Eprint already available on another site (E-prints, working papers and research blog)
Algebraic power series and their automatic complexity I: finite fields
Rowland, Eric; Stipulanti, Manon; Yassawi Reem
2023
 

Files


Full Text
Algebraic-series-finite-fields-1.pdf
Author preprint (1.25 MB) Creative Commons License - Public Domain Dedication
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Formal power series; Finite fields; Algebraic series; Automatic sequences; Minimal automaton size
Abstract :
[en] Christol's theorem states that a power series with coefficients in a finite field is algebraic if and only if its coefficient sequence is automatic. A natural question is how the size of a polynomial describing such a sequence relates to the size of an automaton describing the same sequence. Bridy used tools from algebraic geometry to bound the size of the minimal automaton for a sequence, given its minimal polynomial. We produce a new proof of Bridy's bound by embedding algebraic sequences as diagonals of rational functions. Crucially for our interests, our approach can be adapted to work not just over a finite field but over the integers modulo p^α.
Disciplines :
Mathematics
Author, co-author :
Rowland, Eric
Stipulanti, Manon  ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Yassawi Reem
Language :
English
Title :
Algebraic power series and their automatic complexity I: finite fields
Publication date :
2023
Number of pages :
29
Source :
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding number :
1.B.397.20F
Available on ORBi :
since 11 December 2023

Statistics


Number of views
13 (2 by ULiège)
Number of downloads
7 (0 by ULiège)

Bibliography


Similar publications



Contact ORBi