Intraoral low-temperature degradation of monolithic zirconia dental prostheses: 5-year results of a prospective clinical study with ex vivo monitoring.
[en] [en] OBJECTIVES: To investigate the 5-year intraoral evolution and kinetics of low-temperature degradation (LTD) of second-generation monolithic prostheses made of 3% molar yttrium-doped tetragonal zirconia polycrystal (3Y-TZP) and the influence of masticatory mechanical stresses and glaze layer on this evolution.
METHODS: A total of 101 posterior tooth elements were included in this prospective clinical study, which comprised ex vivo LTD monitoring (at baseline, 6 months, 1 year, 2 years, 3 years, and 5 years) using Raman spectroscopy (n = 2640 monoclinic phase measurement points per evaluation time) and scanning electron microscopy (SEM). Four types of areas (1-2 mm2 surface, six on molars, and four on premolars) were analysed on each element surface: occlusal, axial, glazed, or unglazed. Raman mapping, high-resolution SEM, and focused ion beam-SEM were performed on selected samples.
RESULTS: The dental prostheses developed a tetragonal-to-monoclinic transformation at the extreme surface of the material after six months in a buccal environment, and this process increased significantly over time. Over the five years of monitoring, the transformation developed nonuniformly with the presence of localised clusters of monoclinic grains. Tribological stresses generate grain pull-out from these clusters, which may raise questions regarding the release of 3Y-TZP nanoparticles into the body. The prosthesis fracture rate was 4.5% after 5 years.
SIGNIFICANCE: LTD developed in vivo on the surfaces of 3Y-TZP dental prostheses and progressed slowly but significantly over time, up to 5 years investigation. However, the effects of aging on the failure rate recorded and of zirconia nanoparticles released into the body require further investigation.
Research Center/Unit :
d‐BRU - Dental Biomaterials Research Unit - ULiège
Disciplines :
Dentistry & oral medicine
Author, co-author :
KOENIG, Vinciane ; Centre Hospitalier Universitaire de Liège - CHU > > Service prothèse fixée
Douillard, T; Université de Lyon, INSA Lyon, CNRS, MATEIS, UMR 5510, F-69621 Villeurbanne, France
Chevalier, J; Université de Lyon, INSA Lyon, CNRS, MATEIS, UMR 5510, F-69621 Villeurbanne, France
Amiard, F; Institut des Molécules et Matériaux du Mans (IMMM - UMR6283), Université du Mans, avenue Olivier Messiaen, 72085 Cedex 9 Le Mans, France
Lamy de la Chapelle, M; Institut des Molécules et Matériaux du Mans (IMMM - UMR6283), Université du Mans, avenue Olivier Messiaen, 72085 Cedex 9 Le Mans, France
Le Goff, S; Unité de Recherches en Biomatériaux Innovants et Interfaces (URB2i) - EA4462, Faculté de Chirurgie Dentaire, Université Paris Descartes, Sorbonne Paris-Cité, Montrouge 92120, France
Vanheusden, Alain ; Centre Hospitalier Universitaire de Liège - CHU > > Service prothèse fixée
Dardenne, Nadia ; Université de Liège - ULiège > Département des sciences de la santé publique
Wulfman, C; Dental Biomaterials Research Unit (d-BRU), University of Liège (ULiège), 45 Quai G. Kurth, Liège 4020, Belgium, Unité de Recherches en Biomatériaux Innovants et Interfaces (URB2i) - EA4462, Faculté de Chirurgie Dentaire, Université Paris Descartes, Sorbonne Paris-Cité, Montrouge 92120, France
Mainjot, Amélie ; Centre Hospitalier Universitaire de Liège - CHU > > Service prothèse fixée
Language :
English
Title :
Intraoral low-temperature degradation of monolithic zirconia dental prostheses: 5-year results of a prospective clinical study with ex vivo monitoring.
The authors declare that they have no competing interests related to the authorship and/or publication of this article. The authors thank 3 M for providing the restorations used in this study and for the partial funding. The company had no authority over the study design and did not influence the decision to submit the report for publication. We would also like to thank the Consortium Lyon Saint-Etienne de Microscopie (www.clym.fr) for providing access to the FIB/SEM.
