Wille, Jonathan; Institut des Géosciences de l'Environnement, CNRS/UGA, Saint Martin d'Hères, France ; Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
Alexander, Simon; Australian Antarctic Division, Kingston, Australia ; Institute for Marine and Antarctic Studies, d1 Australian Antarctic Program Partnership, University of Tasmania, Hobart, Australia
Amory, Charles ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Institut des Géosciences de l'Environnement, CNRS/UGA, Saint Martin d'Hères, France
Baiman, Rebecca; Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, United States
Barthélemy, Léonard; Laboratoire d'Océanographie et du Climat, LOCEAN-IPSL, Sorbonne Université, CNRS, MNHN, Paris, France
Bergstrom, Dana; Australian Antarctic Division, Kingston, Australia ; Institute for Marine and Antarctic Studies, d1 Australian Antarctic Program Partnership, University of Tasmania, Hobart, Australia ; Global Challenges Program, University of Wollongong, Wollongong, Australia
Berne, Alexis; Environmental Remote Sensing Laboratory (LTE), h1 Department of Meteorology, École Polytechnique Fédérale de Lausanne, Switzerland ; University of Valparaíso, Valparaíso, Chile
Binder, Hanin; Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
Blanchet, Juliette; Institut des Géosciences de l'Environnement, CNRS/UGA, Saint Martin d'Hères, France
Bozkurt, Deniz; h1 Department of Meteorology, University of Valparaíso, Valparaíso, Chile ; h2 Center for Climate and Resilience Research (CR)2, Santiago, Chile
Bracegirdle, Thomas; British Antarctic Survey, Cambridge, United Kingdom
Casado, Mathieu; Laboratoire des Sciences du Climat et de l'Environnement, CNRS-CEA-UVSQ-IPSL, Gif sur Yvette, France
Choi, Taejin; Korea Polar Research Institute, Incheon, Republic of Korea
Clem, Kyle; School of Geography, Environment and Earth Sciences, Victoria University of Wellington, New Zealand m Meteogiornale, Milan, Italy
Codron, Francis; Laboratoire d'Océanographie et du Climat, LOCEAN-IPSL, Sorbonne Université, CNRS, MNHN, Paris, France
Datta, Rajashree; Australian Antarctic Division, Kingston, Australia ; Institute for Marine and Antarctic Studies, d1 Australian Antarctic Program Partnership, University of Tasmania, Hobart, Australia
Battista, Stefano; m Meteogiornale, Milan, Italy
Favier, Vincent; Institut des Géosciences de l'Environnement, CNRS/UGA, Saint Martin d'Hères, France
Francis, Diana; Environmental and Geophysical Sciences (ENGEOS) Lab, Khalifa University, Abu Dhabi, United Arab Emirates
Fraser, Alexander; d1 Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart 7001, Tasmania, Australia
Fourré, Elise; Laboratoire des Sciences du Climat et de l'Environnement, CNRS-CEA-UVSQ-IPSL, Gif sur Yvette, France
Garreaud, René; Universidad de Chile, Santiago, Chile
Genthon, Christophe; LMD/IPSL, Sorbonne Université, ENS, PSL Research University ; Institut Polytechnique de Paris, CNRS, Paris, France
Gorodetskaya, Irina; CIIMAR -Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, Portugal ; CESAM -Centre for Environmental and Marine Studies, University of Aveiro, Portugal
González-Herrero, Sergi; WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland ; Antarctic Group, Agencia Estatal de Meteorología (AEMET), Barcelona, Spain
Heinrich, Victoria; School of Psychological Sciences, d3 Institute for Marine and Antarctic Studies, University of Tasmania, Australia ; d4 ARC Centre of Excellence for Climate Extremes, University of Tasmania, Hobart, Australia ; University of Tasmania, Hobart, Australia
Hubert, Guillaume; ONERA/DPHY, The French Aerospace Lab, University of Toulouse, France ; Space Science and Engineering Center, Department of Physical Sciences, School of Engineering, Science, and Mathematics, v1 Antarctic Meteorological Research and Data Center, University of Wisconsin-Madison, Madison ; Madison Area Technical College, Madison
Joos, Hanna; Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
Kim, Seong-Joong; Korea Polar Research Institute, Incheon, Republic of Korea
King, John; British Antarctic Survey, Cambridge, United Kingdom
