Climate Modelling; Thermal comfort; Heat stress; Meteorological data
Abstract :
[en] With climate change, Belgium is experiencing and will experience more frequent and severe heat waves, which are particularly difficult to withstand in cities due to the urban heat island effect. In this study, we investigate the evolution of heatwaves in Brussels since 1981 and in the future, up to 2100, using climate simulations from global models refined by MAR. Firstly, a general analysis of the reliability of different global climate models, and in particular their ability to simulate heatwaves in Brussels, is conducted. Then, we select the best model and analyze its projections in terms of future heat waves in Brussels in the case of the SSP5-8.5 greenhouse gas emission scenario. It appears that the selected model projects heatwaves that are significantly more frequent, longer, and more intense in the future than currently, in the case of the SSP5-8.5 scenario.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Timmermans, Guillaume
Doutreloup, Sébastien ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Fettweis, Xavier ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Attia, Shady ; Université de Liège - ULiège > Département ArGEnCo > Techniques de construction des bâtiments
Language :
English
Title :
Simulation Of Long Term (1981 – 2100) Evolution of Heat Waves In Brussels Based On Mar Regional Model
Alternative titles :
[fr] With climate change, Belgium is experiencing and will experience more frequent and severe heat waves, which are particularly difficult to withstand in cities due to the urban heat island effect. In this study, we investigate the evolution of heatwaves in Brussels since 1981 and in the future, up to 2100, using climate simulations from global models refined by MAR. Firstly, a general analysis of the reliability of different global climate models, and in particular their ability to simulate heatwaves in Brussels, is conducted. Then, we select the best model and analyze its projections in terms of future heat waves in Brussels, in the case of the SSP5-8.5 greenhouse gas emission scenario. It appears that the selected model projects heatwaves that are significantly more frequent, longer, and more intense in the future than currently, in the case of the SSP5-8.5 scenario.
Attia, S. (2020). Spatial and behavioral thermal adaptation in net zero energy buildings: An exploratory investigation. Sustainability, 12(19), 7961. https://doi.org/10.3390/su12197961
Attia, S., & Gobin, C. (2020). Climate change effects on Belgian households: a case study of a nearly zero energy building. Energies, 13(20), 5357. https://doi.org/10.3390/en13205357
Bessemoulin, P., Bourdette, N., Courtier, P. & Manach, J. (2004). La canicule d’août 2003 en France et en Europe. La Météorologie, 46, 25 – 33. https://doi.org/10.4267/2042/36057
Dartevelle, O., Altomonte, S., Masy, G., Mlecnik, E., & Van Moeseke, G. (2022). Indoor Summer Thermal Comfort in a Changing Climate: The Case of a Nearly Zero Energy House in Wallonia (Belgium). Energies, 15(7), 2410. https://doi.org/10.3390/en15072410
Dobrovolny, P., Moberg, A., Brázdil, R., Pfister, C., Glaser, R., Wilson, R., van Engelen, A., Limanówka, D., Kiss, A., Halícková, M., Macková, J., Riemann, D., Luterbacher & J., Böhm, R. (2010). Monthly, seasonal and annual temperature reconstructions for Central Europe derived from documentary evidence and instrumental records since AD 1500. Climatic Change, 101(1), 69 - 107.
Doutreloup, S. & Fettweis, X. (2021). Typical & Extreme Meteorological Year and Heat waves for Dynamic Building Simulations in Belgium based on MAR model Simulations. Zenodo. https://doi.org/10.5281/zenodo.5606983.
Doutreloup, S., Fettweis, X., Rahif, R., El Nagar, E., Pourkiaei, S. M., Amaripadath, D., & Attia, S. (2022). Historical and Future Weather Data for Dynamic Building Simulations in Belgium using theMARmodel:Typical&ExtremeMeteorological Year and Heat waves. Earth System Science Data, 14(7). https://doi.org/10.5194/essd-2021-401
Canadian Environmental Service (2018). Aléas météorologiques de la saison chaude. Gouvernement du Canada. https://www.canada.ca/fr/environnement-changement-climatique/ services/meteo-saisonniere-dangereuse/aleasmeteorologiques-saison-chaude.html. Consulted on the 10/09/2022.