Chevalier, J., Gremillard, L., Virkar, A.V., Clarke, D.R., The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc 92 (2009), 1901–1920.
Chevalier, J., What future for zirconia as a biomaterial?. Biomaterials 27 (2006), 535–543.
Cattani-Lorente, M., Scherrer, S.S., Ammann, P., Jobin, M., Wiskott, H.W., Low temperature degradation of a Y-TZP dental ceramic. Acta Biomater 7 (2011), 858–865.
Chevalier, J., Gremillard, L., Deville, S., Low temperature degradation of zirconia and implications on biomedical implants. Annu Rev Mater Res 37 (2007), 1–32.
Douillard, T., Chevalier, J., Descamps-Mandine, A., Warner, I., Galais, Y., Whitaker, P., et al. Comparative ageing behaviour of commercial, unworn and worn 3Y-TZP and zirconia-toughened alumina hip joint heads. J Eur Ceram Soc 32 (2012), 1529–1540.
Gremillard, L., Martin, L., Zych, L., Crosnier, E., Chevalier, J., Charbouillot, A., et al. Combining ageing and wear to assess the durability of zirconia-based ceramic heads for total hip arthroplasty. Acta Biomater 9 (2013), 7545–7555.
Munoz-Tabares, J.A., Jimenez-Pique, E., Anglada, M., Subsurface evaluation of hydrothermal degradation of zirconia. Acta Mater 59 (2011), 473–484.
Samodurova, A., Kocjan, A., Swain, M.V., Kosmac, T., The combined effect of alumina and silica co-doping on the ageing resistance of 3Y-TZP bioceramics. Acta Biomater 11 (2015), 477–487.
Gremillard, L., Chevalier, J., Martin, L., Douillard, T., Begand, S., Hans, K., et al. Sub-surface assessment of hydrothermal ageing in zirconia-containing femoral heads for hip joint applications. Acta Biomater 68 (2018), 286–295.
Catledge, S.A., Cook, M., Vohra, Y.K., Santos, E.M., McClenny, M.D., David, Moore, K., Surface crystalline phases and nanoindentation hardness of explanted zirconia femoral heads. J Mater Sci Mater Med 14 (2003), 863–867.
Haraguchi, K., Sugano, N., Nishii, T., Miki, H., Oka, K., Yoshikawa, H., Phase transformation of a zirconia ceramic head after total hip arthroplasty. J Bone Jt Surg Br 83 (2001), 996–1000.
Santos, E.M., Vohra, S., Catledge, S.A., McClenny, M.D., Lemons, J., Moore, K.D., Examination of surface and material properties of explanted zirconia femoral heads. J Arthroplast 19 (2004), 30–34.
Fernandez-Fairen, M., Blanco, A., Murcia, A., Sevilla, P., Gil, F.J., Aging of retrieved zirconia femoral heads. Clin Orthop Relat Res 462 (2007), 122–129.
Tateiwa, T., Takahashi, Y., Pezzotti, G., Shishido, T., Masaoka, T., Sano, K., et al. Does artificial aging correctly predict the long-term in-vivo degradation behavior in zirconia hip prostheses?. Biomed Mater Eng 31 (2020), 107–117.
Allain, J., Le Mouel, S., Goutallier, D., Voisin, M.C., Poor eight-year survival of cemented zirconia-polyethylene total hip replacements. J Bone Jt Surg Br 81 (1999), 835–842.
Hernigou, P., Bahrami, T., Zirconia and alumina ceramics in comparison with stainless-steel heads. Polyethylene wear after a minimum ten-year follow-up. J Bone Jt Surg Br 85 (2003), 504–509.
Norton, M.R., Yarlagadda, R., Anderson, G.H., Catastrophic failure of the Elite Plus total hip replacement, with a Hylamer acetabulum and Zirconia ceramic femoral head. J Bone Jt Surg Br 84 (2002), 631–635.
Caton, J., Bouraly, J.P., Reynaud, P., Merabet, Z., Phase transformation in zirconia heads after THA myth or reality?. Bioceram Jt Arthroplast 26–27 (2004), 73–74.
Wroblewski, M., Siney, P.D., Nagai, H., Fleming, P.A., Wear of ultra-high-molecular-weight polyethylene cup articulating with 22.225 mm zirconia diameter head in cemented total hip arthroplasty. J Orthop Sci 9 (2004), 253–255.
Denry, I., Kelly, J.R., Emerging ceramic-based materials for dentistry. J Dent Res 93 (2014), 1235–1242.
Zhang, Y., Lawn, B.R., Novel zirconia materials in dentistry. J Dent Res 97 (2018), 140–147.
Ban, S., Sato, H., Suehiro, Y., Nakanishi, H., Nawa, M., Biaxial flexure strength and low temperature degradation of Ce-TZP/Al2O3 nanocomposite and Y-TZP as dental restoratives. J Biomed Mater Res Part B, Appl Biomater 87 (2008), 492–498.
Kim, H.T., Han, J.S., Yang, J.H., Lee, J.B., Kim, S.H., The effect of low temperature aging on the mechanical property & phase stability of Y-TZP ceramics. J Adv Prosthodont 1 (2009), 113–117.
Pereira, G.K., Venturini, A.B., Silvestri, T., Dapieve, K.S., Montagner, A.F., Soares, F.Z., et al. Low-temperature degradation of Y-TZP ceramics: A systematic review and meta-analysis. J Mech Behav Biomed Mater 55 (2015), 151–163.
ISO 13356-2015, Implants for surgery – ceramic materials based on yttria-stabilized tetragonal zirconia (Y-TZP). IntOrganStand, 2015.
Muñoz, E.M., Longhini, D., Antonio, S.G., Adabo, G.L., The effects of mechanical and hydrothermal aging on microstructure and biaxial flexural strength of an anterior and a posterior monolithic zirconia. J Dent 63 (2017), 94–102.
Koenig, V., Wulfman, C., Derbanne, M., Dupont, N., Le Goff, S., Tang, M.-L., et al. Aging of monolithic zirconia dental prostheses: Protocol for a 5-year prospective clinical study using ex vivo analyses. Conte Clin Trials Commun 4 (2016), 25–32.
Koenig, V., Bekaert, S., Dupont, N., Vanheusden, A., Le Goff, S., Douillard, T., et al. Intraoral low-temperature degradation of monolithic zirconia dental prostheses: Results of a prospective clinical study with ex vivo monitoring. Dent Mater: Publ Acad Dent Mater 37 (2021), 1134–1149.
Koenig, V., Wulfman, C., Bekaert, S., Dupont, N., Le Goff, S., Eldafrawy, M., et al. Clinical behavior of second-generation zirconia monolithic posterior restorations: Two-year results of a prospective study with Ex vivo analyses including patients with clinical signs of bruxism. J Dent, 91, 2019, 103229.
Wulfman, C., Djaker, N., Dupont, N., Ruse, D., Sadoun, M., Lamy la Chapelle, M., Raman spectroscopy evaluation of subsurface hydrothermal degradation of zirconia. J Am Ceram Soc 95 (2012), 2347–2351.
Clarke DRA, F., Measurement of the cristallographically transformed zone produced by fracture in ceramics containing tetragonal zirconia. J Am Ceram Soc 65 (1982), 284–288.
Mainjot, A.K., Douillard, T., Gremillard, L., Sadoun, M.J., Chevalier, J., 3D-characterization of the veneer-zirconia interface using FIB nano-tomography. Dent Mater: Publ Acad Dent Mater 29 (2013), 157–165.
Zhang, F., Spies, B.C., Vleugels, J., Reveron, H., Wesemann, C., Muller, W.D., et al. High-translucent yttria-stabilized zirconia ceramics are wear-resistant and antagonist-friendly. Dent Mater: Publ Acad Dent Mater 35 (2019), 1776–1790.
Everall, N.J., Confocal Raman microscopy: common errors and artefacts. Analyst 135 (2010), 2512–2522.
Perrichon, A., Reynard, B., Gremillard, L., Chevalier, J., Farizon, F., Geringer, J., A testing protocol combining shocks, hydrothermal ageing and friction, applied to Zirconia Toughened Alumina (ZTA) hip implants. J Mech Behav Biomed Mater 65 (2017), 600–608.