Kittel, Christoph ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Institut des Géosciences de l'Environnement, CNRS/UGA, Saint Martin d'Hères, France
Landais, Amaelle; Laboratoire des Sciences du Climat et de l'Environnement, CNRS-CEA-UVSQ-IPSL, Gif sur Yvette, France
Lazzara, Matthew; u1 Antarctic Meteorological Research and Data Center, Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin ; u2 Department of Physical Sciences, School of Engineering, Science, and Mathematics, Madison Area Technical College, Madison, Wisconsin
Leonard, Gregory; National School of Surveying, University of Otago, Dunedin, New Zealand
Lieser, Jan; d3 Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart 7001, Tasmania, Australia
Maclennan, Michelle; Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, United States
Mikolajczyk, David; u1 Antarctic Meteorological Research and Data Center, Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin
Neff, Peter; University of Minnesota, Saint Paul ; Minnesota y University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway
Ollivier, Inès; Laboratoire des Sciences du Climat et de l'Environnement, CNRS-CEA-UVSQ-IPSL, Gif sur Yvette, France
Picard, Ghislain; Institut des Géosciences de l'Environnement, CNRS/UGA, Saint Martin d'Hères, France
Pohl, Benjamin; CNRS / Université de Bourgogne, Biogéosciences, Dijon, France
Ralph, Martin; CW3E, Scripps Institution of Oceanography, San Diego
Rowe, Penny; NorthWest Research Associates, Seattle
Schlosser, Elisabeth; Dep. of Atmospheric and Cryospheric Sciences, Univ. of Innsbruck, Innsbruck, Austria
Shields, Christine; Climate and Global Dynamics Lab, National Center for Atmospheric Research, Boulder, USA
Smith, Inga; Department of Physics, University of Otago, Dunedin, New Zealand
Sprenger, Michael; Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
Trusel, Luke; Department of Geography, Pennsylvania State University, University Park
Udy, Danielle; d1 Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart 7001, Tasmania, Australia ; d3 Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart 7001, Tasmania, Australia ; d4 ARC Centre of Excellence for Climate Extremes, University of Tasmania, Private Bag 129, Hobart 7001, Tasmania, Australia
Vance, Tessa; d1 Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart 7001, Tasmania, Australia
Vignon, Étienne; LMD/IPSL, Sorbonne Université, ENS, PSL Research University ; Institut Polytechnique de Paris, CNRS, Paris, France
Walker, Catherine; Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, USA
Wever, Nander; Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, United States
Zou, Xun; CW3E, Scripps Institution of Oceanography, San Diego
Agosta, C., and Coauthors, 2019: Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes. Cryosphere, 13, 281–296, https://doi.org/10.5194/tc-13-281-2019.
Andernach, M., J. V. Turton, and T. Mölg, 2022: Modeling cloud properties over the 79N Glacier (Nioghalvfjerdsfjorden, NE Greenland) for an intense summer melt period in 2019. Quart. J. Roy. Meteor. Soc., 148, 3566–3590, https://doi.org/10.1002/qj.4374.
Bergstrom, D. M., E. J. Woehler, A. Klekociuk, M. J. Pook, and R. Massom, 2018: Extreme events as ecosystems drivers: Ecological consequences of anomalous Southern Hemisphere weather patterns during the 2001/02 austral spring-summer. Adv. Polar Sci., 29, 190–204, https:doi.org/10.13679/j.advps. 2018.3.00190.
Blanchard-Wrigglesworth, E., T. Cox, Z. I. Espinosa, and A. Donohoe, 2023: The largest ever recorded heatwave-Characteristics and attribution of the Antarctic heatwave of March 2022. Geophys. Res. Lett., 50, e2023GL104910, https://doi.org/10.1029/2023GL104910.
Boucher, O., and Coauthors, 2020: Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. Earth Syst., 12, e2019MS002010, https://doi.org/10.1029/2019MS002010.
Bozkurt, D., R. Rondanelli, J. C. Marín, and R. Garreaud, 2018: Foehn event triggered by an atmospheric river underlies record-setting temperature along continental Antarctica. J. Geophys. Res. Atmos., 123, 3871–3892, https://doi.org/10.1002/ 2017JD027796.
