Integrated effect of saline water irrigation and phosphorus fertilization practices on wheat (Triticum aestivum) growth, productivity, nutrient content and soil proprieties under dryland farming.
Plant Science; Ecology, Evolution, Behavior and Systematics; Crop modelling
Abstract :
[en] Wheat (Triticum aestivum) is the most common and oldest crop in Morocco and MENA region countries, cultivated both for human and animal nutrition. In Morocco, the irrigated perimeter of Tadla is the major wheat growing area affected by soil and groundwater salinity problematic. Previous studies have shown that phosphorus (P) fertilization can mitigate the negative effects of salinity on different crops. Thus, field experiments from the combination of four levels of irrigation water salinity and three P-fertilization rates were conducted during two successive growing seasons (between 2019 and 2021) at the National Institute of Agronomic Research (INRA), Tadla, Morocco. Our main objective was evaluating the potential of P-fertilization to improve wheat growth, productivity and quality under saline water irrigation practices. The crop simulation model APSIM, was also tested to assess its performance in simulating wheat growth, productivity, phosphorus and nitrogen nutrient dynamics in soil-plant system under saline conditions. Results showed that appropriate P-fertilization under saline conditions contributed to minimize the effect of salinity and improved wheat growth and production. Also, it was found that increasing P-fertilization improved nutrient uptake, and consequently the plant nutrient content. A good agreement between the measured and APSIM model simulated growth and yield state variables, as well as the plant and soil-N content. However, a model uncertainty and relevant limitations in simulating plant- and soil-P content output were identified and discussed. Overall, our finding suggests that appropriate P-application minimizes the adverse effects of high soil salinity and can be adopted as a coping strategy in wheat cultivation under saline water irrigation practices.
Integrated effect of saline water irrigation and phosphorus fertilization practices on wheat (Triticum aestivum) growth, productivity, nutrient content and soil proprieties under dryland farming.
Abd El-Hamed, E., Metwally, S., Matar, M., Yousef, N., Impact of phosphorus fertilization in alleviating the adverse effects of salinity on wheat grown on different soil types. Acta Agron. Hung. 60 (2012), 265–281, 10.1556/AAgr.60.2012.3.9.
Ahanger, M.A., Agarwal, R.M., Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as influenced by potassium supplementation. Plant Physiol. Biochem. 115 (2017), 449–460, 10.1016/j.plaphy.2017.04.017.
Ahmed, M., Akram, M.N., Asim, M., Aslam, M., Hassan, F.ul, Higgins, S., Stöckle, C.O., Hoogenboom, G., Calibration and validation of APSIM-Wheat and CERES-Wheat for spring wheat under rainfed conditions: models evaluation and application. Comput. Electron. Agric. 123 (2016), 384–401, 10.1016/j.compag.2016.03.015.
Alasvandyari, F., Mahdavi, B., Hosseini, S.M., Glycine betaine affects the antioxidant system and ion accumulation and reduces salinity-induced damage in safflower seedlings. Arch. Biol. Sci. 69 (2017), 139–147.
Ashraf, M., Shahzad, S.M., Imtiaz, M., Rizwan, M.S., Salinity effects on nitrogen metabolism in plants–focusing on the activities of nitrogen metabolizing enzymes: A review. J. Plant Nutr. 41 (2018), 1065–1081.
Balwinder-Singh, Gaydon, D.S., Humphreys, E., Eberbach, P.L., The effects of mulch and irrigation management on wheat in Punjab, India—Evaluation of the APSIM model. Field Crop Res. 124 (2011), 1–13, 10.1016/J.FCR.2011.04.016.
Bargaz, A., Nassar, R.M.A., Rady, M.M., Gaballah, M.S., Thompson, S.M., Brestic, M., Schmidhalter, U., Abdelhamid, M.T., Improved salinity tolerance by phosphorus fertilizer in two Phaseolus vulgaris recombinant inbred lines contrasting in their P-efficiency. J. Agron. Crop Sci. 202 (2016), 497–507.
Betzen, B.M., Smart, C.M., Maricle, K.L., MariCle, B.R., Effects of increasing salinity on photosynthesis and plant water potential in Kansas Salt Marsh Species. Trans. Kansas Acad. Sci. 122 (2019), 49–58, 10.1660/062.122.0105.
