Auriemma CL, Van den Berghe G, Halpern SD. Less is more in critical care is supported by evidence-based medicine. Intens Care Med. (2019) 45:1806–9. 10.1007/s00134-019-05771-231535179
Vincent JL. We should abandon randomized controlled trials in the intensive care unit. Crit Care Med. (2010) 38(10 Suppl.):S534–8. 10.1097/CCM.0b013e3181f208ac21164394
Vincent JL. Improved survival in critically ill patients: are large RCTs more useful than personalized medicine? Intens Care Med. (2016) 42:1778–80. 10.1007/s00134-016-4482-527620286
Weitzman ML. On modeling and interpreting the economics of catastrophic climate change. The review of economics and statistics. (2009) 91:1–19. 10.1162/rest.91.1.1
Berkman ET, Kahn LE, Livingston JL. Valuation as a Mechanism of Self-Control and Ego Depletion, in Self-Regulation and Ego Control. Elsevier (2016). p. 255–79.
Wakker PP. Explaining the characteristics of the power (CRRA) utility family. Health Econ. (2008) 17:1329–44. 10.1002/hec.133118213676
Chase JG, Dickson JL. Traversing the valley of glycemic control despair. Crit Care. (2017) 21:237. 10.1186/s13054-017-1824-928882190
Chase JG, Desaive T, Bohe J, Cnop M, De Block C, Gunst J, et al. Improving glycemic control in critically ill patients: personalized care to mimic the endocrine pancreas. Crit Care. (2018) 22:182. 10.1186/s13054-018-2110-130071851
Chase JG, Preiser JC, Dickson JL, Pironet A, Chiew YS, Pretty CG, et al. Next-generation, personalised, model-based critical care medicine: a state-of-the art review of in silico virtual patient models, methods, and cohorts, and how to validation them. Biomed Eng Online. (2018) 17:24. 10.1186/s12938-018-0455-y29463246
Chase JG, Benyo B, Desaive T. Glycemic control in the intensive care unit: a control systems perspective. Ann Rev Control. (2019) 48:359–68. 10.1016/j.arcontrol.2019.03.007
Bagshaw SM, Bellomo R, Jacka MJ, Egi M, Hart GK, George C. The impact of early hypoglycemia and blood glucose variability on outcome in critical illness. Crit Care. (2009) 13:R91. 10.1186/cc792119534781
Finfer S, Liu B, Chittock DR, Norton R, Myburgh JA, McArthur C, et al. Hypoglycemia and risk of death in critically ill patients. N Engl J Med. (2012) 367:1108–18. 10.1056/NEJMoa120494222992074
Egi M, Bellomo R, Stachowski E, French CJ, Hart GK, Taori G, et al. Hypoglycemia and outcome in critically ill patients. Mayo Clin Proc. (2010) 85:217–24. 10.4065/mcp.2009.039420176928
Kalfon P, Le Manach Y, Ichai C, Brechot N, Cinotti R, Dequin PF, et al. Severe and multiple hypoglycemic episodes are associated with increased risk of death in ICU patients. Crit Care. (2015) 19:153. 10.1186/s13054-015-0851-725888011
Moghissi ES, Korytkowski MT, DiNardo M, Einhorn D, Hellman R, Hirsch IB, et al. American Association of Clinical Endocrinologists and American Diabetes Association consensus statement on inpatient glycemic control. Diabetes Care. (2009) 32:1119–31. 10.2337/dc09-902919454396
Krinsley JS, Preiser JC. Time in blood glucose range 70 to 140 mg/dl >80% is strongly associated with increased survival in non-diabetic critically ill adults. Crit Care. (2015) 19:179. 10.1186/s13054-015-0908-725927986
Signal M, Le Compte A, Shaw GM, Chase JG. Glycemic levels in critically ill patients: are normoglycemia and low variability associated with improved outcomes? J Diabetes Sci Technol. (2012) 6:1030–7. 10.1177/19322968120060050623063028
Egi M, Bellomo R. Reducing glycemic variability in intensive care unit patients: a new therapeutic target? J Diabetes Sci Technol. (2009) 3:1302–8. 10.1177/19322968090030061020144384
Lanspa MJ, Krinsley JS, Hersh AM, Wilson EL, Holmen JR, Orme JF, et al. Percentage of time in range 70 to 139 mg/dL is associated with reduced mortality among critically ill patients receiving IV insulin infusion. Chest. (2019) 156:878–86. 10.1016/j.chest.2019.05.01631201784