Browning, K. A., 1986: Conceptual models of precipitation systems. Wea. Forecasting, 1, 23–41, https://doi.org/10.1175/15200434(1986)001<0023:CMOPS>2.0.CO;2.
Carlson, T. N., 1980: Airflow through midlatitude cyclones and the comma cloud pattern. Mon. Wea. Rev., 108, 1498–1509, https://doi.org/10.1175/1520-0493(1980)108<1498:ATMCAT>2.0.CO;2.
Casado, M., R. Hébert, D. Faranda, and A. Landais, 2023: The quandary of detecting the signature of climate change in Antarctica. Nat. Climate Change, 13, 1082–1088, https://doi.org/10.1038/s41558-023-01791-5.
Chemke, R., 2022: The future poleward shift of Southern Hemisphere summer mid-latitude storm tracks stems from ocean coupling. Nat. Commun., 13, 1730, https://doi.org/10.1038/ s41467-022-29392-4.
Y. Ming, and J. Yuval, 2022: The intensification of winter mid-latitude storm tracks in the Southern Hemisphere. Nat. Climate Change, 12, 553–557, https://doi.org/10.1038/s41558-022-01368-8.
Clem, K. R., D. Bozkurt, D. Kennett, J. C. King, and J. Turner, 2022: Central tropical Pacific convection drives extreme high temperatures and surface melt on the Larsen C Ice Shelf, Antarctic Peninsula. Nat. Commun., 13, 3906, https://doi.org/10.1038/s41467-022-31119-4.
Coles, S., 2002: An introduction to statistical modeling of extreme values. J. Amer. Stat. Assoc., 97, 1204, https://doi.org/10.1198/jasa.2002.s232.
Collow, A. B. M., and Coauthors, 2022: An overview of ARTMIP’s tier 2 reanalysis intercomparison: Uncertainty in the detection of atmospheric rivers and their associated precipitation. J. Geophys. Res. Atmos., 127, e2021JD036155, https://doi.org/10.1029/ 2021JD036155.
Cook, K. H., 2001: A Southern Hemisphere wave response to ENSO with implications for southern Africa precipitation. J. Atmos. Sci., 58, 2146–2162, https://doi.org/10.1175/1520-0469(2001)058<2146:ASHWRT>2.0.CO;2.
Corbea-Pérez, A., J. F. Calleja, C. Recondo, and S. Fernández, 2021: Evaluation of the MODIS (C6) daily albedo products for Livingston Island, Antarctic. Remote Sens., 13, 2357, https://doi.org/10.3390/rs13122357.
Dawson, J., and Coauthors, 2017: Navigating weather, water, ice and climate information for safe polar mobilities. WMO Tech. Rep. WWRP/PPP 5–2017, 84 pp., https://core.ac.uk/download/pdf/149404002.pdf.
Djoumna, G., and D. M. Holland, 2021: Atmospheric rivers, warm air intrusions, and surface radiation balance in the Amundsen Sea embayment. J. Geophys. Res. Atmos., 126, e2020JD034119, https://doi.org/10.1029/2020JD034119.
Efron, B., and R. J. Tibshirani, 1994: An Introduction to the Bootstrap. 1st ed. Chapman Hall/CRC, 456 pp.
Enomoto, H., and Coauthors, 1998: Winter warming over Dome Fuji, East Antarctica and semiannual oscillation in the atmospheric circulation. J. Geophys. Res., 103, 23103–23111, https://doi.org/10.1029/98JD02001.
Espinoza, V., D. E. Waliser, B. Guan, D. A. Lavers, and F. M. Ralph, 2018: Global analysis of climate change projection effects on atmospheric rivers. Geophys. Res. Lett., 45, 4299–4308, https://doi.org/10.1029/2017GL076968.
Fauchereau, N., B. Pohl, C. J. C. Reason, M. Rouault, and Y. Richard, 2009: Recurrent daily OLR patterns in the southern Africa/southwest Indian Ocean region, implications for South African rainfall and teleconnections. Climate Dyn., 32, 575–591, https://doi.org/10.1007/s00382-008-0426-2.
