Article (Scientific journals)
Optimizing model-agnostic random subspace ensembles
Huynh-Thu, Vân Anh; Geurts, Pierre
2023In Machine Learning
Peer Reviewed verified by ORBi
 

Files


Full Text
PRS_arxiv_v3_2023.pdf
Author preprint (1.03 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Ensemble; Feature importances; model-agnostic; Supervised learning; Random subspaces
Abstract :
[en] This paper presents a model-agnostic ensemble approach for supervised learning. The proposed approach is based on a parametric version of Random Subspace, in which each base model is learned from a feature subset sampled according to a Bernoulli distribution. Parameter optimization is performed using gradient descent and is rendered tractable by using an importance sampling approach that circumvents frequent re-training of the base models after each gradient descent step. The degree of randomization in our parametric Random Subspace is thus automatically tuned through the optimization of the feature selection probabilities. This is an advantage over the standard Random Subspace approach, where the degree of randomization is controlled by a hyper-parameter. Furthermore, the optimized feature selection probabilities can be interpreted as feature importance scores. Our algorithm can also easily incorporate any differentiable regularization term to impose constraints on these importance scores. We show the good performance of the proposed approach, both in terms of prediction and feature ranking, on simulated and real-world datasets. We also show that PRS can be successfully used for the reconstruction of gene regulatory networks.
Disciplines :
Computer science
Author, co-author :
Huynh-Thu, Vân Anh  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Algorithmique des systèmes en interaction avec le monde physique
Geurts, Pierre  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Algorithmique des systèmes en interaction avec le monde physique
Language :
English
Title :
Optimizing model-agnostic random subspace ensembles
Publication date :
2023
Journal title :
Machine Learning
ISSN :
0885-6125
eISSN :
1573-0565
Publisher :
Springer
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
Funders :
SPW - Service Public de Wallonie
Funding text :
This work was supported by Service Public de Wallonie Recherche under Grant No. 2010235 - ARIAC by DIGITALWALLONIA4.AI. Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11 and by the Walloon Region.
Available on ORBi :
since 21 November 2023

Statistics


Number of views
27 (1 by ULiège)
Number of downloads
26 (1 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi