STARS: CHEMICALLY PECULIAR; STARS: MAGNETIC FIELDS; STARS: ROTATION
Abstract :
[en] We present new measurements of the mean magnetic field modulus of a sample of Ap stars with spectral lines resolved into magnetically split components. We report the discovery of 16 new stars having this property. This brings the total number of such stars known to 42. We have performed more than 750 measurements of the mean field modulus of 40 of these 42 stars, between May 1988 and August 1995. The best of them have an estimated accuracy of 25 - 30 G. The availability of such a large number of measurements allows us to discuss for the first time the distribution of the field modulus intensities. A most intriguing result is the apparent existence of a sharp cutoff at the low end of this distribution, since no star with a field modulus (averaged over the rotation period) smaller than 2.8 kG has been found in this study. For more than one third of the studied stars, enough field determinations well distributed throughout the stellar rotation cycle have been achieved to allow us to characterize at least to some extent the variations of the field modulus. These variations are often significantly anharmonic, and it is not unusual for their extrema not to coincide in phase with the extrema of the longitudinal field (for the few stars for which enough data exist about the latter). This, together with considerations on the distribution of the relative amplitude of variation of the studied stars, supports the recently emerging evidence for markedly non-dipolar geometry and fine structure of the magnetic fields of most Ap stars. New or improved determinations of the rotation periods of 9 Ap stars have been achieved from the analysis of the variations of their mean magnetic field modulus. Tentative values of the period have been derived for 5 additional stars, and lower limits have been established for 10 stars. The shortest definite rotation period of an Ap star with magnetically resolved lines is 3.4 deg, while those stars that rotate slowest appear to have periods in excess of 70 or 75 years. As a result of this study, the number of known Ap stars with rotation periods longer than 30 days is almost doubled. We briefly rediscuss the slow-rotation tail of the period distribution of Ap stars. This study also yielded the discovery of radial velocity variations in 8 stars. There seems to be a deficiency of binaries with short orbital periods among Ap stars with magnetically resolved lines. Based on observations collected at the European Southern Observatory (La Silla, Chile; ESO programmes Nos. 43.7-004, 44.7-012, 49.7-030, 50.7-067, 51.7-041, 52.7-063, 53.7-028, 54.E-0416, and 55.E-0751), at the Observatoire de Haute-Provence (Saint-Michel-l'Observatoire, France), at Kitt Peak National Observatory, and at the Canada-France-Hawaii Telescope. Tables 2, 3, and 4 are also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Mathys, G.; European Southern Observatory, Casilla 19001, Santiago 19, Chile
Hubrig, S.; European Southern Observatory, Casilla 19001, Santiago 19, Chile ; University of Potsdam, Am Neuen Palais 10, D-14469 Potsdam, Germany
Landstreet, J. D.; Department of Astronomy, University of Western Ontario, London, Ontario N6A 3K7, Canada ; Visiting Astronomer, Canada-France-Hawaii Telescope operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France and the University of Hawaii
Lanz, T.; Astronomical Institute, Utrecht University, Princetonplein 5, P.O. Box 80000, NL-3508 TA Utrecht, The Netherlands ; Visiting Astronomer, Kitt Peak National Observatory, National Optical Astronomy Observatories, operated by AURA Inc., under contract with the National Science Foundation.
Manfroid, Jean ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Cramer N., Maeder A., 1981, Photometric classification of B and Ap stars with an application to 3600 stars. In: Upper main sequence chemically peculiar stars, 23rd Liège Astrophys. Coll., p. 61
Dekker H., D'Odorico S., Fontana A., 1994, The Messenger 76, 16
Deul E.R., van Genderen A.M., 1983, A&A 118, 289
Didelon P., 1987, The Messenger 49, 5
Didelon P., 1988, Surface magnetic field measurements in hot chemically peculiar stars. In: The impact of very high S/N spectroscopy on stellar physics, IAU Symp. No. 132, Cayrel de Strobel G., Spite M. (eds.). Kluwer, Dordrecht, p. 313
Dworetsky M.M., 1982, Observatory 102, 138
Gerbaldi M., Floquet M., Hauck B., 1985, A&A 146, 341
Gillet D., Burnage R., Kohler D., et al., 1994, A&AS 108, 1
Glaspey J., 1993, User's Manual for GECKO - The Coudé F/4 Spectrograph
Heck A., Mathys G., Manfroid J., 1987, A&AS 70, 33
Hensberge H., 1993, Long term variability in CP stars. In: Peculiar versus normal phenomena in A-type and related stars, IAU Coll. No. 138, Dworetsky M.M., Castelli F., Faraggiana R. (eds.). Astron. Soc. Pac. Conf. Ser. 44, 547
Leroy J.L., 1995a, A complete magnetic model of beta Corona Borealis. In: La polarimétrie, outil pour l'étude de l'activité magnétique solaire et stellaire, Mein N., Sahal S. (eds.). Observatoire de Paris-Meudon (in press)
Leroy J.L., 1995b, A&AS 114, 79
Leroy J.L., Bagnulo S., Landolfi M., Landi Degl'Innocenti E., 1994, A&A 284, 174
Leroy J.L., Landolfi M., Landi Degl'Innocenti M., et al., 1995, A&A 301, 797
Lindgren H., Gilliotte A., 1989, The Coudé Echelle Spectrometer - The Coudé Auxiliary Telescope, ESO Operating Manual No. 8
Mathys G., 1993, Magnetic field diagnosis through spectropolarimetry. In: Peculiar versus normal phenomena in A-type and related stars, IAU Coll. No. 138, Dworetsky M.M., Castelli F., Faraggiana R. (eds.). Astron. Soc. Pac. Conf. Ser. 44, 232
Mathys G., 1994a, The Coudé Echelle Spectrometer - Update to the Operating Manual, ESO
Mathys G., 1994b, A&AS 108, 547
Mathys G., 1995a, A&A 293, 733
Mathys G., 1995b, A&A 293, 746
Mathys G., Hubrig S., 1996 (in preparation)
Mathys G., Lanz T., 1992, A&A 256, 169 (Paper II)
Mathys G., Solanki S.K., 1989, A&A 208, 189
Mathys G., Landstreet J.D., Lanz T., 1993, Observations of magnetically split lines in Ap stars. In: Peculiar versus normal phenomena in A-type and related stars, IAU Coll. No. 138, Dworetsky M.M., Castelli F., Faraggiana R. (eds.). Astron. Soc. Pac. Conf. Ser. 44, 300 (Paper III)
Neubauer F.J., 1944, ApJ 99, 134
North P., 1987, A&AS 69, 371
North P., 1994, in: The 25th workshop and meeting of European working group on CP stars, Jankovics I., Vincze I.J. (eds.). Gothard Astrophysical Observatory of Eötvös University, Szombathely, Hungary, p. 3
North P., Adelman S.J., 1995, A&AS 111, 41
North P., Cramer N., 1981, Ap stars detected in open clusters by the Geneva photometry. In: Upper main sequence chemically peculiar stars, 23rd Liège Astrophys. Coll., p. 55
Oetken L., 1984, Astron. Nachr. 306, 187
Preston G.W., 1969a, ApJ 156, 967
Preston G.W., 1969b, ApJ 157, 247
Preston G.W., 1969c, ApJ 158, 1081
Preston G.W., 1970, ApJ 160, 1059
Preston G.W., 1971a, ApJ 164, 309
Preston G.W., 1971b, PASP 83, 571
Preston G.W., Wolff S.C., 1970, ApJ 160, 1071
Renson P., Gerbaldi M., Catalano F.A., 1991, A&AS 89, 429