Testing biological actions of medicinal plants from northern Vietnam on zebrafish embryos and larvae: Developmental, behavioral, and putative therapeutical effects.
Tran, My Hanh; Nguyen, Thi Van Anh; Do, Hoang Gianget al.
[en] Evaluating the risks and benefits of using traditional medicinal plants is of utmost importance for a huge fraction of the human population, in particular in Northern Vietnam. Zebrafish are increasingly used as a simple vertebrate model for testing toxic and physiological effects of compounds, especially on development. Here, we tested 12 ethanolic extracts from popular medicinal plants collected in northern Vietnam for their effects on zebrafish survival and development during the first 4 days after fertilization. We characterized more in detail their effects on epiboly, hatching, growth, necrosis, body curvature, angiogenesis, skeletal development and mostly increased movement behavior. Finally, we confirm the effect on epiboly caused by the Mahonia bealei extract by staining the actin filaments and performing whole genome gene expression analysis. Further, we show that this extract also inhibits cell migration of mouse embryo fibroblasts. Finally, we analyzed the chemical composition of the Mahonia bealei extract and test the effects of its major components. In conclusion, we show that traditional medicinal plant extracts are able to affect zebrafish early life stage development to various degrees. In addition, we show that an extract causing delay in epiboly also inhibits mammalian cell migration, suggesting that this effect may serve as a preliminary test for identifying extracts that inhibit cancer metastasis.
Disciplines :
Veterinary medicine & animal health Pharmacy, pharmacology & toxicology
Author, co-author :
Tran, My Hanh; Laboratory for Organogenesis and Regeneration, GIGA I3, Université de Liège, Liège, Belgium ; Department of Microbiology, Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
Nguyen, Thi Van Anh; Department of Microbiology, Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
Do, Hoang Giang ; Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Kieu, Trung Kien ; GREENLAB, Center for Life Science Research (CELIFE), Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
Nguyen, Thi Kim Thanh; Department of Plant Science, Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
Le, Hong Diep; Department of Plant Science, Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
Massoz, Laura ; Université de Liège - ULiège > GIGA > GIGA Stem Cells - Zebrafish Development and Disease Model
Nivelle, Renaud ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Gestion des ressources aquatiques et aquaculture
Zappia, Jérémie ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Pham, Hai The ; Department of Microbiology, Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam ; GREENLAB, Center for Life Science Research (CELIFE), Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
Nguyen, Lai Thanh; GREENLAB, Center for Life Science Research (CELIFE), Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
Muller, Marc ; Université de Liège - ULiège > Département des sciences de la vie
Testing biological actions of medicinal plants from northern Vietnam on zebrafish embryos and larvae: Developmental, behavioral, and putative therapeutical effects.
Kumar B, Vijayakumar M, Govindarajan R, Pushpangadan P. Ethnopharmacological approaches to wound healing-exploring medicinal plants of India. Journal of ethnopharmacology. 2007; 114(2):103-13. Epub 2007/09/22. https://doi.org/10.1016/j.jep.2007.08.010 PMID: 17884316.
Nguyen TH, Nguyen PD, Quetin-Leclercq J, Muller M, Ly Huong DT, Pham HT, et al. Developmental Toxicity of Clerodendrum cyrtophyllum Turcz Ethanol Extract in Zebrafish Embryo. Journal of ethnopharmacology. 2021; 267:113538. Epub 2020/11/05. https://doi.org/10.1016/j.jep.2020.113538 PMID: 33144170.
Nguyen TD, Thuong PT, Hwang IH, Hoang TK, Nguyen MK, Nguyen HA, et al. Anti-Hyperuricemic, Anti-Inflammatory and Analgesic Effects of Siegesbeckia orientalis L. Resulting from the Fraction with High Phenolic Content. BMC Complement Altern Med. 2017; 17(1):191. Epub 2017/04/06. https://doi. org/10.1186/s12906-017-1698-z PMID: 28376775; PubMed Central PMCID: PMC5379685.
Salimikia I, Bahmani M, Abbaszadeh S, Rafieian-Kopaei M, Nazer MR. Campylobacter: A Review of New Promising Remedies with Medicinal Plants and Natural Antioxidants. Mini Rev Med Chem. 2020; 20(15):1462-74. Epub 2020/01/23. https://doi.org/10.2174/1389557520666200117141641 PMID: 31965943.