Fischer, E. M., S. Sippel, and R. Knutti, 2021: Increasing probability of record-shattering climate extremes. Nat. Climate Change, 11, 689–695, https://doi.org/10.1038/s41558-021-01092-9.
Francis, D., K. S. Mattingly, S. Lhermitte, M. Temimi, and P. Heil, 2021: Atmospheric extremes caused high oceanward sea surface slope triggering the biggest calving event in more than 50 years at the Amery Ice Shelf. Cryosphere, 15, 2147–2165, https://doi.org/10.5194/tc-15-2147-2021.
Gehring, J., É. Vignon, A.-C. Billault-Roux, A. Ferrone, A. Protat, S. P. Alexander, and A. Berne, 2022: Orographic flow influence on precipitation during an atmospheric river event at Davis, Antarctica. J. Geophys. Res. Atmos., 127, e2021JD035210, https://doi.org/10.1029/2021JD035210.
Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1.
Genthon, C., D. Six, V. Favier, M. Lazzara, and L. Keller, 2011: Atmospheric temperature measurement biases on the Antarctic plateau. J. Atmos. Oceanic Technol., 28, 1598–1605, https://doi.org/10.1175/JTECH-D-11-00095.1.
González-Herrero, S., D. Barriopedro, R. M. Trigo, J. A. López-Bustins, and M. Oliva, 2022: Climate warming amplified the 2020 record-breaking heatwave in the Antarctic Peninsula. Commun. Earth Environ., 3, 122, https://doi.org/10.1038/ s43247-022-00450-5.
Gorodetskaya, I. V., M. Tsukernik, K. Claes, M. F. Ralph, W. D. Neff, and N. P. M. Van Lipzig, 2014: The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophys. Res. Lett., 41, 6199–6206, https://doi.org/10.1002/ 2014GL060881.
T. Silva, H. Schmithüsen, and N. Hirasawa, 2020: Atmospheric river signatures in radiosonde profiles and reanalyses at the Dronning Maud Land coast, East Antarctica. Adv. Atmos. Sci., 37, 455–476, https://doi.org/10.1007/s00376-020-9221-8.
and Coauthors, 2023: Compound drivers behind new record high temperatures and surface melt at the Antarctic Peninsula in February 2022. Res. Square, https://doi.org/10.21203/rs.3.rs-2544063/v1, preprint.
Goyal, R., M. Jucker, A. Sen Gupta, H. H. Hendon, and M. H. England, 2021: Zonal wave 3 pattern in the Southern Hemisphere generated by tropical convection. Nat. Geosci., 14, 732–738, https://doi.org/10.1038/s41561-021-00811-3.
Green, J. S. A., F. H. Ludlam, and J. F. R. McIlveen, 1966: Isentropic relative-flow analysis and the parcel theory. Quart. J. Roy. Meteor. Soc., 92, 210–219, https://doi.org/10.1002/qj.49709239204.
Harrold, T. W., 1973: Mechanisms influencing the distribution of precipitation within baroclinic disturbances. Quart. J. Roy. Meteor. Soc., 99, 232–251, https://doi.org/10.1002/qj.49709942003.
Hart, N. C. G., C. J. C. Reason, and N. C. Fauchereau, 2010: Tropical–extratropical interactions over southern Africa: Three cases of heavy summer season rainfall. Mon. Wea. Rev., 138, 2608–2623, https://doi.org/10.1175/2010MWR3070.1.
and -, 2013: Cloud bands over southern Africa: Seasonality, contribution to rainfall variability and modulation by the MJO. Climate Dyn., 41, 1199–1212, https://doi.org/10.1007/s00382-012-1589-4.
Hawkins, E., and R. Sutton, 2012: Time of emergence of climate signals. Geophys. Res. Lett., 39, L01702, https://doi.org/10.1029/2011GL050087.
D. Frame, L. Harrington, M. Joshi, A. King, M. Rojas, and R. Sutton, 2020: Observed emergence of the climate change signal: From the familiar to the unknown. Geophys. Res. Lett., 47, e2019GL086259, https://doi.org/10.1029/2019GL086259.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803.
Hines, K. M., D. H. Bromwich, S.-H. Wang, I. Silber, J. Verlinde, and D. Lubin, 2019: Microphysics of summer clouds in central West Antarctica simulated by the Polar Weather Research and Forecasting model (WRF) and the Antarctic Mesoscale Prediction System (AMPS). Atmos. Chem. Phys., 19, 12431–12454, https://doi.org/10.5194/acp-19-12431-2019.
Hirasawa, N., H. Nakamura, and T. Yamanouchi, 2000: Abrupt changes in meteorological conditions observed at an inland Antarctic station in association with wintertime blocking. Geophys. Res. Lett., 27, 1911–1914, https://doi.org/10.1029/ 1999GL011039.
Ho, C.-H., J.-H. Kim, J.-H. Jeong, H.-S. Kim, and D. Chen, 2006: Variation of tropical cyclone activity in the South Indian Ocean: El Niño–Southern Oscillation and Madden–Julian Oscillation effects. J. Geophys. Res., 111, D22101, https://doi.org/10.1029/2006JD007289.
Howat, I. M., C. Porter, B. E. Smith, M.-J. Noh, and P. Morin, 2019: The reference elevation model of Antarctica. Cryosphere, 13, 665–674, https://doi.org/10.5194/tc-13-665-2019.
Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
Kuleshov, Y., L. Qi, R. Fawcett, and D. Jones, 2008: On tropical cyclone activity in the Southern Hemisphere: Trends and the ENSO connection. Geophys. Res. Lett., 35, L14S08, https://doi.org/10.1029/2007GL032983.
Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275–1277.
Listowski, C., J. Delanoë, A. Kirchgaessner, T. Lachlan-Cope, and J. King, 2019: Antarctic clouds, supercooled liquid water and mixed phase, investigated with DARDAR: Geographical and seasonal variations. Atmos. Chem. Phys., 19, 6771–6808, https://doi.org/10.5194/acp-19-6771-2019.
Ma, W., G. Chen, and B. Guan, 2020: Poleward shift of atmospheric rivers in the Southern Hemisphere in recent decades. Geophys. Res. Lett., 47, e2020GL089934, https://doi.org/10.1029/2020GL089934.
Maclennan, M. L., and Coauthors, 2023: Climatology and surface impacts of atmospheric rivers on West Antarctica. Cryosphere, 17, 865–881, https://doi.org/10.5194/tc-17-865-2023.
Macron, C., B. Pohl, Y. Richard, and M. Bessafi, 2014: How do tropical temperate troughs form and develop over southern Africa? J. Climate, 27, 1633–1647, https://doi.org/10.1175/JCLI-D-13-00175.1.
Manabe, S., and R. J. Stouffer, 1980: Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. J. Geophys. Res., 85, 5529–5554, https://doi.org/10.1029/JC085iC10p05529.
Marshall, G. J., R. L. Fogt, J. Turner, and K. R. Clem, 2022: Can current reanalyses accurately portray changes in Southern Annular Mode structure prior to 1979? Climate Dyn., 59, 3717–3740, https://doi.org/10.1007/s00382-022-06292-3.
Massom, R. A., M. J. Pook, J. C. Comiso, N. Adams, J. Turner, T. Lachlan-Cope, and T. T. Gibson, 2004: Precipitation over the interior east Antarctic ice sheet related to midlatitude blocking-high activity. J. Climate, 17, 1914–1928, https://doi.org/10.1175/1520-0442(2004)017<1914:POTIEA>2.0.CO;2.
Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 Model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397–407, https://doi.org/10.1007/s10546-005-9030-8.
Nash, D., D. Waliser, B. Guan, H. Ye, and F. M. Ralph, 2018: The role of atmospheric rivers in extratropical and polar hydroclimate. J. Geophys. Res. Atmos., 123, 6804–6821, https://doi.org/10.1029/2017JD028130.
Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/ 2010JD015139.
O’Brien, T. A., and Coauthors, 2022: Increases in future AR count and size: Overview of the ARTMIP tier 2 CMIP5/6 experiment. J. Geophys. Res. Atmos., 127, e2021JD036013, https://doi.org/10.1029/2021JD036013.
