible Mixed Plastics. Nature 2023, 616 ( 7958), 731- 739, 10.1038/s41586-023-05858-3
Bowman, C. N.; Kloxin, C. J. Covalent Adaptable Networks: Reversible Bond Structures Incorporated in Polymer Networks. Angew. Chem., Int. Ed. 2012, 51 ( 18), 4272- 4274, 10.1002/anie.201200708
Fortman, D. J.; Brutman, J. P.; De Hoe, G. X.; Snyder, R. L.; Dichtel, W. R.; Hillmyer, M. A. Approaches to Sustainable and Continually Recyclable Cross-Linked Polymers. ACS Sustainable Chem. Eng. 2018, 6 ( 9), 11145- 11159, 10.1021/acssuschemeng.8b02355
Röttger, M.; Domenech, T.; Van Der Weegen, R.; Breuillac, A.; Nicolaÿ, R.; Leibler, L. High-Performance Vitrimers from Commodity Thermoplastics through Dioxaborolane Metathesis. Science 2017, 356 ( 6333), 62- 65, 10.1126/science.aah5281
Adzima, B. J.; Aguirre, H. A.; Kloxin, C. J.; Scott, T. F.; Bowman, C. N. Rheological and Chemical Analysis of Reverse Gelation in a Covalently Cross-Linked Diels-Alder Polymer Network. Macromolecules 2008, 41 ( 23), 9112- 9117, 10.1021/ma801863d
Taplan, C.; Guerre, M.; Winne, J. M.; Du Prez, F. E. Fast Processing of Highly Crosslinked, Low-Viscosity Vitrimers. Mater. Horiz. 2020, 7 ( 1), 104- 110, 10.1039/C9MH01062A
Bapat, A. P.; Sumerlin, B. S.; Sutti, A. Bulk Network Polymers with Dynamic B-O Bonds: Healable and Reprocessable Materials. Mater. Horiz. 2020, 7 ( 3), 694- 714, 10.1039/C9MH01223K
Delahaye, M.; Tanini, F.; Holloway, J. O.; Winne, J. M.; Du Prez, F. E. Double Neighbouring Group Participation for Ultrafast Exchange in Phthalate Monoester Networks. Polym. Chem. 2020, 11 ( 32), 5207- 5215, 10.1039/D0PY00681E
Yang, K.; Grant, J. C.; Lamey, P.; Joshi-Imre, A.; Lund, B. R.; Smaldone, R. A.; Voit, W. Diels-Alder Reversible Thermoset 3D Printing: Isotropic Thermoset Polymers via Fused Filament Fabrication. Adv. Funct. Mater. 2017, 27 ( 24), 1700318, 10.1002/adfm.201700318
Cao, Y.; Rong, M. Z.; Zhang, M. Q. Covalent Adaptable Networks Impart Smart Processability to Multifunctional Highly Filled Polymer Composites. Composites, Part A 2021, 151, 106647, 10.1016/j.compositesa.2021.106647
Chen, S.; Wang, F.; Peng, Y.; Chen, T.; Wu, Q.; Sun, P. A Single Molecular Diels-Alder Crosslinker for Achieving Recyclable Cross-Linked Polymers. Macromol. Rapid Commun. 2015, 36 ( 18), 1687- 1692, 10.1002/marc.201500257
Feng, H.; Ma, S.; Xu, X.; Li, Q.; Wang, B.; Lu, N.; Li, P.; Wang, S.; Yu, Z.; Zhu, J. Facile Synthesis of Hemiacetal Ester-Based Dynamic Covalent Polymer Networks Combining Fast Reprocessability and High Performance. Green Chem. 2021, 23 ( 22), 9061- 9070, 10.1039/D1GC02773E
Winne, J. M.; Leibler, L.; Du Prez, F. E. Dynamic Covalent Chemistry in Polymer Networks: A Mechanistic Perspective. Polym. Chem. 2019, 10 ( 45), 6091- 6108, 10.1039/C9PY01260E
Elling, B. R.; Dichtel, W. R. Reprocessable Cross-Linked Polymer Networks: Are Associative Exchange Mechanisms Desirable?. ACS Cent. Sci. 2020, 6 ( 9), 1488- 1496, 10.1021/acscentsci.0c00567
Li, Q.; Ma, S.; Li, P.; Wang, B.; Yu, Z.; Feng, H.; Liu, Y.; Zhu, J. Fast Reprocessing of Acetal Covalent Adaptable Networks with High Performance Enabled by Neighboring Group Participation. Macromolecules 2021, 54 ( 18), 8423- 8434, 10.1021/acs.macromol.1c01046
Fortman, D. J.; Brutman, J. P.; Cramer, C. J.; Hillmyer, M. A.; Dichtel, W. R. Mechanically Activated, Catalyst-Free Polyhydroxyurethane Vitrimers. J. Am. Chem. Soc. 2015, 137 ( 44), 14019- 14022, 10.1021/jacs.5b08084
Snyder, R. L.; Fortman, D. J.; De Hoe, G. X.; Hillmyer, M. A.; Dichtel, W. R. Reprocessable Acid-Degradable Polycarbonate Vitrimers. Macromolecules 2018, 51 ( 2), 389- 397, 10.1021/acs.macromol.7b02299
Obadia, M. M.; Mudraboyina, B. P.; Serghei, A.; Montarnal, D.; Drockenmuller, E. Reprocessing and Recycling of Highly Cross-Linked Ion-Conducting Networks through Transalkylation Exchanges of C-N Bonds. J. Am. Chem. Soc. 2015, 137 ( 18), 6078- 6083, 10.1021/jacs.5b02653
Delahaye, M.; Winne, J. M.; Du Prez, F. E. Internal Catalysis in Covalent Adaptable Networks: Phthalate Monoester Transesterification As a Versatile Dynamic Cross-Linking Chemistry. J. Am. Chem. Soc. 2019, 141 ( 38), 15277- 15287, 10.1021/jacs.9b07269
Denissen, W.; Winne, J. M.; Du Prez, F. E. Vitrimers: Permanent Organic Networks with Glass-like Fluidity. Chem. Sci. 2016, 7 ( 1), 30- 38, 10.1039/C5SC02223A
Abel, B. A.; Snyder, R. L.; Coates, G. W. Chemically Recyclable Thermoplastics from Reversible-Deactivation Polymerization of Cyclic Acetals. Science 2021, 373 ( 6556), 783- 789, 10.1126/science.abh0626
Shen, T.; Chen, K.; Chen, Y.; Ling, J. Ring-Opening Polymerization of Cyclic Acetals: Strategy for Both Recyclable and Degradable Materials. Macromol. Rapid Commun. 2023, 44 ( 13), 2300099, 10.1002/marc.202300099
Kariyawasam, L. S.; Rolsma, J.; Yang, Y. Chemically Recyclable Dithioacetal Polymers via Reversible Entropy-Driven Ring-Opening Polymerization. Angew. Chem., Int. Ed. 2023, 62 ( 26), e202303039 10.1002/anie.202303039
Li, Q.; Ma, S.; Lu, N.; Qiu, J.; Ye, J.; Liu, Y.; Wang, S.; Han, Y.; Wang, B.; Xu, X.; Feng, H.; Zhu, J. Concurrent Thiol-Ene Competitive Reactions Provide Reprocessable, Degradable and Creep-Resistant Dynamic-Permanent Hybrid Covalent Networks. Green Chem. 2020, 22 ( 22), 7769- 7777, 10.1039/D0GC02823A
Van Herck, N.; Maes, D.; Unal, K.; Guerre, M.; Winne, J. M.; Du Prez, F. E. Covalent Adaptable Networks with Tunable Exchange Rates Based on Reversible Thiol-Yne Cross-Linking. Angew. Chem., Int. Ed. 2020, 59 ( 9), 3609- 3617, 10.1002/anie.201912902
Sendijarevic, V.; Sendijarevic, A.; Lekovic, H.; Lekovic, H.; Frisch, K. C. Polyoxazolidones for High Temperature Applications. J. Elastomers Plast. 1996, 28 ( 1), 63- 83, 10.1177/009524439602800104
Sendijarevic, V.; Sendijarevic, A.; Frisch, K. C.; Reulen, P. Novel Isocyanate-Based Matrix Resins for High Temperature Composite Applications. Polym. Compos. 1996, 17 ( 2), 180- 186, 10.1002/pc.10603
Pankratov, V. A.; Frenkel’, T. M.; Fainleib, A. M. 2-Oxazolidinones. Russ. Chem. Rev. 1983, 52 ( 6), 576- 593, 10.1070/RC1983v052n06ABEH002864