García-León,D.,Casanueva,A.,Standardi,G.,Burgstall, A., Flouris, A. D., & Nybo, L. (2021). Current and projected regional economic impacts of heat waves in Europe. Nature communications, 12(1), 1-10. https://doi.org/10.1038/s41467-021-26050-z
Gettelman, A & Rood, R.B. (2016). Demystifying Climate Models A Users Guide to Earth System Models. Berlin: Springer, 274p. https://doi.org/10.1007/978-3-662-48959-8
Hémon, D. & Jougla, E. (2004). Surmortalité liée à la canicule d’août 2003 [Rapport remis au Ministre de la Santé et de la Protection Sociale]. INSERM. https://www.inserm.fr/wp-content/ uploads/2017-11/inserm-rapportthematiquesurmortalitecaniculeaout2003-rapportfinal.pdf. Consulted on the 10/09/2022.
Hosokawa, Y., Grundstein, .J., Vanos J.K. & Cooper E.R. (2018). Environmental Condition and Monitoring. In Casa, D.J. (ed.) Sport and Physical Activity in the Heat. Cham: Springer, 147 – 162. https://doi.org/10.1007/978-3-319-70217-9
IPCC, (2022a). Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge and New York: Cambridge University Press, 3056 p.
IPCC (2022b). Regional fact sheet - Europe. Intergovernmental Panel on Climate Change. https: //www.ipcc.ch/report/ar6/wg1/downloads/ factsheets/IPCC_AR6_WGI_Regional_Fact_ She et_Europe.pdf?fbclid=IwAR2XZgccQhMpaFRNRtPSt-Ol8E3cIS-Fb186bGyR_veLtt_ WYDs2eNHsVc. Consulted on the 09/14/2022. 2p.
IRM (2022). Bilan climatique mensuel – août 2022. Institut Royal Météorologique. https://www.meteo.be/resources/climatology/pdf/bilan_ climatique_mensuel_202208.pdf. Consulted on the 09/14/2022.
ISO (2005). Hygrothermal performance of buildings — Calculation and presentation of climatic data — Part 4: Hourly data for assessing the annual energy use for heating and cooling. International Organization for Standardization. https://www.iso.org/fr/standard/41371.html. Consulted on the 09/01/2022.
Laaidi, K., Zeghoun, A., Dousset, B., Bretin, P., Vandentorren, S., Giraudet & E., Beaudeau, P. (2012). The Impact of Heat Islands on Mortality in Paris during the 2003 Heat Wave. Environmental Health Perspectives, 120(2) 254 - 259. https://doi.org/10.1289/ehp.1103532
Larsen, M.A.D., Petrović, S., Radosynski, A.M., McKenna, R. & Balyk, O. (2020). Climate change impacts on trends and extremes in future heating and cooling demands over Europe. Energy and Buildings, 226. https://doi.org/10.1016/j.enbuild.2020.110397
Macintyre, H. L., Heaviside, C., Taylor, J., Picetti, R., Symonds, P., Cai, X. M., & Vardoulakis, S. (2018). Assessing urban population vulnerability and environmentalrisksacrossanurbanareaduringheat waves –Implications for health protection. Science of the total environment, 610, 678-690. https://doi.org/10.1016/j.scitotenv.2017.08.062
Mastrangelo, G., Fedeli, U., Visentin, C., Milan, G., Fadda, E. & Spolaore, P. (2007). Pattern and determinants of hospitalization during heat waves: An ecologic study. BMC Public Health, 2007, 7, 200. https://doi.org/10.1186/1471-2458-7-200
Mievis, P. (2020). Bilan de la vague de chaleur d’août 2020. Météo Belgique. https://www.meteobelgique.be/article/nouvelles/la-suite/2418-bilan-de-lavague-de-chaleur-d-aout-2020. Consulted on the 05/19/2022.