Payne, A. E., and Coauthors, 2020: Responses and impacts of atmospheric rivers to climate change. Nat. Rev. Earth Environ., 1, 143–157, https://doi.org/10.1038/s43017-020-0030-5.
Philip, S. Y., and Coauthors, 2022: Rapid attribution analysis of the extraordinary heat wave on the Pacific Coast of the US and Canada in June 2021. Earth Syst. Dyn., 13, 1689–1713, https://doi.org/10.5194/esd-13-1689-2022.
Pohl, B., Y. Richard, and N. Fauchereau, 2007: Influence of the Madden–Julian Oscillation on southern African summer rainfall. J. Climate, 20, 4227–4242, https://doi.org/10.1175/JCLI4231.1.
B. Dieppois, J. Crétat, D. Lawler, and M. Rouault, 2018: From synoptic to interdecadal variability in southern African rainfall: Toward a unified view across time scales. J. Climate, 31, 5845–5872, https://doi.org/10.1175/JCLI-D-17-0405.1.
and Coauthors, 2021: Relationship between weather regimes and atmospheric rivers in East Antarctica. J. Geophys. Res. Atmos., 126, e2021JD035294, https://doi.org/10.1029/ 2021JD035294.
Ralph, F. M., M. D. Dettinger, M. M. Cairns, T. J. Galarneau, and J. Eylander, 2018: Defining “atmospheric river”: How the Glossary of Meteorology helped resolve a debate. Bull. Amer. Meteor. Soc., 99, 837–839, https://doi.org/10.1175/BAMS-D-17-0157.1.
J. J. Rutz, J. M. Cordeira, M. Dettinger, M. Anderson, D. Reynolds, L. J. Schick, and C. Smallcomb, 2019: A scale to characterize the strength and impacts of atmospheric rivers. Bull. Amer. Meteor. Soc., 100, 269–289, https://doi.org/10.1175/BAMS-D-18-0023.1.
M. D. Dettinger, J. J. Rutz, and D. E. Waliser, Eds., 2020: Atmospheric Rivers. Springer, 252 pp.
Risser, M. D., and M. F. Wehner, 2017: Attributable human-induced changes in the likelihood and magnitude of the observed extreme precipitation during Hurricane Harvey. Geophys. Res. Lett., 44, 12457–12464, https://doi.org/10.1002/ 2017GL075888.
Schlosser, E., K. W. Manning, J. G. Powers, M. G. Duda, G. Birnbaum, and K. Fujita, 2010: Characteristics of high-precipitation events in Dronning Maud Land, Antarctica. J. Geophys. Res., 115, D14107, https://doi.org/10.1029/ 2009JD013410.
B. Stenni, M. Valt, A. Cagnati, J. G. Powers, K. W. Manning, M. Raphael, and M. G. Duda, 2016: Precipitation and synoptic regime in two extreme years 2009 and 2010 at Dome C, Antarctica-Implications for ice core interpretation. Atmos. Chem. Phys., 16, 4757–4770, https://doi.org/10.5194/acp-16-4757-2016.
Shields, C. A., J. D. Wille, A. B. Marquardt Collow, M. Maclennan, and I. V. Gorodetskaya, 2022: Evaluating uncertainty and modes of variability for Antarctic atmospheric rivers. Geophys. Res. Lett., 49, e2022GL099577, https://doi.org/10.1029/2022GL099577.
Stearns, C. R., L. M. Keller, G. A. Weidner, and M. Sievers, 1993: Monthly mean climatic data for Antarctic automatic weather stations. Antarctic Meteorology and Climatology: Studies Based on Automatic Weather Stations, D. H. Bromwich and C. R. Stearns, Eds., Antarctic Research Series, American Geophysical Union, 1–21.
Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608–627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.
Terpstra, A., I. V. Gorodetskaya, and H. Sodemann, 2021: Linking sub-tropical evaporation and extreme precipitation over East Antarctica: An atmospheric river case study. J. Geophys. Res. Atmos., 126, e2020JD033617, https://doi.org/10.1029/2020JD033617.
Thompson, V., and Coauthors, 2022: The 2021 western North America heat wave among the most extreme events ever recorded globally. Sci. Adv., 8, eabm6860, https://doi.org/10.1126/sciadv.abm6860.