Nikhade N, Telrandhe R, Ansari M. A Review of Natural Antioxidants In Medicinal Plants. International Journal of Pharmaceutics and Drug Analysis. 2019; 7(2):11-5.
Buyel JF. Plants as sources of natural and recombinant anti-cancer agents. Biotechnology advances. 2018; 36(2):506-20. Epub 2018/02/07. https://doi.org/10.1016/j.biotechadv.2018.02.002 PMID: 29408560.
Boakye YD, Agyare C, Abotsi WK, Ayande PG, Ossei PP. Anti-inflammatory activity of aqueous leaf extract of Phyllanthus muellerianus (Kuntze) Exell. and its major constituent, geraniin. Journal of ethnopharmacology. 2016; 187:17-27. Epub 2016/04/23. https://doi.org/10.1016/j.jep.2016.04.020 PMID: 27103113.
Owoyele VB, Adediji JO, Soladoye AO. Anti-inflammatory activity of aqueous leaf extract of Chromolaena odorata. Inflammopharmacology. 2005; 13(5-6):479-84. Epub 2005/11/11. https://doi.org/10. 1163/156856005774649386 PMID: 16280100.
WHO Regional Office for the Western Pacific. in "Medicinal Plants in Viet Nam". WHO Regional Publications Western Pacific Series. 2009; 3(ISBN-13 : 978-9290611011):1-401.
Loi DT, Dung NX. Native drugs of Vietnam: which traditional and scientific approaches?. Journal of ethnopharmacology. 1991; 32(1-3):51-6. https://doi.org/10.1016/0378-8741(91)90103-k PMID: 1881167.
Ky TV. in "The Complete Collection of Traditional Pharmacology". Da Nang Publishing House. 2018.
Duc LT. in "Vietnamese medicinal plants grown, processed and treated by physician Le Tran Duc. Dan Tri Publishing House. 2020.
Vo VC. in "Dictionary of Medicinal Plants in Vietnam". Medicine Publisher, Ha Noi, Vietnam. 2012; 1:175-6.
Loi DT. Nhung cay thuoc và vi thuoc Viet Nam-Vietnamese traditional medicine and traditional medicinal plants. 1999.
Love DR, Pichler FB, Dodd A, Copp BR, Greenwood DR. Technology for high-throughput screens: the present and future using zebrafish. Current opinion in biotechnology. 2004; 15(6):564-71. https://doi. org/10.1016/j.copbio.2004.09.004 PMID: 15560983.
MacRae CA, Peterson RT. Zebrafish as tools for drug discovery. Nat Rev Drug Discov. 2015; 14 (10):721-31. https://doi.org/10.1038/nrd4627 PMID: 26361349.
Strahle U, Scholz S, Geisler R, Greiner P, Hollert H, Rastegar S, et al. Zebrafish embryos as an alternative to animal experiments-a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol. 2012; 33(2):128-32. https://doi.org/10.1016/j.reprotox.2011. 06.121 PMID: 21726626.
Selderslaghs IW, Blust R, Witters HE. Feasibility study of the zebrafish assay as an alternative method to screen for developmental toxicity and embryotoxicity using a training set of 27 compounds. Reprod Toxicol. 2012; 33(2):142-54. https://doi.org/10.1016/j.reprotox.2011.08.003 PMID: 21871558.
Nguyen T, Nachtergael A, Mai NT, Cornet V, Duez P, Muller M, et al. Anti-inflammatory properties of the ethanol extract from Clerodendrum cyrtophyllum Turcz based on in vitro and in vivo studies. Journal of ethnopharmacology. 2020:112739. Epub 2020/03/07. https://doi.org/10.1016/j.jep.2020.112739 PMID: 32142867.
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995; 203(3):253-310. https://doi.org/10.1002/aja.1002030302 PMID: 8589427.
Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013; 496(7446):498-503. Epub 2013/04/19. https://doi.org/10.1038/nature12111 PMID: 23594743; PubMed Central PMCID: PMC3703927.
