Wille, Jonathan; Institut des Géosciences de l'Environnement, CNRS/UGA, Saint Martin d'Hères, France ; Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
Alexander, Simon; Australian Antarctic Division, Kingston, Australia ; Institute for Marine and Antarctic Studies, d1 Australian Antarctic Program Partnership, University of Tasmania, Hobart, Australia
Amory, Charles ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Institut des Géosciences de l'Environnement, CNRS/UGA, Saint Martin d'Hères, France
Baiman, Rebecca; Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, United States
Barthélemy, Léonard; Laboratoire d'Océanographie et du Climat, LOCEAN-IPSL, Sorbonne Université, CNRS, MNHN, Paris, France
Bergstrom, Dana; Australian Antarctic Division, Kingston, Australia ; Institute for Marine and Antarctic Studies, d1 Australian Antarctic Program Partnership, University of Tasmania, Hobart, Australia ; Global Challenges Program, University of Wollongong, Wollongong, Australia
Berne, Alexis; Environmental Remote Sensing Laboratory (LTE), h1 Department of Meteorology, École Polytechnique Fédérale de Lausanne, Switzerland ; University of Valparaíso, Valparaíso, Chile
Binder, Hanin; Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
Blanchet, Juliette; Institut des Géosciences de l'Environnement, CNRS/UGA, Saint Martin d'Hères, France
Bozkurt, Deniz; h1 Department of Meteorology, University of Valparaíso, Valparaíso, Chile ; h2 Center for Climate and Resilience Research (CR)2, Santiago, Chile
Bracegirdle, Thomas; British Antarctic Survey, Cambridge, United Kingdom
Casado, Mathieu; Laboratoire des Sciences du Climat et de l'Environnement, CNRS-CEA-UVSQ-IPSL, Gif sur Yvette, France
Choi, Taejin; Korea Polar Research Institute, Incheon, Republic of Korea
Clem, Kyle; School of Geography, Environment and Earth Sciences, Victoria University of Wellington, New Zealand m Meteogiornale, Milan, Italy
Codron, Francis; Laboratoire d'Océanographie et du Climat, LOCEAN-IPSL, Sorbonne Université, CNRS, MNHN, Paris, France
Datta, Rajashree; Australian Antarctic Division, Kingston, Australia ; Institute for Marine and Antarctic Studies, d1 Australian Antarctic Program Partnership, University of Tasmania, Hobart, Australia
Battista, Stefano; m Meteogiornale, Milan, Italy
Favier, Vincent; Institut des Géosciences de l'Environnement, CNRS/UGA, Saint Martin d'Hères, France
Francis, Diana; Environmental and Geophysical Sciences (ENGEOS) Lab, Khalifa University, Abu Dhabi, United Arab Emirates
Fraser, Alexander; d1 Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart 7001, Tasmania, Australia
Fourré, Elise; Laboratoire des Sciences du Climat et de l'Environnement, CNRS-CEA-UVSQ-IPSL, Gif sur Yvette, France
Garreaud, René; Universidad de Chile, Santiago, Chile
Genthon, Christophe; LMD/IPSL, Sorbonne Université, ENS, PSL Research University ; Institut Polytechnique de Paris, CNRS, Paris, France
Gorodetskaya, Irina; CIIMAR -Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, Portugal ; CESAM -Centre for Environmental and Marine Studies, University of Aveiro, Portugal
González-Herrero, Sergi; WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland ; Antarctic Group, Agencia Estatal de Meteorología (AEMET), Barcelona, Spain
Heinrich, Victoria; School of Psychological Sciences, d3 Institute for Marine and Antarctic Studies, University of Tasmania, Australia ; d4 ARC Centre of Excellence for Climate Extremes, University of Tasmania, Hobart, Australia ; University of Tasmania, Hobart, Australia
Hubert, Guillaume; ONERA/DPHY, The French Aerospace Lab, University of Toulouse, France ; Space Science and Engineering Center, Department of Physical Sciences, School of Engineering, Science, and Mathematics, v1 Antarctic Meteorological Research and Data Center, University of Wisconsin-Madison, Madison ; Madison Area Technical College, Madison
Joos, Hanna; Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
Kim, Seong-Joong; Korea Polar Research Institute, Incheon, Republic of Korea
King, John; British Antarctic Survey, Cambridge, United Kingdom
Kittel, Christoph ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Institut des Géosciences de l'Environnement, CNRS/UGA, Saint Martin d'Hères, France