Krinsley JS. Association between hyperglycemia and increased hospital mortality in a heterogeneous population of critically ill patients. Mayo Clin Proc. (2003) 78:1471–8. 10.4065/78.12.147114661676
Falciglia M, Freyberg RW, Almenoff PL, D'Alessio DA, Render ML. Hyperglycemia-related mortality in critically ill patients varies with admission diagnosis. Crit Care Med. (2009) 37:3001–9. 10.1097/CCM.0b013e3181b083f720404639
Finney SJ, Zekveld C, Elia A, Evans TW. Glucose control and mortality in critically ill patients. JAMA. (2003) 290:2041–7. 10.1001/jama.290.15.2041
Jones KW, Cain AS, Mitchell JH, Millar RC, Rimmasch HL, French TK, et al. Hyperglycemia predicts mortality after CABG: postoperative hyperglycemia predicts dramatic increases in mortality after coronary artery bypass graft surgery. J Diabetes Comp. (2008) 22:365–70. 10.1016/j.jdiacomp.2007.05.00618413193
Whitcomb BW, Pradhan EK, Pittas AG, Roghmann MC, Perencevich EN. Impact of admission hyperglycemia on hospital mortality in various intensive care unit populations. Crit Care Med. (2005) 33:2772–7. 10.1097/01.CCM.0000189741.44071.2516352959
Stewart KW, Pretty CG, Tomlinson H, Thomas FL, Homlok J, Noemi SN, et al. Safety, efficacy and clinical generalization of the STAR protocol: a retrospective analysis. Ann Intens Care. (2016) 6:24. 10.1186/s13613-016-0125-927025951
Dubois J, Van Herpe T, van Hooijdonk RT, Wouters R, Coart D, Wouters P, et al. Software-guided versus nurse-directed blood glucose control in critically ill patients: the LOGIC-2 multicenter randomized controlled clinical trial. Crit Care. (2017) 21:212. 10.1186/s13054-017-1799-628806982
Blaha J, Kopecky P, Matias M, Hovorka R, Kunstyr J, Kotulak T, et al. Comparison of three protocols for tight glycemic control in cardiac surgery patients. Diabetes Care. (2009) 32:757–61. 10.2337/dc08-185119196894
Preiser JC, Lheureux O, Thooft A, Brimioulle S, Goldstein J, Vincent JL. Near-continuous glucose monitoring makes glycemic control safer in ICU patients. Crit Care Med. (2018) 46:1224–9. 10.1097/CCM.000000000000315729677007
Anthoff D, Tol RSJ. Climate policy under fat-tailed risk: an application of FUND. Ann Operat Res. (2014) 220:223–37. 10.1007/s10479-013-1343-2
Free Exchange Martin Weitzman died on August 27th. The Economist. London: The Economist (2019).
Major VJ, Chiew YS, Shaw GM, Chase JG. Biomedical engineer's guide to the clinical aspects of intensive care mechanical ventilation. Biomed Eng Online. (2018) 17:169. 10.1186/s12938-018-0599-930419903
Desaive T, Horikawa O, Ortiz JP, Chase JG. Model-based management of cardiovascular failure: where medicine and control systems converge. Ann Rev Control. (2019) 48:383–91. 10.1016/j.arcontrol.2019.05.003
Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intens Care Med. (2014) 40:1795–815. 10.1007/s00134-014-3525-z25476985
Le Compte AJ, Lee DS, Chase JG, Lin J, Lynn A, Shaw GM. Blood glucose prediction using stochastic modeling in neonatal intensive care. IEEE Trans Biomed Eng. (2010) 57:509–18. 10.1109/TBME.2009.203551719884072
Lin J, Lee D, Chase JG, Shaw GM, Le Compte A, Lotz T, et al. Stochastic modelling of insulin sensitivity and adaptive glycemic control for critical care. Comput Methods Programs Biomed. (2008) 89:141–52. 10.1016/j.cmpb.2007.04.00617544541
Uyttendaele V, Knopp JL, Stewart KW, Desaive T, Benyó B, Szabo-Nemedi N, et al. A 3D insulin sensitivity prediction model enables more patient-specific prediction and model-based glycaemic control. Biomed Signal Process Control. (2018) 46:192–200. 10.1016/j.bspc.2018.05.032
Faust O, Hagiwara Y, Hong TJ, Lih OS, Acharya UR. Deep learning for healthcare applications based on physiological signals: a review. Comput Methods Programs Biomed. (2018) 161:1–13. 10.1016/j.cmpb.2018.04.00529852952