Rubinstein AL. Zebrafish assays for drug toxicity screening. Expert Opin Drug Metab Toxicol. 2006; 2 (2):231-40. Epub 2006/07/27. https://doi.org/10.1517/17425255.2.2.231 PMID: 16866609.
Ducharme NA, Reif DM, Gustafsson JA, Bondesson M. Comparison of toxicity values across zebrafish early life stages and mammalian studies: Implications for chemical testing. Reprod Toxicol. 2015; 55:3-10. https://doi.org/10.1016/j.reprotox.2014.09.005 PMID: 25261610.
Peterson RT, Macrae CA. Systematic approaches to toxicology in the zebrafish. Annu Rev Pharmacol Toxicol. 2012; 52:433-53. Epub 2011/10/25. https://doi.org/10.1146/annurev-pharmtox-010611-134751 PMID: 22017682.
Voncken A, Piot A, Stern O, Mareé R, Peers B, Wehenkel L, et al. Zebrafish as model in toxicology/ pharmacology. Biomedica 2010, Aachen, Germany 2010. 2010.
Scholz S, Fischer S, Gundel U, Kuster E, Luckenbach T, Voelker D. The zebrafish embryo model in environmental risk assessment-applications beyond acute toxicity testing. Environ Sci Pollut Res Int. 2008; 15(5):394-404. Epub 2008/06/26. https://doi.org/10.1007/s11356-008-0018-z PMID: 18575912.
OECD. Guidance document on the validation and international acceptance of new or updated test methods for hazard assessment. OECD SERIES ON TESTING AND ASSESSMENT. 2005; 34.
Lawson ND, Weinstein BM. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol. 2002; 248(2):307-18. Epub 2002/08/09. https://doi.org/10.1006/dbio.2002.0711 PMID: 12167406.
Westerfield M. THE ZEBRAFISH BOOK, 5th Edition; A guide for the laboratory use of zebrafish (Danio rerio), Eugene, University of Oregon Press. 2007.
Lammer E, Carr GJ, Wendler K, Rawlings JM, Belanger SE, Braunbeck T. Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test?. Comp Biochem Physiol C Toxicol Pharmacol. 2009; 149(2):196-209. Epub 2008/12/20. https://doi.org/10. 1016/j.cbpc.2008.11.006 PMID: 19095081.
Jeanray N, Mareé R, Pruvot B, Stern O, Geurts P, Wehenkel L, et al. Phenotype classification of zebrafish embryos by supervised learning. PLoS One. 2015; 10(1):e0116989. e0116989. https://doi.org/10. 1371/journal.pone.0116989 PMID: 25574849; PubMed Central PMCID: PMC4289190.
Segner H. Zebrafish (Danio rerio) as a model organism for investigating endocrine disruption. Comp Biochem Physiol C Toxicol Pharmacol. 2009; 149(2):187-95. Epub 2008/10/29. https://doi.org/10. 1016/j.cbpc.2008.10.099 PMID: 18955160.
Nagel R. DarT: The embryo test with the zebrafish Danio rerio-a general model in ecotoxicology and toxicology. Altex-Altern Tierexp. 2002; 19:38-48. ISI:000177300300008. PMID: 12096329
Alqahtani S, Nasr FA, Noman OM, Farooq M, Alhawassi T, Qamar W, et al. Cytotoxic Evaluation and Anti-Angiogenic Effects of Two Furano-Sesquiterpenoids from Commiphora myrrh Resin. Molecules. 2020; 25(6). Epub 2020/03/19. https://doi.org/10.3390/molecules25061318 PMID: 32183153; PubMed Central PMCID: PMC7144466.
Serbedzija GN, Flynn E, Willett CE. Zebrafish angiogenesis: a new model for drug screening. Angiogenesis. 1999; 3(4):353-9. Epub 2003/10/01. https://doi.org/10.1023/a:1026598300052 PMID: 14517415.
Raghunath M, Sy Wong Y, Farooq M, Ge R. Pharmacologically induced angiogenesis in transgenic zebrafish. Biochem Biophys Res Commun. 2009; 378(4):766-71. Epub 2008/12/11. S0006-291X(08) 02332-2 [pii]. https://doi.org/10.1016/j.bbrc.2008.11.127 PMID: 19068208.
Aceto J, Nourizadeh-Lillabadi R, Bradamante S, Maier J, Alestrom P, Van Loon J, et al. Effects of microgravity simulation on zebrafish transcriptomes and bone physiology; exposure starting at 5 days postfertilization. npj Microgravity. 2016; 2:16010. Epub 7 April 2016. https://doi.org/10.1038/npjmgrav.2016. 10 PMID: 28725727
Walker MB, Kimmel CB. A two-color acid-free cartilage and bone stain for zebrafish larvae. Biotech Histochem. 2007; 82(1):23-8. Epub 2007/05/19. 778819433 [pii]. https://doi.org/10.1080/ 10520290701333558 PMID: 17510811.
Dalcq J, Pasque V, Ghaye A, Larbuisson A, Motte P, Martial JA, et al. Runx3, Egr1 and Sox9b form a regulatory cascade required to modulate BMP-signaling during cranial cartilage development in zebrafish. PLoS One. 2012; 7(11):e50140. Epub 2012/12/05. https://doi.org/10.1371/journal.pone.0050140 PMID: 23209659; PubMed Central PMCID: PMC3507947.
Hintermann E, Bilban M, Sharabi A, Quaranta V. Inhibitory role of alpha 6 beta 4-associated erbB-2 and phosphoinositide 3-kinase in keratinocyte haptotactic migration dependent on alpha 3 beta 1 integrin. J Cell Biol. 2001; 153(3):465-78. Epub 2001/05/02. https://doi.org/10.1083/jcb.153.3.465 PMID: 11331299; PubMed Central PMCID: PMC2190561.
Koivisto L, Jiang G, Hakkinen L, Chan B, Larjava H. HaCaT keratinocyte migration is dependent on epidermal growth factor receptor signaling and glycogen synthase kinase-3alpha. Exp Cell Res. 2006; 312 (15):2791-805. Epub 2006/06/30. https://doi.org/10.1016/j.yexcr.2006.05.009 PMID: 16806170.
Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, et al. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol. 2020; 38(3):276-8. Epub 2020/02/15. https://doi. org/10.1038/s41587-020-0439-x PMID: 32055031.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12):550. Epub 2014/12/18. https://doi.org/10.1186/s13059-014-0550-8 PMID: 25516281; PubMed Central PMCID: PMC4302049.
Kanehisa M, Sato Y, Kawashima M. KEGG mapping tools for uncovering hidden features in biological data. Protein Sci. 2022; 31(1):47-53. Epub 2021/08/24. https://doi.org/10.1002/pro.4172 PMID: 34423492; PubMed Central PMCID: PMC8740838.
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 28 (1):27-30. Epub 1999/12/11. https://doi.org/10.1093/nar/28.1.27 PMID: 10592173; PubMed Central PMCID: PMC102409.
Tran HM, Le DH, Nguyen VT, Vu TX, Thanh NTK, Giang DH, et al. Penicillium digitatum as a Model Fungus for Detecting Antifungal Activity of Botanicals: An Evaluation on Vietnamese Medicinal Plant Extracts. J Fungi (Basel). 2022; 8(9). Epub 2022/09/23. https://doi.org/10.3390/jof8090956 PMID: 36135681; PubMed Central PMCID: PMC9502062.
R Core Team. R: A language and environment for statistical computing (4.0.2). R Foundation for Statistical Computing, Vienna, Austria. http://wwwr-projectorg/indexhtml (accessed 9 March 2023). 2020.
Lenth RV. Least-Squares Means: The R Package lsmeans. Journal of Statistical Software. 2016; 69 (1):1-33. https://doi.org/10.18637/jss.v069.i01
OECD. Test No. 236: Fish Embryo Acute Toxicity (FET) Test. OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing. 2013; https://doi.org/10.1787/9789264203709-en
Fabik J, Psutkova V, Machon O. The Mandibular and Hyoid Arches-From Molecular Patterning to Shaping Bone and Cartilage. International journal of molecular sciences. 2021; 22(14). Epub 2021/07/25. https://doi.org/10.3390/ijms22147529 PMID: 34299147; PubMed Central PMCID: PMC8303155.
Lison L. Alcian blue 8 G with chlorantine fast red 5 B.A technic for selective staining of mycopolysaccharides. Stain Technol. 1954; 29(3):131-8. Epub 1954/05/01. https://doi.org/10.3109/ 10520295409115457 PMID: 13156798.
Lepage SE, Bruce AE. Zebrafish epiboly: mechanics and mechanisms. Int J Dev Biol. 2010; 54(8-9):1213-28. Epub 2010/08/17. https://doi.org/10.1387/ijdb.093028sl PMID: 20712002.
Apodaca G. Endocytic traffic in polarized epithelial cells: role of the actin and microtubule cytoskeleton. Traffic. 2001; 2(3):149-59. Epub 2001/03/22. https://doi.org/10.1034/j.1600-0854.2001.020301.x PMID: 11260520.
Cheng JC, Miller AL, Webb SE. Organization and function of microfilaments during late epiboly in zebrafish embryos. Dev Dyn. 2004; 231(2):313-23. Epub 2004/09/15. https://doi.org/10.1002/dvdy.20144 PMID: 15366008.
Li YL, Shao M, Shi DL. Rac1 signalling coordinates epiboly movement by differential regulation of actin cytoskeleton in zebrafish. Biochem Biophys Res Commun. 2017; 490(3):1059-65. Epub 2017/07/03. https://doi.org/10.1016/j.bbrc.2017.06.165 PMID: 28668387.
Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002; 30(1):207-10. Epub 2001/12/26. https://doi.org/10. 1093/nar/30.1.207 PMID: 11752295; PubMed Central PMCID: PMC99122.
Yamada K, Maeno A, Araki S, Kikuchi M, Suzuki M, Ishizaka M, et al. An atlas of seven zebrafish hox cluster mutants provides insights into sub/neofunctionalization of vertebrate Hox clusters. Development. 2021; 148(11). Epub 2021/06/08. https://doi.org/10.1242/dev.198325 PMID: 34096572.
Barske L, Rataud P, Behizad K, Del Rio L, Cox SG, Crump JG. Essential Role of Nr2f Nuclear Receptors in Patterning the Vertebrate Upper Jaw. Dev Cell. 2018; 44(3):337-47 e5. Epub 2018/01/24. https://doi.org/10.1016/j.devcel.2017.12.022 PMID: 29358039; PubMed Central PMCID: PMC5801120.
Lee JE, Wu SF, Goering LM, Dorsky RI. Canonical Wnt signaling through Lef1 is required for hypothalamic neurogenesis. Development. 2006; 133(22):4451-61. Epub 2006/10/20. https://doi.org/10.1242/ dev.02613 PMID: 17050627.
Hofmeister W, Key B. Frizzled-3a and Wnt-8b genetically interact during forebrain commissural formation in embryonic zebrafish. Brain Res. 2013; 1506:25-34. Epub 2013/02/27. https://doi.org/10.1016/j. brainres.2013.02.028 PMID: 23438515.
Yang L, Webb SE, Jin N, Lee HM, Chan TF, Xu G, et al. Investigating the role of dachshund b in the development of the pancreatic islet in zebrafish. J Diabetes Investig. 2021; 12(5):710-27. Epub 2021/ 01/16. https://doi.org/10.1111/jdi.13503 PMID: 33449448; PubMed Central PMCID: PMC8089008.
Kalousova A, Mavropoulos A, Adams BA, Nekrep N, Li Z, Krauss S, et al. Dachshund homologues play a conserved role in islet cell development. Dev Biol. 2010; 348(2):143-52. Epub 2010/09/28. https://doi. org/10.1016/j.ydbio.2010.09.007 PMID: 20869363; PubMed Central PMCID: PMC2997432.
Lee SJ. Dynamic regulation of the microtubule and actin cytoskeleton in zebrafish epiboly. Biochem Biophys Res Commun. 2014; 452(1):1-7. Epub 2014/08/15. https://doi.org/10.1016/j.bbrc.2014.08.005 PMID: 25117442.
Bhattacharya D, Zhong J, Tavakoli S, Kabla A, Matsudaira P. Strain maps characterize the symmetry of convergence and extension patterns during zebrafish gastrulation. Scientific reports. 2021; 11 (1):19357. Epub 2021/10/01. https://doi.org/10.1038/s41598-021-98233-z PMID: 34588480; PubMed Central PMCID: PMC8481280.
Hung IC, Chen TM, Lin JP, Tai YL, Shen TL, Lee SJ. Wnt5b integrates Fak1a to mediate gastrulation cell movements via Rac1 and Cdc42. Open Biol. 2020; 10(2):190273. Epub 2020/02/26. https://doi.org/ 10.1098/rsob.190273 PMID: 32097584; PubMed Central PMCID: PMC7058935.
Muraina IA, Maret W, Bury NR, Hogstrand C. Hatching gland development and hatching in zebrafish embryos: A role for zinc and its transporters Zip10 and Znt1a. Biochem Biophys Res Commun. 2020; 528(4):698-705. Epub 2020/06/11. https://doi.org/10.1016/j.bbrc.2020.05.131 PMID: 32517868.
Yan G, Zhang Y, Yu J, Yu Y, Zhang F, Zhang Z, et al. Slc39a7/zip7 plays a critical role in development and zinc homeostasis in zebrafish. PLoS One. 2012; 7(8):e42939. Epub 2012/08/23. https://doi.org/10. 1371/journal.pone.0042939 PMID: 22912764; PubMed Central PMCID: PMC3418240.
Trikic MZ, Monk P, Roehl H, Partridge LJ. Regulation of zebrafish hatching by tetraspanin cd63. PLoS One. 2011; 6(5):e19683. Epub 2011/06/01. https://doi.org/10.1371/journal.pone.0019683 PMID: 21625559; PubMed Central PMCID: PMC3098263.
Ben Shoham A, Malkinson G, Krief S, Shwartz Y, Ely Y, Ferrara N, et al. S1P1 inhibits sprouting angiogenesis during vascular development. Development. 2012; 139(20):3859-69. Epub 2012/09/07. https://doi.org/10.1242/dev.078550 PMID: 22951644.
Amali AA, Sie L, Winkler C, Featherstone M. Zebrafish hoxd4a acts upstream of meis1.1 to direct vasculogenesis, angiogenesis and hematopoiesis. PLoS One. 2013; 8(3):e58857. Epub 2013/04/05. https://doi.org/10.1371/journal.pone.0058857 PMID: 23554940; PubMed Central PMCID: PMC3598951.
Paudel S, Gjorcheska S, Bump P, Barske L. Patterning of cartilaginous condensations in the developing facial skeleton. Dev Biol. 2022. Epub 2022/04/01. https://doi.org/10.1016/j.ydbio.2022.03.010 PMID: 35358504.
Pan X, Hou X, Zhang F, Tang P, Wan W, Su Z, et al. Gnetum montanum extract induces apoptosis by inhibiting the activation of AKT in SW480 human colon cancer cells. Pharm Biol. 2022; 60(1):915-30. Epub 2022/05/20. https://doi.org/10.1080/13880209.2022.2063340 PMID: 35587342; PubMed Central PMCID: PMC9122364.
Hu W, Yu L, Wang MH. Antioxidant and antiproliferative properties of water extract from Mahonia bealei (Fort.) Carr. leaves. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association. 2011; 49(4):799-806. Epub 2010/12/07. https://doi.org/10. 1016/j.fct.2010.12.001 PMID: 21130829.
Badavenkatappa SG, Peraman R. In vitro antitubercular, anticancer activities and IL-10 expression in HCT-116 cells of Tinospora sinensis (Lour.) Merr. leaves extract. Nat Prod Res. 2021; 35(22):4669-74. Epub 2019/12/25. https://doi.org/10.1080/14786419.2019.1705814 PMID: 31872772.
Nakayama J, Tan L, Li Y, Goh BC, Wang S, Makinoshima H, et al. A zebrafish embryo screen utilizing gastrulation identifies the HTR2C inhibitor pizotifen as a suppressor of EMT-mediated metastasis. eLife. 2021; 10. Epub 2021/12/18. https://doi.org/10.7554/eLife.70151 PMID: 34919051; PubMed Central PMCID: PMC8824480.