Ouzeau, G., Soubeyroux, J.-M., Schneider, M., Vautard, R. & Planton, S. (2016). Heat waves analysis over France in present and future climate: Application of a new method on the EURO-CORDEX ensemble. Climate Services, 4, 1 - 12. https://doi.org/10.1016/j.cliser.2016.09.002
Pascal, M., Wagner, V., Corso, M., Laaidi, K., Ung, A. & Beaudeau, P. (2018). Heat and cold related-mortality in 18 French cities. Environment international, 121(1), 189 – 198. https://doi.org/10.1016/j.envint.2018.08.049
Patience, G.S. (2013). Temperature. In Patience, G.S. (ed.), Experimental Methods and Instrumentation for Chemical Engineers. Waltham: Elsevier, 145 – 188. https://doi.org/10.1016/B978-0-444-538048.00005-8
Rahif, R., Norouziasas, A., Elnagar, E., Doutreloup, S., Pourkiaei, S. M., Amaripadath, D., ... & Attia, S. (2022). Impact of climate change on nearly zero-energy dwelling in temperate climate: Time-integrated discomfort, HVAC energy performance, and GHG emissions. Building and Environment, 223, 109397. https://doi.org/10.1016/j.buildenv.2022.109397
Ramon, D., Allacker, K., De Troyer, F., Wouters, H., & van Lipzig, N. P. (2020). Future heating and cooling degree days for Belgium under a high-end climate changescenario.EnergyandBuildings,216,109935. https://doi.org/10.1016/j.enbuild.2020.109935
Riahi, K., van Vuuren,D.P., Kriegler, E., Edmonds, J., O’Neil, B.C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, o., Lutz, W. Popp, A., Crespo Cuaresma, J., KC, S., Leimbach, M., Leiwen, J., Kram, T., Shilpa, R., Emmerling, J.,... Tavoni, M. (2017). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42, 153 - 168. https://doi.org/10.1016/j.gloenvcha.2016.05.009
Sahabi-Abed, S. & Kerrouche, M. (2017). Indices Bioclimatiques:EtudeducasdelaVaguedeChaleur en Algérie, Dans la Perspective de l’Elaboration de Cartes de Vigilance: « Humidex» et «PET». JAMA, 1, 77 – 84. https://www.researchgate.net/ publication/324596918_Indices_Bioclimatiques_ Etude_du_cas_de_la_Vague_de_Chaleur_en_ Algerie_Dans_la_Perspective_de_l’Elaboration_ de_Cartes_de_Vigilance_Humidex_et_PET. Consulted on the 05/08/2022.
Santamouris, M. (2020). Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. Energy and Buildings, 207, 109482. https://doi.org/10.1016/j.enbuild.2019.109482
Steul, K., Schade, M. & Heudorf, U. (2018). Mortality during heat waves 2003–2015 in Frankfurt-Main – the 2003 heat wave and its implications. International Journal of Hygiene and Environmental Health, 221(1), 81 - 86. https://doi.org/10.1016/j.ijheh.2017.10.005
Timmermans, G. (2022). L’évolution des canicules à Bruxelles et à Liège sur base du Modèle Atmosphérique Régional (MAR). Travail de fin de bachelier en sciences géographiques, Liège, Université de Liège, inédit, 70p.
ULiège [OCCuPANt] (2022). OCCuPANt. https://www.occupant.uliege.be/cms/c_7968645/en/ occupant. Consulted on the 09/01/2022.
Van Loenhout, J. A. F., Rodriguez-Llanes, J. M., & Guha-Sapir, D. (2016). Stakeholders’ perception on national heat wave plans and their local implementation in Belgium and the Netherlands. International journal of environmental research and public health, 13(11), 1120. https://doi.org/10.3390/ijerph13111120
Vandemeulebroucke, I., Caluwaerts, S., & Van Den Bossche, N. (2022). Climate data for hygrothermal simulations of Brussels. Data in brief, 44, 108491. https://doi.org/10.1016/j.dib.2022.108491
Vaudor, L. (2015). Régression loess. R-atique [server of the individual professional pages of the Ecole Normale Supérieure de Lyon]. http://perso.enslyon.fr/lise.vaudor/regression-loess/. Consulted on the 09/05/2022.
Vautard, R., van Aalst, M., Boucher, O., Drouin, A., Haustein, K., Kreienkamp, F., van Oldenborgh, G.J., Otto, F.E.L., Ribes, A., Robin, Y., Schneider, M., Soubeyroux, J.-M., Stott, P., Seneviratne, S.I., Vogel, M.M. & Wehner, M. (2020). Human contribution to the record-breaking June and July 2019 heat waves in Western Europe. Environmental Research Letters, 15(9). https://doi.org/10.1088/1748-9326/aba3d4