Siegel, D. A., DeVries, T., Cetinić, I. & Bisson, K. M. Quantifying the ocean’s biological pump and its carbon cycle impacts on global scales. Annu. Rev. Mar. Sci. 15, 329–356 (2023). DOI: 10.1146/annurev-marine-040722-115226
Iversen, M. H. Carbon export in the ocean: a biologist’s perspective. Annu. Rev. Mar. Sci. 15, 357–381 (2023).
Wilson, J. D. et al. The biological carbon pump in CMIP6 models: 21st century trends and uncertainties. Proc. Natl Acad. Sci. USA 119, e2204369119 (2022). DOI: 10.1073/pnas.2204369119
DeVries, T. & Weber, T. The export and fate of organic matter in the ocean: new constraints from combining satellite and oceanographic tracer observations. Global Biogeochem. Cycles 31, 535–555 (2017).
Siegel, D. A. et al. Assessing the sequestration time scales of some ocean-based carbon dioxide reduction strategies. Environ. Res. Lett. 16, 104003 (2021).
Baker, C. A., Martin, A. P., Yool, A. & Popova, E. Biological carbon pump sequestration efficiency in the north Atlantic: a leaky or a long‐term sink? Global Biogeochem. Cycles 36, e2021GB007286 (2022).
Weyer, N. M. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 677–702 (Cambridge Univ. Press, 2019).
Lampitt, R. S. et al. Ocean fertilization: a potential means of geoengineering? Phil. Trans. R. Soc. A 366, 3919–3945 (2008).
Passow, U. & Carlson, C. The biological pump in a high CO2 world. Mar. Ecol. Prog. Ser. 470, 249–271 (2012). DOI: 10.3354/meps09985
Weber, T., Cram, J. A., Leung, S. W., DeVries, T. & Deutsch, C. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency. Proc. Natl Acad. Sci. USA 113, 8606–8611 (2016). DOI: 10.1073/pnas.1604414113
Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A. & Weber, T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568, 327–335 (2019). DOI: 10.1038/s41586-019-1098-2
National Academies of Sciences. A Research Strategy for Ocean-based Carbon Dioxide Removal and Sequestration (National Academies Press, 2022); https://doi.org/10.17226/26278
Honjo, S., Manganini, S. J., Krishfield, R. A. & Francois, R. Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: a synthesis of global sediment trap programs since 1983. Prog. Oceanogr. 76, 217–285 (2008). DOI: 10.1016/j.pocean.2007.11.003
Henson, S. A., Sanders, R. & Madsen, E. Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean. Global Biogeochem. Cycles https://doi.org/10.1029/2011GB004099 (2012).
Robinson, J. et al. How deep is deep enough? Ocean iron fertilization and carbon sequestration in the Southern Ocean. Geophys. Res. Lett. 41, 2489–2495 (2014). DOI: 10.1002/2013GL058799
Legendre, L., Rivkin, R. B., Weinbauer, M. G., Guidi, L. & Uitz, J. The microbial carbon pump concept: potential biogeochemical significance in the globally changing ocean. Prog. Oceanogr. 134, 432–450 (2015). DOI: 10.1016/j.pocean.2015.01.008
Guidi, L. et al. A new look at ocean carbon remineralization for estimating deepwater sequestration. Global Biogeochem. Cycles 29, 1044–1059 (2015).
Cram, J. A. et al. The role of particle size, ballast, temperature and oxygen in the sinking flux to the deep sea. Global Biogeochem. Cycles 32, 858–876 (2018). DOI: 10.1029/2017GB005710
Nowicki, M., DeVries, T. & Siegel, D. A. Quantifying the carbon export and sequestration pathways of the ocean’s biological carbon pump. Global Biogeochem. Cycles 36, e2021GB007083 (2022). DOI: 10.1029/2021GB007083
Alldredge, A. L. & Gotschalk, C. C. Direct observations of the mass flocculation of diatom blooms: characteristics, settling velocities and formation of diatom aggregates. Deep Sea Res. 36, 159–171 (1989).
Turner, J. T. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog. Oceanogr. 130, 205–248 (2015). DOI: 10.1016/j.pocean.2014.08.005
Dunne, J. P., Sarmiento, J. L. & Gnanadesikan, A. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Global Biogeochem. Cycles https://doi.org/10.1029/2006GB002907 (2007).
Dall’Olmo, G., Dingle, J., Polimene, L., Brewin, R. J. W. & Claustre, H. Substantial energy input to the mesopelagic ecosystem from the seasonal mixed-layer pump. Nat. Geosci. 9, 820–823 (2016). DOI: 10.1038/ngeo2818
Omand, M. M. et al. Eddy-driven subduction exports particulate organic carbon from the spring bloom. Science 348, 222–225 (2015). DOI: 10.1126/science.1260062
Resplandy, L., Lévy, M. & McGillicuddy, D. J. Jr. Effects of eddy‐driven subduction on ocean biological carbon pump. Global Biogeochem. Cycles 33, 1071–1084 (2019).
Hansell, D., Carlson, C., Repeta, D. & Schlitzer, R. Dissolved organic matter in the ocean: a controversy stimulates new insights. Oceanography 22, 202–211 (2009). DOI: 10.5670/oceanog.2009.109
Liu, L. L. & Huang, R. X. The global subduction/obduction rates: their interannual and decadal variability. J. Clim. 25, 1096–1115 (2012). DOI: 10.1175/2011JCLI4228.1
Levy, M. et al. Physical pathways for carbon transfers between the surface mixed layer and the ocean interior. Global Biogeochem. Cycles 27, 1001–1012 (2013).
Bianchi, D., Stock, C., Galbraith, E. D. & Sarmiento, J. L. Diel vertical migration: ecological controls and impacts on the biological pump in a one-dimensional ocean model. Global Biogeochem. Cycles 27, 478–491 (2013).
Aumont, O., Maury, O., Lefort, S. & Bopp, L. Evaluating the potential impacts of the diurnal vertical migration by marine organisms on marine biogeochemistry. Global Biogeochem. Cycles 32, 1622–1643 (2018).
Hansell, D. A. Recalcitrant dissolved organic carbon fractions. Ann. Rev. Mar. Sci. 5, 421–445 (2013). DOI: 10.1146/annurev-marine-120710-100757
Jiao, N. et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 8, 593–599 (2010). DOI: 10.1038/nrmicro2386
Jiao, N. et al. The microbial carbon pump and the oceanic recalcitrant dissolved organic matter pool. Nat. Rev. Microbiol. 9, 555 (2011). DOI: 10.1038/nrmicro2386-c5
Archibald, K. M., Siegel, D. A. & Doney, S. C. Modeling the impact of zooplankton Diel vertical migration on the carbon export flux of the biological pump. Global Biogeochem. Cycles 33, 181–199 (2019).
Brun, P. et al. Climate change has altered zooplankton-fuelled carbon export in the North Atlantic. Nat. Ecol. Evol. 3, 416–423 (2019). DOI: 10.1038/s41559-018-0780-3
Jónasdóttir, S. H., Visser, A. W., Richardson, K. & Heath, M. R. Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic. Proc. Natl Acad. Sci. USA 112, 12122–12126 (2015). DOI: 10.1073/pnas.1512110112
Auel, H., Klages, M. & Werner, I. Respiration and lipid content of the Arctic copepod Calanus hyperboreus overwintering 1 m above the seafloor at 2,300 m water depth in the Fram Strait. Mar. Biol. 143, 275–282 (2003). DOI: 10.1007/s00227-003-1061-4
Hirche, H. J., Muyakshin, S., Klages, M. & Auel, H. Aggregation of the Arctic copepod Calanus hyperboreus over the ocean floor of the Greenland Sea. Deep Sea Res. 53, 310–320 (2006).
Visser, A. W., Grønning, J. & Jónasdóttir, S. H. Calanus hyperboreus and the lipid pump. Limnol. Oceanogr. 62, 1155–1165 (2017). DOI: 10.1002/lno.10492
Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res. 34, 267–285 (1987).
Holzer, M., DeVries, T. & de Lavergne, C. Diffusion controls the ventilation of a Pacific Shadow Zone above abyssal overturning. Nat. Commun. 12, 4348 (2021). DOI: 10.1038/s41467-021-24648-x
Henson, S. A. et al. Uncertain response of ocean biological carbon export in a changing world. Nat. Geosci. 15, 248–254 (2022). DOI: 10.1038/s41561-022-00927-0
Hayes, C. T. et al. Global ocean sediment composition and burial flux in the deep sea. Global Biogeochem. Cycles 35, e2020GB006769 (2021). DOI: 10.1029/2020GB006769
Claustre, H., Legendre, L., Boyd, P. W. & Levy, M. The oceans’ biological carbon pumps: framework for a research observational community approach. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.780052 (2021).