Bolland, M.D.A., Brennan, R.F., Comparing the phosphorus requirements of wheat, lupin, and canola. Aust. J. Agric. Res., 59, 2008, 983, 10.1071/AR07430.
Bouras, H., Bouaziz, A., Bouazzama, B., Hirich, A., Choukr-Allah, R., How phosphorus fertilization alleviates the effect of salinity on sugar beet (beta vulgaris L.) productivity and quality. Agronomy, 11, 2021, 1491.
Bouras, H., Bouaziz, A., Choukr-Allah, R., Hirich, A., Devkota, K.P., Bouazzama, B., Phosphorus fertilization enhances productivity of forage corn (Zea mays L.) irrigated with saline water. Plants, 10, 2021, 2608, 10.3390/plants10122608.
Bouras, H., Choukr-Allah, R., Amouaouch, Y., Bouaziz, A., Devkota, K.P., El Mouttaqi, A., Bouazzama, B., Hirich, A., How does quinoa (Chenopodium quinoa Willd.) respond to phosphorus fertilization and irrigation water salinity?. Plants, 11, 2022, 216, 10.3390/plants11020216.
Bouras, H., Choukr-Allah, R., Mosseddaq, F., Bouaziz, A., Devkota, K.P., Mouttaqi, A.El, Bouazzama, B., Hirich, A., Does phosphorus fertilization increase biomass production and salinity tolerance of blue panicum (Panicum antidotale Retz.) in the salt-affected soils of arid regions?. Agronomy, 12, 2022, 791, 10.3390/agronomy12040791.
Brugnoli, E., Lauteri, M., Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and Salt-Sensitive (Phaseolus vulgaris L.) C 3 non-halophytes. Plant Physiol. 95 (1991), 628–635, 10.1104/pp.95.2.628.
Castaldi, F., Casa, R., A methodology for the assessment of the potential of precision weed management based on geostatistical and crop growth model simulations. Ital. J. Agrometeorol. Ital. 21 (2016), 13–22 DI Agrometeorol.
Chapman, H.D., Pratt, P.F., Methods of analysis for soils. Plants Waters, 309, 1961.
Chen, W., Shen, Y.Y., Robertson, M.J., Probert, M.E., Bellotti, W.D., Simulation analysis of lucerne–wheat crop rotation on the Loess Plateau of Northern China. F. Crop. Res. 108 (2008), 179–187.
Colla, G., Rouphael, Y., Cardarelli, M., Tullio, M., Rivera, C.M., Rea, E., Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol. Fertil. Soils 44 (2008), 501–509.
Cramer, G.R., Lynch, J., Läuchli, A., Epstein, E., Influx of Na+, K+, and Ca2+ into roots of salt-stressed cotton seedlings: effects of supplemental Ca2+. Plant Physiol. 83 (1987), 510–516.
Debbarh, A., Badraoui, M., 2002. Irrigation et Environnement au Maroc: Situation Actuelle et Perpectives 15.
Delve, R.J., Probert, M.E., Cobo, J.G., Ricaurte, J., Rivera, M., Barrios, E., Rao, I.M., Simulating phosphorus responses in annual crops using APSIM: model evaluation on contrasting soil types. Nutr. Cycl. Agroecosyst. 84 (2009), 293–306.
Ding, Z., Kheir, A.M.S., Ali, M.G.M., Ali, O.A.M., Abdelaal, A.I.N., Lin, X., Zhou, Z., Wang, B., Liu, B., He, Z., The integrated effect of salinity, organic amendments, phosphorus fertilizers, and deficit irrigation on soil properties, phosphorus fractionation and wheat productivity. Sci. Rep., 10, 2020, 2736, 10.1038/s41598-020-59650-8.
El-Hendawy, S.E., Hassan, W.M., Al-Suhaibani, N.A., Refay, Y., Abdella, K.A., Comparative performance of multivariable agro-physiological parameters for detecting salt tolerance of wheat cultivars under simulated saline field growing conditions. Front. Plant Sci., 8, 2017.
El-Hendawy, S.E., Ruan, Y., Hu, Y., Schmidhalter, U., A comparison of screening criteria for salt tolerance in wheat under field and controlled environmental conditions. J. Agron. Crop Sci. 195 (2009), 356–367, 10.1111/j.1439-037X.2009.00372.x.