Tozer, C., J. Risbey, S. Bluhm, and T. Remenyi, 2020: Industry engagement to identify climate sensitive decisions on multiyear timescales: TasLab engage final report. Earth Systems and Climate Change Hub Tech. Rep. 13, 36 pp., https://research.csiro.au/dfp/wp-content/uploads/sites/148/2020/04/ ESCCHub_TasLabEngage_report_Final.pdf.
Turner, J., H. Lu, J. King, G. J. Marshall, T. Phillips, D. Bannister, and S. Colwell, 2021: Extreme temperatures in the Antarctic. J. Climate, 34, 2653–2668, https://doi.org/10.1175/JCLI-D-200538.1.
S. Carpentier, M. Lazzara, T. Phillips, and J. Wille, 2022: An extreme high temperature event in coastal East Antarctica associated with an atmospheric river and record summer downslope winds. Geophys. Res. Lett., 49, e2021GL097108, https://doi.org/10.1029/2021GL097108.
Udy, D. G., T. R. Vance, A. S. Kiem, N. J. Holbrook, and M. A. J. Curran, 2021: Links between large-scale modes of climate variability and synoptic weather patterns in the southern Indian Ocean. J. Climate, 34, 883–899, https://doi.org/10.1175/JCLI-D-20-0297.1.
and -, 2022: A synoptic bridge linking sea salt aerosol concentrations in East Antarctic snowfall to Australian rainfall. Commun. Earth Environ., 3, 175, https://doi.org/10.1038/s43247-022-00502-w.
Wernli, H., 1997: A Lagrangian-based analysis of extratropical cyclones. II: A detailed case-study. Quart. J. Roy. Meteor. Soc., 123, 1677–1706, https://doi.org/10.1002/qj.49712354211.
and H. C. Davies, 1997: A Lagrangian-based analysis of extratropical cyclones. I: The method and some applications. Quart. J. Roy. Meteor. Soc., 123, 467–489, https://doi.org/10.1002/qj.49712353811.
Wille, J. D., V. Favier, A. Dufour, I. V. Gorodetskaya, J. Turner, C. Agosta, and F. Codron, 2019: West Antarctic surface melt triggered by atmospheric rivers. Nat. Geosci., 12, 911–916, https://doi.org/10.1038/s41561-019-0460-1.
and Coauthors, 2021: Antarctic atmospheric river climatology and precipitation impacts. J. Geophys. Res. Atmos., 126, e2020JD033788, https://doi.org/10.1029/2020JD033788.
and Coauthors, 2022: Intense atmospheric rivers can weaken ice shelf stability at the Antarctic Peninsula. Commun. Earth Environ., 3, 90, https://doi.org/10.1038/s43247-022-00422-9.
and Coauthors, 2024: The extraordinary March 2022 East Antarctica “heat” wave. Part II: Impacts on the Antarctic ice sheet. J. Climate, 37, 779–799, https://doi.org/10.1175/JCLI-D23-0176.1.
Xu, M., L. Yu, K. Liang, T. Vihma, D. Bozkurt, X. Hu, and Q. Yang, 2021: Dominant role of vertical air flows in the unprecedented warming on the Antarctic Peninsula in February 2020. Commun. Earth Environ., 2, 133, https://doi.org/10.1038/s43247-021-00203-w.
Zou, X., D. H. Bromwich, A. Montenegro, S.-H. Wang, and L. Bai, 2021: Major surface melting over the Ross Ice Shelf. Part II: Surface energy balance. Quart. J. Roy. Meteor. Soc., 147, 2895–2916, https://doi.org/10.1002/qj.4105.
and Coauthors, 2023: Strong warming over the Antarctic Peninsula during combined atmospheric river and foehn events: Contribution of shortwave radiation and turbulence. J. Geophys. Res. Atmos., 128, e2022JD038138, https://doi.org/10.1029/2022JD038138.
Zscheischler, J., and Coauthors, 2020: A typology of compound weather and climate events. Nat. Rev. Earth Environ., 1, 333–347, https://doi.org/10.1038/s43017-020-0060-z.