Gennen, S.; Grignard, B.; Tassaing, T.; Jérôme, C.; Detrembleur, C. CO2-Sourced α-Alkylidene Cyclic Carbonates: A Step Forward in the Quest for Functional Regioregular Poly(Urethane)s and Poly(Carbonate)s. Angew. Chem., Int. Ed. 2017, 56 ( 35), 10394- 10398, 10.1002/anie.201704467
Ngassam Tounzoua, C.; Grignard, B.; Detrembleur, C. Exovinylene Cyclic Carbonates: Multifaceted CO2-Based Building Blocks for Modern Chemistry and Polymer Science. Angew. Chem., Int. Ed. 2022, 61 ( 22), e202116066 10.1002/anie.202116066
Habets, T.; Siragusa, F.; Grignard, B.; Detrembleur, C. Advancing the Synthesis of Isocyanate-Free Poly(Oxazolidones)s: Scope and Limitations. Macromolecules 2020, 53 ( 15), 6396- 6408, 10.1021/acs.macromol.0c01231
Habets, T.; Siragusa, F.; Müller, A. J.; Grossman, Q.; Ruffoni, D.; Grignard, B.; Detrembleur, C. Facile Construction of Functional Poly(Monothiocarbonate) Copolymers under Mild Operating Conditions. Polym. Chem. 2022, 13 ( 21), 3076- 3090, 10.1039/D2PY00307D
Wong, A. R.; Barrera, M.; Pal, A.; Lamb, J. R. Improved Characterization of Polyoxazolidinones by Incorporating Solubilizing Side Chains. Macromolecules 2022, 55 ( 24), 11006- 11012, 10.1021/acs.macromol.2c02104
Sutherland, B. P.; Kabra, M.; Kloxin, C. J. Expanding the Thiol-X Toolbox: Photoinitiation and Materials Application of the Acid-Catalyzed Thiol-Ene (ACT) Reaction. Polym. Chem. 2021, 12 ( 10), 1562- 1570, 10.1039/D0PY01593H
Francis, T.; Thorne, M. P. Carbamates and 2-Oxazolidinones from Tertiary Alcohols and Isocyanates. Can. J. Chem. 1976, 54 ( 1), 24- 30, 10.1139/v76-006
Laurence, C.; Gal, J.-F. Lewis Basicity and Affinity Scales: Data and Measurement; John Wiley: Chichester, West Sussex, UK, 2010.
Pandit, N.; Singla, R. K.; Shrivastava, B. Current Updates on Oxazolidinone and Its Significance. Int. J. Med. Chem. 2012, 2012, 1- 24, 10.1155/2012/159285
Pulla, S.; Felton, C. M.; Ramidi, P.; Gartia, Y.; Ali, N.; Nasini, U. B.; Ghosh, A. Advancements in Oxazolidinone Synthesis Utilizing Carbon Dioxide as a C1 Source. J. CO2 Util. 2013, 2, 49- 57, 10.1016/j.jcou.2013.07.005
Sun, F.; Van Der Eycken, E. V.; Feng, H. Recent Advances in the Synthesis and Ring-Opening Transformations of 2-Oxazolidinones. Adv. Synth. Catal. 2021, 363 ( 23), 5168- 5195, 10.1002/adsc.202100746
Barbachyn, M. R.; Ford, C. W. Oxazolidinone Structure-Activity Relationships Leading to Linezolid. Angew. Chem., Int. Ed. 2003, 42 ( 18), 2010- 2023, 10.1002/anie.200200528
Denissen, W.; Rivero, G.; Nicolaÿ, R.; Leibler, L.; Winne, J. M.; Du Prez, F. E. Vinylogous Urethane Vitrimers. Adv. Funct. Mater. 2015, 25 ( 16), 2451- 2457, 10.1002/adfm.201404553
Lin, S.-K. Handbook of Polymers. By George Wypych, ChemTec Publishing, 2012; 680 Pages. Price $395.00, ISBN 978-1-895198-47-8. Polymers 2013, 5 ( 1), 225- 233, 10.3390/polym5010225
Ashby, M. F. Materials Selection in Mechanical Design, 2nd ed.; Butterworth-Heinemann: Oxford, OX; Boston, MA, 1999.