Landais, Amaelle; Laboratoire des Sciences du Climat et de l'Environnement, CNRS-CEA-UVSQ-IPSL, Gif sur Yvette, France
Lazzara, Matthew; u1 Antarctic Meteorological Research and Data Center, Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin ; u2 Department of Physical Sciences, School of Engineering, Science, and Mathematics, Madison Area Technical College, Madison, Wisconsin
Leonard, Gregory; National School of Surveying, University of Otago, Dunedin, New Zealand
Lieser, Jan; d3 Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart 7001, Tasmania, Australia
Maclennan, Michelle; Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, United States
Mikolajczyk, David; u1 Antarctic Meteorological Research and Data Center, Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin
Neff, Peter; University of Minnesota, Saint Paul ; Minnesota y University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway
Ollivier, Inès; Laboratoire des Sciences du Climat et de l'Environnement, CNRS-CEA-UVSQ-IPSL, Gif sur Yvette, France
Picard, Ghislain; Institut des Géosciences de l'Environnement, CNRS/UGA, Saint Martin d'Hères, France
Pohl, Benjamin; CNRS / Université de Bourgogne, Biogéosciences, Dijon, France
Ralph, Martin; CW3E, Scripps Institution of Oceanography, San Diego
Rowe, Penny; NorthWest Research Associates, Seattle
Schlosser, Elisabeth; Dep. of Atmospheric and Cryospheric Sciences, Univ. of Innsbruck, Innsbruck, Austria
Shields, Christine; Climate and Global Dynamics Lab, National Center for Atmospheric Research, Boulder, USA
Smith, Inga; Department of Physics, University of Otago, Dunedin, New Zealand
Sprenger, Michael; Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
Trusel, Luke; Department of Geography, Pennsylvania State University, University Park
Udy, Danielle; d1 Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart 7001, Tasmania, Australia ; d3 Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart 7001, Tasmania, Australia ; d4 ARC Centre of Excellence for Climate Extremes, University of Tasmania, Private Bag 129, Hobart 7001, Tasmania, Australia
Vance, Tessa; d1 Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart 7001, Tasmania, Australia
Vignon, Étienne; LMD/IPSL, Sorbonne Université, ENS, PSL Research University ; Institut Polytechnique de Paris, CNRS, Paris, France
Walker, Catherine; Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, USA
Wever, Nander; Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, United States
Zou, Xun; CW3E, Scripps Institution of Oceanography, San Diego
Adusumilli, S., M. A. Fish, H. A. Fricker, and B. Medley, 2021: Atmospheric river precipitation contributed to rapid increases in surface height of the West Antarctic ice sheet in 2019. Geophys. Res. Lett., 48, e2020GL091076, https://doi.org/10.1029/2020GL091076.
Agosta, C., and Coauthors, 2019: Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes. Cryosphere, 13, 281–296, https://doi.org/10.5194/tc-13-281-2019.
Blanchard-Wrigglesworth, E., T. Cox, Z. I. Espinosa, and A. Donohoe, 2023: The largest ever recorded heatwave-Characteristics and attribution of the Antarctic heatwave of March 2022. Geophys. Res. Lett., 50, e2023GL104910, https://doi.org/10.1029/2023GL104910.
Bonne, J.-L., and Coauthors, 2015: The summer 2012 Greenland heat wave: In situ and remote sensing observations of water vapor isotopic composition during an atmospheric river event. J. Geophys. Res. Atmos., 120, 2970–2989, https://doi.org/10.1002/2014JD022602.
Bozkurt, D., R. Rondanelli, J. C. Marín, and R. Garreaud, 2018: Foehn event triggered by an atmospheric river underlies record-setting temperature along continental Antarctica. J. Geophys. Res. Atmos., 123, 3871–3892, https://doi.org/10.1002/2017JD027796.
Brast, M., and P. Markmann, 2020: Detecting the melting layer with a micro rain radar using a neural network approach. Atmos. Meas. Tech., 13, 6645–6656, https://doi.org/10.5194/amt-13-6645-2020.
Bruno, M. F., M. G. Molfetta, V. Totaro, and M. Mossa, 2020: Performance assessment of ERA5 wave data in a swell dominated region. J. Mar. Sci. Eng., 8, 214, https://doi.org/10.3390/ jmse8030214.
