Atmospheric Science; Environmental Chemistry; Global and Planetary Change
Abstract :
[en] AbstractThe Antarctic Peninsula (AP) experienced a new extreme warm event and record-high surface melt in February 2022, rivaling the recent temperature records from 2015 and 2020, and contributing to the alarming series of extreme warm events over this region showing stronger warming compared to the rest of Antarctica. Here, the drivers and impacts of the event are analyzed in detail using a range of observational and modeling data. The northern/northwestern AP was directly impacted by an intense atmospheric river (AR) attaining category 3 on the AR scale, which brought anomalous heat and rainfall, while the AR-enhanced foehn effect further warmed its northeastern side. The event was triggered by multiple large-scale atmospheric circulation patterns linking the AR formation to tropical convection anomalies and stationary Rossby waves, with an anomalous Amundsen Sea Low and a record-breaking high-pressure system east of the AP. This multivariate and spatial compound event culminated in widespread and intense surface melt across the AP. Circulation analog analysis shows that global warming played a role in the amplification and increased probability of the event. Increasing frequency of such events can undermine the stability of the AP ice shelves, with multiple local to global impacts, including acceleration of the AP ice mass loss and changes in sensitive ecosystems.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Masson-Delmotte, V. et al. (eds) IPCC:Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2021).
WMO. World Meteorological Organization press release, No 19012022. https://wmo.int/media/news/2021-one-of-seven-warmest-years-record-wmo-consolidated-data-shows (2022).
M.E. Jones et al. Sixty years of widespread warming in the southern middle and high latitudes (1957–2016) J. Clim. 32 6875 6898 10.1175/JCLI-D-18-0565.1
J. Turner et al. Antarctic temperature variability and change from station data Int. J. Climatol. 40 2986 3007 10.1002/joc.6378
Gutiérrez, J. M.et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 1927–2058 (Cambridge University Press, 2021).
S. Gonzalez D. Fortuny How robust are the temperature trends on the Antarctic Peninsula? Ant. Sci. 30 322 328 10.1017/S0954102018000251
D. Bozkurt et al. Recent near-surface temperature trends in the Antarctic Peninsula from observed, reanalysis and regional climate model data Adv. Atmos. Sci. 37 477 493 10.1007/s00376-020-9183-x
J.F. Carrasco D. Bozkurt R.R. Cordero A review of the observed air temperature in the Antarctic Peninsula. Did the warming trend come back after the early 21st hiatus? Polar Sci. 28 100653 10.1016/j.polar.2021.100653
Seneviratne, S. I. et al. in Climate Change 2021: The Physical Science Basis Ch. 11 (Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2021).
J. Turner et al. Extreme temperatures in the Antarctic J. Clim. 34 2653 2668 10.1175/JCLI-D-20-0538.1
S. Bevan A. Luckman H. Hendon G. Wang C. Larsen Ice Shelf surface melt is a 40-year record high Cryosphere 14 3551 3564 10.5194/tc-14-3551-2020
A.F. Banwell et al. The 32-year record-high surface melt in 2019/2020 on the northern George VI Ice Shelf, Antarctic Peninsula Cryosphere 15 909 925 10.5194/tc-15-909-2021
E. Gilbert A. Orr J.C. King I.A. Renfrew T. Lachlan-Cope A 20-year study of melt processes over Larsen C ice shelf using a high-resolution regional atmospheric model: 1. Model configuration and validation J. Geophys. Res. Atmos. 127 e2021JD034766 10.1029/2021JD034766
M.R. Francelino et al. WMO evaluation of two extreme high temperatures occurring in February 2020 for the Antarctic Peninsula region Bull. Am. Meteorol. Soc. 102 E2053 E2061 10.1175/BAMS-D-21-0040.1
M. Xu et al. Dominant role of vertical air flows in the unprecedented warming on the Antarctic Peninsula in February 2020 Commun. Earth Environ. 2 133 10.1038/s43247-021-00203-w
S. González-Herrero D. Barriopedro R.M. Trigo J.A. Lopez-Bustins M. Oliva Climate warming amplified the 2020 record-breaking heatwave in the Antarctic Peninsula Commun. Earth Environ. 3 122 10.1038/s43247-022-00450-5
Krakovska, S. Meteorological records and analysis of the temperature regime of the Faraday-Vernadsky station. Bull. Ukrainian Antarctic Center2, 64–69 (1998).
P. Uotila T. Vihma M. Tsukernik Close interactions between the Antarctic cyclone budget and large-scale atmospheric circulation Geophys. Res. Lett. 40 3237 3241 10.1002/grl.50560
L. Papritz et al. The role of extratropical cyclones and fronts for Southern Ocean freshwater fluxes J. Clim. 27 6205 6224 10.1175/JCLI-D-13-00409.1
J. Grieger G.C. Leckebusch C.C. Raible I. Rudeva I. Simmonds Subantarctic cyclones identified by 14 tracking methods, and their role for moisture transports into the continent Tellus A Dyn. Meteorol. Oceanogr. 70 1 18
M.R. Sinclair A climatology of anticyclones and blocking for the Southern Hemisphere Mon. Weather Rev. 124 245 264 10.1175/1520-0493(1996)124<0245:ACOAAB>2.0.CO;2
R.A. Massom et al. Precipitation over the Interior East Antarctic Ice Sheet related to midlatitude blocking-high activity J. Clim. 17 1914 1928 10.1175/1520-0442(2004)017<1914:POTIEA>2.0.CO;2
N. Hirasawa H. Nakamura H. Motoyama M. Hayashi T. Yamanouchi The role of synoptic-scale features and advection in pro- longed warming and generation of different forms of precipitation at Dome Fuji station, Antarctica, following a prominent blocking event J. Geophys. Res. Atmos. 118 6916 6928 10.1002/jgrd.50532
E. Schlosser et al. Characteristics of high-precipitation events in Dronning Maud Land, Antarctica J. Geophys. Res. Atmos. 115 D14107 10.1029/2009JD013410
I.V. Gorodetskaya et al. The role of atmospheric rivers in anomalous snow accumulation in East Antarctica Geophys. Res. Lett. 41 6199 6206 10.1002/2014GL060881
J.D. Wille et al. Antarctic atmospheric river climatology and precipitation impacts J. Geophys. Res. Atmos. 126 e2020JD033788 10.1029/2020JD033788
B. Pohl et al. Relationship between weather regimes and atmospheric rivers in East Antarctica J. Geophys. Res. 126 e2021JD035294 10.1029/2021JD035294
Bozkurt, D., Marín, J. C. & Barrett, B. S. Temperature and moisture transport during atmospheric blocking patterns around the Antarctic Peninsula. Weather Clim. Extrem. 38, 100506 (2022)
K.R. Clem D. Bozkurt D. Kennett J.C. King J. Turner Central tropical Pacific convection drives extreme high temperatures and surface melt on the Larsen C Ice Shelf, Antarctic Peninsula Nat. Commun. 13 10.1038/s41467-022-31119-4 3906
F.M. Ralph, P.J. Neiman G.A. Wick Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98 Mon. Weather Rev. 132 1721 1745 10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2
H. Sodemann A. Stohl Moisture origin and meridional transport in atmospheric rivers and their association with multiple cyclones Mon. Weather Rev. 141 2850 2868 10.1175/MWR-D-12-00256.1
H.F. Dacre O. Martínez-Alvarado C.O. Mbengue Linking atmospheric rivers and warm conveyor belt airflows J. Hydrometeorol. 20 1183 1196 10.1175/JHM-D-18-0175.1
A. Terpstra I.V. Gorodetskaya H. Sodemann Linking sub-tropical evaporation and extreme precipitation over East Antarctica: an atmospheric river case study J. Geophys. Res. Atmos. 126 e2020JD033617 10.1029/2020JD033617
I.V. Gorodetskaya T. Silva H. Schmithüsen N. Hirasawa Atmospheric river signatures in radiosonde profiles and reanalyses at the Dronning Maud Land Coast, East Antarctica Adv. Atmos. Sci. 37 455 476 10.1007/s00376-020-9221-8
González-Herrero, S. et al. Extreme precipitation records in Antarctica. Int. J. Climatol. 43, 3125–3138 (2023).
D. Bozkurt R. Rondanelli J.C. Marin R. Garreaud Foehn event triggered by an atmospheric river underlies record-setting temperature along continental Antarctica J. Geophys. Res Atmos. 123 3871 3892 10.1002/2017JD027796
J.D. Wille et al. West Antarctic surface melt triggered by atmospheric rivers Nat. Geosci. 12 911 916 10.1038/s41561-019-0460-1
J.D. Wille et al. Intense atmospheric rivers can weaken ice shelf stability at the Antarctic Peninsula Commun. Earth Environ. 3 90 10.1038/s43247-022-00422-9
D. Francis K.S. Mattingly M. Temimi R. Massom P. Heil On the crucial role of atmospheric rivers in the two major Weddell Polynya events in 1973 and 2017 in Antarctica Sci. Adv. 6 eabc2695 10.1126/sciadv.abc2695
F. Teubler M. Riemer Potential-vorticity dynamics of troughs and ridges within Rossby wave packets during a 40-year reanalysis period Weather Clim. Dyn. 2 535 559 10.5194/wcd-2-535-2021
V. Wirth J. Eichhorn Long-lived Rossby wave trains as precursors to strong winter cyclones over Europe Q. J. R. Meteorol. Soc. 680 729 737 10.1002/qj.2191
C. Lavaysse et al. Towards a monitoring system of temperature extremes in Europe Nat. Hazards Earth Syst. Sci. 18 91 104 10.5194/nhess-18-91-2018
X. Zou et al. Strong warming over the Antarctic Peninsula during combined atmospheric river and foehn events: contribution of shortwave radiation and turbulence J. Geophys. Res. Atmos. 128 e2022JD038138 10.1029/2022JD038138
T.A. Scambos et al. Ice shelf disintegration by plate bending and hydro-fracture: Satellite observations and model results of the 2008 Wilkins ice shelf break-ups Earth Planet. Sci. Lett. 280 51 60 10.1016/j.epsl.2008.12.027
E. Gilbert C. Kittel Surface melt and runoff on Antarctic ice shelves at 1.5 °C, 2 °C, and 4 °C of future warming Geophys. Res. Lett. 48 e2020GL091733 10.1029/2020GL091733
F.M. Ralph et al. A scale to characterize the strength and impacts of atmospheric rivers Bull. Am. Meteorol. Soc. 100 269 289 10.1175/BAMS-D-18-0023.1
J. Zscheischler et al. A typology of compound weather and climate events Nat. Rev. Earth Environ. 1 333 10.1038/s43017-020-0060-z
Z.-Z. Hu M. L’Heureux A. Kumar E. Becke ENSO and the tropical Pacific, in state of the climate in 2022 Bull. Am. Meteorol. Soc. 104 S213 S217
A.J. Matthews A multiscale framework for the origin and variability of the South Pacific Convergence Zone Q. J. R. Meteorol. Soc. 138 1165 1178 10.1002/qj.1870
W.S. Kessler EOF representation of the Madden–Julian Oscillation and its connection with ENSO J. Clim. 14 3055 3061 10.1175/1520-0442(2001)014<3055:EROTMJ>2.0.CO;2
K.R. Clem J.A. Renwick J. McGregor R.L. Fogt The relative influence of ENSO and SAM on Antarctic Peninsula climate J. Geophys. Res. Atmos. 121 9324 9341 10.1002/2016JD025305
C.A. Shields J.D. Wille A.B. Marquardt Collow M. Maclennan I.V. Gorodetskaya Evaluating uncertainty and modes of variability for Antarctic atmospheric rivers Geophys. Res. Lett. 49 e2022GL099577 10.1029/2022GL099577
G.J. Marshall Trends in the Southern Annular Mode from observations and reanalyses J. Clim. 16 4134 4143 10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2
B. Galperin S. Sukoriansky P.S. Anderson On the critical Richardson number in stably stratified turbulence Atmos. Sci. Lett. 8 65 69 10.1002/asl.153
Birner, T., Dörnbrack, A. & Schumann, U. How sharp is the tropopause at midlatitudes? Geophys. Res. Lett. 29, 45-1–45-4 (2002).
P. Rodriguez Imazio A. Dörnbrack R.D. Urzua N. Rivaben A. Godoy Clear air turbulence observed across a tropopause fold over the Drake Passage—a case study J. Geophys. Res. Atmos. 127 e2021JD035908 10.1029/2021JD035908
G. Vaughan F.M. O’Connor D.P. Wareing Observations of streamers in the troposphere and stratosphere using ozone Lidar J. Atmos. Chem. 38 295 315 10.1023/A:1006491422479
M. Sprenger M. Croci Maspoli H. Wernli Tropopause folds and cross-tropopause exchange: a global investigation based upon ECMWF analyses for the time period March 2000 to February 2001 J. Geophys. Res. 108 8518
R. Rondanelli et al. Strongest MGO on record triggers extreme Atacama rainfall and warmth in Antarctica Geophys. Res. Lett. 46 3482 3491 10.1029/2018GL081475
J. Turner et al. Record low Antarctic sea ice cover in February 2022 Geophys. Res. Lett. 49 e2022GL098904 10.1029/2022GL098904
J. Wang et al. An unprecedented record low Antarctic Sea-ice Extent during Austral Summer 2022 Adv. Atmos. Sci. 39 1591 1597 10.1007/s00376-022-2087-1
A crumbling ice shelf edge after a warm summer and low sea ice: National Snow and Ice Data Center (NSIDC) newsletter published on 27 March 2023. https://nsidc.org/ice-sheets-today/analyses/crumbling-ice-shelf-edge-after-warm-summer-and-low-sea-ice (2023).
N. Ochwat A. Banwell T. Scambos Sidebar 6.2: Larsen B fast-ice breakout and initial glacier response, in State of the Climate in 2022 Bull. Am. Meteorol. Soc. 104 S349 S351
D.H. Bromwich et al. The Year of Polar Prediction in the Southern Hemisphere (YOPP-SH) Bull. Am. Meteorol. Soc. 101 E1653 E1676 10.1175/BAMS-D-19-0255.1
K. Tewari S.K. Mishra P. Salunke A. Dewarn Future projections of temperature and precipitation for Antarctica Environ. Res. Lett. 17 014029 10.1088/1748-9326/ac43e2
D. Bozkurt et al. Temperature and precipitation projections for the Antarctic Peninsula over the next two decades: contrasting global and regional climate model simulations Clim. Dyn. 56 3853 3874 10.1007/s00382-021-05667-2
S. Feron et al. Warming events projected to become more frequent and last longer across Antarctica Sci. Rep. 11 1 9 10.1038/s41598-021-98619-z
P.A. Stott et al. Attribution of extreme weather and climate-related events WIREs Clim. Change 7 23 41 10.1002/wcc.380
C. Kittel et al. Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet Cryosphere 15 1215 1236 10.5194/tc-15-1215-2021
K.E. Alley T.A. Scambos J.Z. Miller D.G. Long M. MacFerrin Quantifying vulnerability of Antarctic ice shelves to hydrofracture using microwave scattering properties Remote Sens. Environ. 210 297 306 10.1016/j.rse.2018.03.025
H. Hersbach et al. The ERA5 global reanalysis Q J. R. Meteorol. Soc. 146 1999 2049 10.1002/qj.3803
J. Muñoz-Sabater et al. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications Earth Syst. Sci. Data 13 4349 4383 10.5194/essd-13-4349-2021
C. Agosta et al. Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes Cryosphere 13 281 296 10.5194/tc-13-281-2019
C. Lambin X. Fettweis C. Kittel M. Fonder D. Ernst Assessment of future wind speed and wind power changes over South Greenland using the Modèle Atmosphérique Régional regional climate model Int. J. Climatol. 43 558 574 10.1002/joc.7795
I.M. Howat C. Porter B.E. Smith M.-J. Noh P. Morin The Reference Elevation Model of Antarctica Cryosphere 13 665 674 10.5194/tc-13-665-2019
Dethinne, T. et al. Sensitivity of the MAR regional climate model snowpack to the parameterization of the assimilation of satellite-derived wet-snow masks on the Antarctic Peninsula. Cryosphere17, 4267–4288 (2023).
Picard, G. Snow status (wet/dry) in Antarctica from AMSR-E and AMSR2 passive microwave radiometers 2002 – 2023 [Data set]. Published via PerSCiDO. https://doi.org/10.18709/perscido.2023.04.ds391 (2023).
G. Picard M. Fily Surface melting observations in Antarctica by microwave radiometers: correcting 26-year time series from changes in acquisition hours Remote Sens. Environ. 104 325 336 10.1016/j.rse.2006.05.010
O. Torinesi M. Fily C. Genthon Variability and trends of the summer melt period of Antarctic Ice Margins since 1980 from microwave sensors J. Clim. 16 1047 1060 10.1175/1520-0442(2003)016<1047:VATOTS>2.0.CO;2
K. Takaya H. Nakamura A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow J. Atmos. Sci. 58 608 627 10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2
S.A. Henderson E.D. Maloney E.A. Barnes The influence of the Madden–Julian Oscillation on Northern Hemisphere winter blocking J. Clim. 29 4597 4616 10.1175/JCLI-D-15-0502.1
P.D. Sardeshmukh B.J. Hoskins The generation of global rotational flow by steady idealized tropical divergence J. Atmos. Sci. 45 1228 1251 10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2
B. Liebmann C.A. Smith Description of a complete (interpolated) outgoing longwave radiation dataset Bull. Am. Meteorol. Soc. 77 1275 1277
I. Pisso et al. The Lagrangian particle dispersion model FLEXPART version 10.4 Geosci. Model Dev. 12 4955 4997 10.5194/gmd-12-4955-2019
Coles, S. An Introduction to Statistical Modeling of Extreme Values (Springer Series in Statistics, Springer London, 2001).
Patterson, T. & Kelso, N. V. Antarctic Ice Shelf Edges, 1:50 million [Shapefile]. North American Cartographic Information Society. https://earthworks.stanford.edu/catalog/stanford-ms761jq9077 (2012).
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.