Long J, Song J, Zhong L, Liao Y, Liu L, Li X. Palmatine: A review of its pharmacology, toxicity and pharmacokinetics. Biochimie. 2019; 162:176-84. Epub 2019/05/06. https://doi.org/10.1016/j.biochi.2019. 04.008 PMID: 31051209.
Cai Y, Xin Q, Lu J, Miao Y, Lin Q, Cong W, et al. A New Therapeutic Candidate for Cardiovascular Diseases: Berberine. Frontiers in pharmacology. 2021; 12:631100. Epub 2021/04/06. https://doi.org/10. 3389/fphar.2021.631100 PMID: 33815112; PubMed Central PMCID: PMC8010184.
Feng X, Sureda A, Jafari S, Memariani Z, Tewari D, Annunziata G, et al. Berberine in Cardiovascular and Metabolic Diseases: From Mechanisms to Therapeutics. Theranostics. 2019; 9(7):1923-51. Epub 2019/05/01. https://doi.org/10.7150/thno.30787 PMID: 31037148; PubMed Central PMCID: PMC6485276.
Zhao JV, Yeung WF, Chan YH, Vackova D, Leung JYY, Ip DKM, et al. Effect of Berberine on Cardiovascular Disease Risk Factors: A Mechanistic Randomized Controlled Trial. Nutrients. 2021; 13(8). Epub 2021/08/28. https://doi.org/10.3390/nu13082550 PMID: 34444711; PubMed Central PMCID: PMC8401658.
He JM, Mu Q. The medicinal uses of the genus Mahonia in traditional Chinese medicine: An ethnopharmacological, phytochemical and pharmacological review. Journal of ethnopharmacology. 2015; 175:668-83. Epub 2015/09/22. https://doi.org/10.1016/j.jep.2015.09.013 PMID: 26387740.
Anh NH, Park S, Trang DT, Yen DTH, Tai BH, Yen PH, et al. Genus mallotus (euphorbiaceae): a review on traditional medicinal use, phytochemistry and biological activities. Vietnam J Sci Technol. 2022; 60 (2):141-74. https://doi.org/10.15625/2525-2518/16634
Hedge S, Jayaraj M. A Review of the Medicinal Properties, Phytochemical and Biological Active Compounds of Tinospora sinensis (Lour.) Merr. Journal of Biologically Active Products from Nature. 2016; 6 (2):84-94. https://doi.org/10.1080/22311866.2016.1185968
Wu L, Wang G, Shen T, Quiang Q, Xue Q, Chen MH, et al. Chemical Constituents of Leaves of Mahonia bealei. Chemistry of Natural Compounds 2018; 54(1):210-2. https://doi.org/10.1007/s10600-018-2302-6
Ahmed T, Gilani AU, Abdollahi M, Daglia M, Nabavi SF, Nabavi SM. Berberine and neurodegeneration: A review of literature. Pharmacol Rep. 2015; 67(5):970-9. Epub 2015/09/24. https://doi.org/10.1016/j. pharep.2015.03.002 PMID: 26398393.
Mahlo SM, Eloff JN. Acetone leaf extracts of Breonadia salicina (Rubiaceae) and ursolic acid protect oranges against infection by Penicillium species. South African Journal of Botany. 2014; 93:48-53. https://doi.org/10.1016/j.sajb.2014.03.003
Vollekova A, Kost'alova D, Kettmann V, Toth J. Antifungal activity of Mahonia aquifolium extract and its major protoberberine alkaloids. Phytother Res. 2003; 17(7):834-7. Epub 2003/08/14. https://doi.org/10. 1002/ptr.1256 PMID: 12916091.
Zhang JL, Laurence Souders C 2nd, Denslow ND, Martyniuk CJ. Quercetin, a natural product supplement, impairs mitochondrial bioenergetics and locomotor behavior in larval zebrafish (Danio rerio). Toxicol Appl Pharmacol. 2017; 327:30-8. Epub 2017/04/30. https://doi.org/10.1016/j.taap.2017.04.024 PMID: 28450151.