Casado, M., and Coauthors, 2016: Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau. Atmos. Chem. Phys., 16, 8521–8538, https://doi.org/10.5194/acp-16-8521-2016.
T. Münch, and T. Laepple, 2020: Climatic information archived in ice cores: Impact of intermittency and diffusion on the recorded isotopic signal in Antarctica. Climate Past, 16, 1581–1598, https://doi.org/10.5194/cp-16-1581-2020.
Cheminet, A., V. Lacoste, G. Hubert, D. Boscher, D. Boyer, and J. Poupeney, 2012: Experimental measurements of the cosmic-ray induced neutron spectra at various mountain altitudes with HERMEIS. IEEE Trans. Nucl. Sci., 59, 1722–1730, https://doi.org/10.1109/TNS.2012.2201500.
Clem, K. R., and Coauthors, 2023: Antarctica and the Southern Ocean. Bull. Amer. Meteor. Soc., 104, S322–S365, https://doi.org/10.1175/BAMS-D-23-0077.1.
Crockart, C. K., and Coauthors, 2021: El Niño–Southern Oscillation signal in a new East Antarctic ice core, Mount Brown South. Climate Past, 17, 1795–1818, https://doi.org/10.5194/cp-17-1795-2021.
Datta, R. T., J. D. Wille, D. Bozkurt, D. E. Mikolajczyk, K. R. Clem, Z. Yin, and M. Macferrin, 2023: Sidebar 6.1: The Antarctic heatwave of March 2022 [in “State of the Climate in 2022”]. Bull. Amer. Meteor. Soc., 104, S333–S335.
Djoumna, G., and D. M. Holland, 2021: Atmospheric rivers, warm air intrusions, and surface radiation balance in the Amundsen Sea embayment. J. Geophys. Res. Atmos., 126, e2020JD034119, https://doi.org/10.1029/2020JD034119.
Durán-Alarcón, C., B. Boudevillain, C. Genthon, J. Grazioli, N. Souverijns, N. P. M. van Lipzig, I. V. Gorodetskaya, and A. Berne, 2019: The vertical structure of precipitation at two stations in East Antarctica derived from micro rain radars. Cryosphere, 13, 247–264, https://doi.org/10.5194/tc-13-247-2019.
Espinoza, V., D. E. Waliser, B. Guan, D. A. Lavers, and F. M. Ralph, 2018: Global analysis of climate change projection effects on atmospheric rivers. Geophys. Res. Lett., 45, 4299–4308, https://doi.org/10.1029/2017GL076968.
Fichefet, T., and M. A. M. Maqueda, 1999: Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover. Climate Dyn., 15, 251–268, https://doi.org/10.1007/s003820050280.
Fisher, D. A., N. Reeh, and H. B. Clausen, 1985: Stratigraphic noise in time series derived from ice cores. Ann. Glaciol., 7, 76–83, https://doi.org/10.3189/S0260305500005942.
Francis, D., K. S. Mattingly, S. Lhermitte, M. Temimi, and P. Heil, 2021: Atmospheric extremes caused high oceanward sea surface slope triggering the biggest calving event in more than 50 years at the Amery Ice Shelf. Cryosphere, 15, 2147–2165, https://doi.org/10.5194/tc-15-2147-2021.
R. Fonseca, K. S. Mattingly, O. J. Marsh, S. Lhermitte, and C. Cherif, 2022: Atmospheric triggers of the brunt ice shelf calving in February 2021. J. Geophys. Res. Atmos., 127, e2021JD036424, https://doi.org/10.1029/2021JD036424.
Fraser, A. D., R. A. Massom, K. I. Ohshima, S. Willmes, P. J. Kappes, J. Cartwright, and R. Porter-Smith, 2020: High-resolution mapping of circum-Antarctic landfast sea ice distribution, 2000–2018. Earth Syst. Sci. Data, 12, 2987–2999, https://doi.org/10.5194/essd-12-2987-2020.
and Coauthors, 2021: Eighteen-year record of circum-Antarctic landfast-sea-ice distribution allows detailed baseline characterisation and reveals trends and variability. Cryosphere, 15, 5061–5077, https://doi.org/10.5194/tc-15-5061-2021.
and Coauthors, 2022: Antarctic landfast sea ice: Physical, biogeochemical and ecological significance. Earth Space Sci. Open Arch., https://doi.org/10.1002/essoar.10512682.1, in press.
and Coauthors, 2023: Antarctic landfast sea ice: A review of its physics, biogeochemistry and ecology. Rev. Geophys., 61, e2022RG000770, https://doi.org/10.1029/2022RG000770.
Gehring, J., É. Vignon, A.-C. Billault-Roux, A. Ferrone, A. Protat, S. P. Alexander, and A. Berne, 2022: Orographic flow influence on precipitation during an atmospheric river event at Davis, Antarctica. J. Geophys. Res. Atmos., 127, e2021JD035210, https://doi.org/10.1029/2021JD035210.
Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1.
Gkinis, V., S. B. Simonsen, S. L. Buchardt, J. W. C. White, and B. M. Vinther, 2014: Water isotope diffusion rates from the NorthGRIP ice core for the last 16,000 years-Glaciological and paleoclimatic implications. Earth Planet. Sci. Lett., 405, 132–141, https://doi.org/10.1016/j.epsl.2014.08.022.
González-Herrero, S., D. Barriopedro, R. M. Trigo, J. A. López-Bustins, and M. Oliva, 2022: Climate warming amplified the 2020 record-breaking heatwave in the Antarctic Peninsula. Commun. Earth Environ., 3, 122, https://doi.org/10.1038/s43247-022-00450-5.
Gorodetskaya, I. V., M. Tsukernik, K. Claes, M. F. Ralph, W. D. Neff, and N. P. M. Van Lipzig, 2014: The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophys. Res. Lett., 41, 6199–6206, https://doi.org/10.1002/ 2014GL060881.
T. Silva, H. Schmithüsen, and N. Hirasawa, 2020: Atmospheric river signatures in radiosonde profiles and reanalyses at the Dronning Maud Land coast, East Antarctica. Adv. Atmos. Sci., 37, 455–476, https://doi.org/10.1007/s00376-020-9221-8.
Grazioli, J., J.-B. Madeleine, H. Gallée, R. M. Forbes, C. Genthon, G. Krinner, and A. Berne, 2017: Katabatic winds diminish precipitation contribution to the Antarctic ice mass balance. Proc. Natl. Acad. Sci. USA, 114, 10 858–10 863, https://doi.org/10.1073/pnas.1707633114.
Grieder, P. K. F., 2001: Cosmic ray properties, relations and definitions. Cosmic Rays at Earth, P. K. F. Grieder, Ed., Elsevier, 1–53.
Groot Zwaaftink, C. D., A. Cagnati, A. Crepaz, C. Fierz, G. Macelloni, M. Valt, and M. Lehning, 2013: Event-driven deposition of snow on the Antarctic Plateau: Analyzing field measurements with SNOWPACK. Cryosphere, 7, 333–347, https://doi.org/10.5194/tc-7-333-2013.
Herron, M. M., and C. C. Langway Jr., 1980: Firn densification: An empirical model. J. Glaciol., 25, 373–385, https://doi.org/10.3189/S0022143000015239.
Holland, P. R., and Coauthors, 2015: Oceanic and atmospheric forcing of Larsen C ice-shelf thinning. Cryosphere, 9, 1005–1024, https://doi.org/10.5194/tc-9-1005-2015.
Hubert, G., 2016: Analyses of cosmic ray induced-neutron based on spectrometers operated simultaneously at mid-latitude and Antarctica high-altitude stations during quiet solar activity. Astropart. Phys., 83, 30–39, https://doi.org/10.1016/j.astro partphys.2016.07.002.
M. T. Pazianotto, C. A. Federico, and P. Ricaud, 2019: Analysis of the Forbush decreases and ground-level enhancement on September 2017 using neutron spectrometers operated in Antarctic and midlatitude stations. J. Geophys. Res. Space Phys., 124, 661–673, https://doi.org/10.1029/2018JA025834.
Hughes, T. P., and Coauthors, 2018: Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science, 359, 80–83, https://doi.org/10.1126/science.aan8048.
Jackson, S. L., T. R. Vance, C. Crockart, A. Moy, C. Plummer, and N. J. Abram, 2022: Climatology of the Mount Brown South ice core site in East Antarctica: Implications for the interpretation of a water isotope record. Climate Past, 19, 1653–1675, https://doi.org/10.5194/cp-19-1653-2023.
Jong, L. M., and Coauthors, 2022: 2000 years of annual ice core data from Law Dome, East Antarctica. Earth Syst. Sci. Data, 14, 3313–3328, https://doi.org/10.5194/essd-14-3313-2022.
Jullien, N., É. Vignon, M. Sprenger, F. Aemisegger, and A. Berne, 2020: Synoptic conditions and atmospheric moisture pathways associated with virga and precipitation over coastal Adélie Land in Antarctica. Cryosphere, 14, 1685–1702, https://doi.org/10.5194/tc-14-1685-2020.
Keenan, E., N. Wever, M. Dattler, J. T. M. Lenaerts, B. Medley, P. Kuipers Munneke, and C. Reijmer, 2021: Physics-based SNOWPACK model improves representation of near-surface Antarctic snow and firn density. Cryosphere, 15, 1065–1085, https://doi.org/10.5194/tc-15-1065-2021.
Kittel, C., and Coauthors, 2021: Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet. Cryosphere, 15, 1215–1236, https://doi.org/10.5194/tc-15-1215-2021.
Lavers, D. A., A. Simmons, F. Vamborg, and M. J. Rodwell, 2022: An evaluation of ERA5 precipitation for climate monitoring. Quart. J. Roy. Meteor. Soc., 148, 3152–3165, https://doi.org/10.1002/qj.4351.
Lehning, M., P. Bartelt, B. Brown, and C. Fierz, 2002a: A physical SNOWPACK model for the Swiss avalanche warning: Part III: Meteorological forcing, thin layer formation and evaluation. Cold Reg. Sci. Technol., 35, 169–184, https://doi.org/10.1016/S0165-232X(02)00072-1.
and P. Satyawali, 2002b: A physical SNOWPACK model for the Swiss avalanche warning: Part II. Snow microstructure. Cold Reg. Sci. Technol., 35, 147–167, https://doi.org/10.1016/S0165-232X(02)00073-3.
Leroy-Dos Santos, C., and Coauthors, 2020: A 4.5 year-long record of Svalbard water vapor isotopic composition documents winter air mass origin. J. Geophys. Res. Atmos., 125, e2020JD032681, https://doi.org/10.1029/2020JD032681.
and Coauthors, 2021: A dedicated robust instrument for water vapor generation at low humidity for use with a laser water isotope analyzer in cold and dry polar regions. Atmos. Meas. Tech., 14, 2907–2918, https://doi.org/10.5194/amt-14-2907-2021.
Maahn, M., and P. Kollias, 2012: Improved micro rain radar snow measurements using Doppler spectra post-processing. Atmos. Meas. Tech., 5, 2661–2673, https://doi.org/10.5194/amt-5-2661-2012.
Maclennan, M. L., and Coauthors, 2022a: Climatology and surface impacts of atmospheric rivers on West Antarctica. Cryosphere, 17, 865–881, https://doi.org/10.5194/tc-2022-101.
J. T. M. Lenaerts, C. Shields, and J. D. Wille, 2022b: Contribution of atmospheric rivers to Antarctic precipitation. Geophys. Res. Lett., 49, e2022GL100585, https://doi.org/10. 1029/2022GL100585.
Maksym, T., and T. Markus, 2008: Antarctic sea ice thickness and snow-to-ice conversion from atmospheric reanalysis and passive microwave snow depth. J. Geophys. Res., 113, C02S12, https://doi.org/10.1029/2006JC004085.
Marshall, G. J., D. W. J. Thompson, and M. R. van den Broeke, 2017: The signature of Southern Hemisphere atmospheric circulation patterns in Antarctic precipitation. Geophys. Res. Lett., 44, 11 580–11 589, https://doi.org/10.1002/2017GL075998.
Marsigli, C., and Coauthors, 2021: Review article: Observations for high-impact weather and their use in verification. Nat. Hazards Earth Syst. Sci., 21, 1297–1312, https://doi.org/10.5194/nhess-21-1297-2021.
Massom, R. A., T. A. Scambos, L. G. Bennetts, P. Reid, V. A. Squire, and S. E. Stammerjohn, 2018: Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell. Nature, 558, 383–389, https://doi.org/10.1038/s41586-018-0212-1.
Mattingly, K. S., T. L. Mote, and X. Fettweis, 2018: Atmospheric river impacts on Greenland ice sheet surface mass balance. J. Geophys. Res. Atmos., 123, 8538–8560, https://doi.org/10.1029/ 2018JD028714.
J. V. Turton, J. D. Wille, B. Noël, X. Fettweis, Å. K. Rennermalm, and T. L. Mote, 2023: Increasing extreme melt in northeast Greenland linked to foehn winds and atmospheric rivers. Nat. Commun., 14, 1743, https://doi.org/10.1038/ s41467-023-37434-8.
Mottram, R., and Coauthors, 2021: What is the surface mass balance of Antarctica? An intercomparison of regional climate model estimates. Cryosphere, 15, 3751–3784, https://doi.org/10.5194/tc-15-3751-2021.
Münch, T., and T. Laepple, 2018: What climate signal is contained in decadal- to centennial-scale isotope variations from Antarctic ice cores? Climate Past, 14, 2053–2070, https://doi.org/10.5194/cp-14-2053-2018.
O’Brien, T. A., and Coauthors, 2022: Increases in future AR count and size: Overview of the ARTMIP tier 2 CMIP5/6 experiment. J. Geophys. Res. Atmos., 127, e2021JD036013, https://doi.org/10.1029/2021JD036013.
Picard, G., and M. Fily, 2006: Surface melting observations in Antarctica by microwave radiometers: Correcting 26-year time series from changes in acquisition hours. Remote Sens. Environ., 104, 325–336, https://doi.org/10.1016/j.rse.2006.05.010.
Pohl, B., and Coauthors, 2021: Relationship between weather regimes and atmospheric rivers in East Antarctica. J. Geophys. Res. Atmos., 126, e2021JD035294, https://doi.org/10.1029/ 2021JD035294.
Pritchard, H. D., S. R. M. Ligtenberg, H. A. Fricker, D. G. Vaughan, M. R. van den Broeke, and L. Padman, 2012: Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484, 502–505, https://doi.org/10.1038/nature10968.
Ralph, F. M., M. D. Dettinger, J. J. Rutz, and D. E. Waliser, 2020: Atmospheric Rivers. 1st ed. Springer, 252 pp.
Ricaud, P., B. Gabard, S. Derrien, J.-P. Chaboureau, T. Rose, A. Mombauer, and H. Czekala, 2010: HAMSTRAD-Tropo, a 183-GHz radiometer dedicated to sound tropospheric water vapor over Concordia Station, Antarctica. IEEE Trans. Geosci. Remote Sens., 48, 1365–1380, https://doi.org/10.1109/TGRS.2009.2029345.
Roberts, J., and Coauthors, 2015: A 2000-year annual record of snow accumulation rates for Law Dome, East Antarctica. Climate Past, 11, 697–707, https://doi.org/10.5194/cp-11-697-2015.
Rosolem, R., W. J. Shuttleworth, M. Zreda, T. E. Franz, X. Zeng, and S. A. Kurc, 2013: The effect of atmospheric water vapor on neutron count in the cosmic-ray soil moisture observing system. J. Hydrometeor., 14, 1659–1671, https://doi.org/10.1175/JHM-D-12-0120.1.
Serreze, M. C., and W. N. Meier, 2019: The Arctic’s sea ice cover: Trends, variability, predictability, and comparisons to the Antarctic. Ann. N. Y. Acad. Sci., 1436, 36–53, https://doi.org/10.1111/nyas.13856.
Smith, B., and Coauthors, 2020: Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science, 368, 1239–1242, https://doi.org/10.1126/science.aaz5845.
Stenni, B., and Coauthors, 2016: Three-year monitoring of stable isotopes of precipitation at Concordia station, East Antarctica. Cryosphere, 10, 2415–2428, https://doi.org/10.5194/tc-10-2415-2016.
and Coauthors, 2017: Antarctic climate variability on regional and continental scales over the last 2000 years. Climate Past, 13, 1609–1634, https://doi.org/10.5194/cp-13-1609-2017.
Teder, N. J., L. G. Bennetts, P. A. Reid, and R. A. Massom, 2022: Sea ice-free corridors for large swell to reach Antarctic ice shelves. Environ. Res. Lett., 17, 045026, https://doi.org/10.1088/1748-9326/ac5edd.