Lagron, A. B.; El-Zaatari, B. M.; Hamachi, L. S. Characterization Techniques to Assess Recyclability in Dynamic Polymer Networks. Front. Mater. 2022, 9, 915296, 10.3389/fmats.2022.915296
Van Lijsebetten, F.; De Bruycker, K.; Van Ruymbeke, E.; Winne, J. M.; Du Prez, F. E. Characterising Different Molecular Landscapes in Dynamic Covalent Networks. Chem. Sci. 2022, 13 ( 43), 12865- 12875, 10.1039/D2SC05528G
Maes, S.; Van Lijsebetten, F.; Winne, J. M.; Du Prez, F. E. N -Sulfonyl Urethanes to Design Polyurethane Networks with Temperature-Controlled Dynamicity. Macromolecules 2023, 56 ( 5), 1934- 1944, 10.1021/acs.macromol.2c02456
Schoustra, S. K.; Groeneveld, T.; Smulders, M. M. J. The Effect of Polarity on the Molecular Exchange Dynamics in Imine-Based Covalent Adaptable Networks. Polym. Chem. 2021, 12 ( 11), 1635- 1642, 10.1039/D0PY01555E
El-Zaatari, B. M.; Ishibashi, J. S. A.; Kalow, J. A. Cross-Linker Control of Vitrimer Flow. Polym. Chem. 2020, 11 ( 33), 5339- 5345, 10.1039/D0PY00233J
Spiesschaert, Y.; Taplan, C.; Stricker, L.; Guerre, M.; Winne, J. M.; Du Prez, F. E. Influence of the Polymer Matrix on the Viscoelastic Behaviour of Vitrimers. Polym. Chem. 2020, 11 ( 33), 5377- 5385, 10.1039/D0PY00114G
Joe, J.; Shin, J.; Choi, Y.; Hwang, J. H.; Kim, S. H.; Han, J.; Park, B.; Lee, W.; Park, S.; Kim, Y. S.; Kim, D. A 4D Printable Shape Memory Vitrimer with Repairability and Recyclability through Network Architecture Tailoring from Commercial Poly(ϵ-caprolactone). Advanced Science 2021, 8 ( 24), 2103682, 10.1002/advs.202103682
Fortman, D. J.; Snyder, R. L.; Sheppard, D. T.; Dichtel, W. R. Rapidly Reprocessable Cross-Linked Polyhydroxyurethanes Based on Disulfide Exchange. ACS Macro Lett. 2018, 7 ( 10), 1226- 1231, 10.1021/acsmacrolett.8b00667
Diggle, B.; Jiang, Z.; Li, R. W.; Connal, L. A. Self-Healing Polymer Network with High Strength, Tunable Properties, and Biocompatibility. Chem. Mater. 2021, 33 ( 10), 3712- 3720, 10.1021/acs.chemmater.1c00707
Swartz, J. L.; Sheppard, D. T.; Haugstad, G.; Dichtel, W. R. Blending Polyurethane Thermosets Using Dynamic Urethane Exchange. Macromolecules 2021, 54 ( 23), 11126- 11133, 10.1021/acs.macromol.1c01910
Chen, Z.; Sun, Y.-C.; Wang, J.; Qi, H. J.; Wang, T.; Naguib, H. E. Flexible, Reconfigurable, and Self-Healing TPU/Vitrimer Polymer Blend with Copolymerization Triggered by Bond Exchange Reaction. ACS Appl. Mater. Interfaces 2020, 12 ( 7), 8740- 8750, 10.1021/acsami.9b21411
Christensen, P. R.; Scheuermann, A. M.; Loeffler, K. E.; Helms, B. A. Closed-Loop Recycling of Plastics Enabled by Dynamic Covalent Diketoenamine Bonds. Nat. Chem. 2019, 11 ( 5), 442- 448, 10.1038/s41557-019-0249-2
Li, Q.; Ma, S.; Wang, S.; Yuan, W.; Xu, X.; Wang, B.; Huang, K.; Zhu, J. Facile Catalyst-Free Synthesis, Exchanging, and Hydrolysis of an Acetal Motif for Dynamic Covalent Networks. J. Mater. Chem. A 2019, 7 ( 30), 18039- 18049, 10.1039/C9TA04073K
Schenk, V.; Labastie, K.; Destarac, M.; Olivier, P.; Guerre, M. Vitrimer Composites: Current Status and Future Challenges. Mater. Adv. 2022, 3 ( 22), 8012- 8029, 10.1039/D2MA00654E