Maccauro, G., Piconi, C., Burger, W., Pilloni, L., De Santis, E., Muratori, F., et al. Fracture of a Y-TZP ceramic femoral head. Analysis of a fault. J Bone Jt Surg Br 86 (2004), 1192–1196.
Lanone, S., Rogerieux, F., Geys, J., Dupont, A., Maillot-Marechal, E., Boczkowski, J., et al. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol, 6, 2009, 14.
Karunakaran, G., Suriyaprabha, R., Manivasakan, P., Yuvakkumar, R., Rajendran, V., Kannan, N., Screening of in vitro cytotoxicity, antioxidant potential and bioactivity of nano- and micro-ZrO2 and -TiO2 particles. Ecotoxicol Environ Saf 93 (2013), 191–197.
Dalal, A., Pawar, V., McAllister, K., Weaver, C., Hallab, N.J., Orthopedic implant cobalt-alloy particles produce greater toxicity and inflammatory cytokines than titanium alloy and zirconium alloy-based particles in vitro, in human osteoblasts, fibroblasts, and macrophages. J Biomed Mater Res Part A 100 (2012), 2147–2158.
Demir, E., Burgucu, D., Turna, F., Aksakal, S., Kaya, B., Determination of TiO2, ZrO2, and Al2O3 nanoparticles on genotoxic responses in human peripheral blood lymphocytes and cultured embyronic kidney cells. J Toxicol Environ Health A 76 (2013), 990–1002.
Soto, K., Garza, K.M., Murr, L.E., Cytotoxic effects of aggregated nanomaterials. Acta Biomater 3 (2007), 351–358.
Otero-González, L., García-Saucedo, C., Field, J.A., Sierra-Álvarez, R., Toxicity of TiO₂, ZrO₂, Fe⁰, Fe₂O₃, and Mn₂O₃ nanoparticles to the yeast, Saccharomyces cerevisiae. Chemosphere 93 (2013), 1201–1206.
Landsiedel, R., Ma-Hock, L., Hofmann, T., Wiemann, M., Strauss, V., Treumann, S., et al. Application of short-term inhalation studies to assess the inhalation toxicity of nanomaterials. Part Fibre Toxicol, 11, 2014, 16.
Brunner, T.J., Wick, P., Manser, P., Spohn, P., Grass, R.N., Limbach, L.K., et al. In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40 (2006), 4374–4381.
Ye, M., Shi, B., Zirconia nanoparticles-induced toxic effects in osteoblast-like 3T3-E1 cells. Nanoscale Res Lett, 13, 2018, 353.
Tholey, M.J., Berthold, C., Swain, M.V., Thiel, N., XRD2 micro-diffraction analysis of the interface between Y-TZP and veneering porcelain: role of application methods. Dent Mater: Publ Acad Dent Mater 26 (2010), 545–552.
Tholey, M.J., Swain, M.V., Thiel, N., SEM observations of porcelain Y-TZP interface. Dent Mater: Publ Acad Dent Mater 25 (2009), 857–862.
Bergamo, E., da Silva, W.J., Cesar, P.F., Del Bel Cury, A.A., Fracture load and phase transformation of monolithic zirconia crowns submitted to different aging protocols. Oper Dent 41 (2016), E118–E130.
Camposilvan, E., Leone, R., Gremillard, L., Sorrentino, R., Zarone, F., Ferrari, M., et al. Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications. Dent Mater: Publ Acad Dent Mater 34 (2018), 879–890.
Naik, V.B., Jain, A.K., Rao, R.D., Naik, B.D., Comparative evaluation of clinical performance of ceramic and resin inlays, onlays, and overlays: A systematic review and meta analysis. J Conserv Dent 25 (2022), 347–355.
Pjetursson, B.E., Sailer, I., Latyshev, A., Rabel, K., Kohal, R.J., Karasan, D., A systematic review and meta-analysis evaluating the survival, the failure, and the complication rates of veneered and monolithic all-ceramic implant-supported single crowns. Clin Oral Implants Res 32:Suppl 21 (2021), 254–288.
Hansen, T.L., Schriwer, C., Oilo, M., Gjengedal, H., Monolithic zirconia crowns in the aesthetic zone in heavy grinders with severe tooth wear - An observational case-series. J Dent 72 (2018), 14–20.