Thomas, E. R., and Coauthors, 2017: Regional Antarctic snow accumulation over the past 1000 years. Climate Past, 13, 1491–1513, https://doi.org/10.5194/cp-13-1491-2017.
Thompson-Munson, M., N. Wever, C. M. Stevens, J. T. M. Lenaerts, and B. Medley, 2023: An evaluation of a physics-based firn model and a semi-empirical firn model across the Greenland Ice Sheet (1980–2020). Cryosphere, 17, 2185–2209, https://doi.org/10.5194/tc-17-2185-2023.
Torinesi, O., M. Fily, and C. Genthon, 2003: Variability and trends of the summer melt period of Antarctic ice margins since 1980 from microwave sensors. J. Climate, 16, 1047–1060, https://doi.org/10.1175/1520-0442(2003)016<1047:VATOTS>2.0.CO;2.
Turner, J., and Coauthors, 2019: The dominant role of extreme precipitation events in Antarctic snowfall variability. Geophys. Res. Lett., 46, 3502–3511, https://doi.org/10.1029/ 2018GL081517.
and Coauthors, 2022a: Record low Antarctic sea ice cover in February 2022. Geophys. Res. Lett., 49, e2022GL098904, https://doi.org/10.1029/2022GL098904.
H. Lu, J. C. King, S. Carpentier, M. Lazzara, T. Phillips, and J. Wille, 2022b: An extreme high temperature event in coastal East Antarctica associated with an atmospheric river and record summer downslope winds. Geophys. Res. Lett., 49, e2021GL097108, https://doi.org/10.1029/2021GL097108.
Udy, D. G., T. R. Vance, A. S. Kiem, and N. J. Holbrook, 2022: A synoptic bridge linking sea salt aerosol concentrations in East Antarctic snowfall to Australian rainfall. Commun. Earth Environ., 3, 175, https://doi.org/10.1038/s43247-022-00502-w.
Vance, T. R., and Coauthors, 2016: Optimal site selection for a high-resolution ice core record in East Antarctica. Climate Past, 12, 595–610, https://doi.org/10.5194/cp-12-595-2016.
A. S. Kiem, L. M. Jong, J. L. Roberts, C. T. Plummer, A. D. Moy, M. A. J. Curran, and T. D. van Ommen, 2022: Pacific decadal variability over the last 2000 years and implications for climatic risk. Comm. Earth Environ., 3, 33, https://doi.org/10.1038/s43247-022-00359-z.
Vignon, É., O. Traullé, and A. Berne, 2019: On the fine vertical structure of the low troposphere over the coastal margins of East Antarctica. Atmos. Chem. Phys., 19, 4659–4683, https://doi.org/10.5194/acp-19-4659-2019.
M.-L. Roussel, I. V. Gorodetskaya, C. Genthon, and A. Berne, 2021: Present and future of rainfall in Antarctica. Geophys. Res. Lett., 48, e2020GL092281, https://doi.org/10.1029/2020GL092281.
Wang, Y., Q. Wu, X. Zhang, and Z. Zhai, 2023: Record-breaking Antarctic snowfall in 2022 delays global sea level rise. Sci. Bull., https://doi.org/10.1016/j.scib.2023.08.055, in press.
Wever, N., E. Keenan, C. Amory, M. Lehning, A. Sigmund, H. Huwald, and J. T. M. Lenaerts, 2022: Observations and simulations of new snow density in the drifting snow-dominated environment of Antarctica. J. Glaciol., 69, 823–840, https://doi.org/10.1017/jog.2022.102.
Wille, J. D., V. Favier, A. Dufour, I. V. Gorodetskaya, J. Turner, C. Agosta, and F. Codron, 2019: West Antarctic surface melt triggered by atmospheric rivers. Nat. Geosci., 12, 911–916, https://doi.org/10.1038/s41561-019-0460-1.
and Coauthors, 2021: Antarctic atmospheric river climatology and precipitation impacts. J. Geophys. Res. Atmos., 126, e2020JD033788, https://doi.org/10.1029/2020JD033788.
and Coauthors, 2022: Intense atmospheric rivers can weaken ice shelf stability at the Antarctic Peninsula. Commun. Earth Environ., 3, 90, https://doi.org/10.1038/s43247-022-00422-9.
and Coauthors, 2024: The extraordinary March 2022 East Antarctica “heat” wave. Part I: Observations and meteorological drivers. J. Climate, 37, 757–778.