Elliott, D., Reuter, D., Reddy, G., Abbott, R., Phosphorus nutrition of spring wheat (Triticum aestivum L.). 1. Effects of phosphorus supply on plant symptoms, yield, components of yield, and plant phosphorus uptake. Aust. J. Agric. Res. 48 (1997), 855–867.
Fageria, N.K., Gheyi, H.R., Moreira, A., Nutrient bioavailability in salt affected soils. J. Plant Nutr. 34 (2011), 945–962, 10.1080/01904167.2011.555578.
Ghazi, N., Al-Karaki, R., Barley response to salt stress at varied levels of phosphorus. J. Plant Nutr. 20 (1997), 1635–1643.
Gulmezoglu, N., The interactive effects of phosphorus and salt on growth, water potenital and phosphorus uptake in green beans. Appl. Ecol. Environ. Res. 15 (2017), 1831–1842, 10.15666/aeer/1503_18311842.
Holzworth, D.P., Huth, N.I., deVoil, P.G., Zurcher, E.J., Herrmann, N.I., McLean, G., Chenu, K., van Oosterom, E.J., Snow, V., Murphy, C., Moore, A.D., Brown, H., Whish, J.P.M., Verrall, S., Fainges, J., Bell, L.W., Peake, A.S., Poulton, P.L., Hochman, Z., Thorburn, P.J., Gaydon, D.S., Dalgliesh, N.P., Rodriguez, D., Cox, H., Chapman, S., Doherty, A., Teixeira, E., Sharp, J., Cichota, R., Vogeler, I., Li, F.Y., Wang, E., Hammer, G.L., Robertson, M.J., Dimes, J.P., Whitbread, A.M., Hunt, J., van Rees, H., McClelland, T., Carberry, P.S., Hargreaves, J.N.G., MacLeod, N., McDonald, C., Harsdorf, J., Wedgwood, S., Keating, B.A., APSIM - evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 62 (2014), 327–350, 10.1016/j.envsoft.2014.07.009.
Hussain, N., Sohail, Y., Shakeel, N., Javed, M., Bano, H., Gul, H.S., Zafar, Z.U., Frahat Zaky Hassan, I., Ghaffar, A., Athar, H.-R., Ajaj, R., Role of mineral nutrients, antioxidants, osmotic adjustment and PSII stability in salt tolerance of contrasting wheat genotypes. Sci. Rep., 12, 2022, 12677, 10.1038/s41598-022-16922-9.
Iaaich, H., Mamassi, A., Douaik, A., Mrabet, R., Moussadek, R., Digital soil mapping: case study from the Khouribga-Kasbat Tadla zone in Central Morocco. African Mediterr. Agric. J., 2021 Al Awamia.
Irshad, M., Yamamoto, S., Eneji, A.E., Endo, T., Honna, T., Urea and manure effect on growth and mineral contents of maize under saline conditions. J. Plant Nutr. 25 (2002), 189–200, 10.1081/PLN-100108790.
Jahan, M.N., Barua, S., Ali, H., Ali, M.N., Chowdhury, M.S.H., Hasan, M.M., Ferdous, T., Eti, F.S., Khayer, A., Hossen, K., Effects of phosphorus fertilization on hybrid varieties of mungbean [Vigna radiata (L.) Wilczek] in a salinity prone area of the subtropics. Acta Agrobot., 73, 2020, 10.5586/aa.7338.
Jha, U.C., Bohra, A., Jha, R., Parida, S.K., Salinity stress response and “omics” approaches for improving salinity stress tolerance in major grain legumes. Plant Cell Rep. 38 (2019), 255–277, 10.1007/s00299-019-02374-5.
Kaya, C., Higgs, D., Kirnak, H., The effects of high salinity (NaCl) and supplementary phosphorus and potassium on physiology and nutrition development of spinach. Bulg. J. Plant Physiol. 27 (2001), 47–59.
Keating, B.A., Carberry, P.S., Hammer, G.L., Probert, M.E., Robertson, M.J., Holzworth, D., Huth, N.I., Hargreaves, J.N., Meinke, H., Hochman, Z., An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 18 (2003), 267–288.
Kinyangi, J., Delve, R.J., Probert, M., 2004. Testing the APSIM Model with Data from a Phosphorus and Nitrogen Replenishment Experiment on an Oxisol in Western Kenya.
Kumar, P., Choudhary, M., Halder, T., Prakash, N.R., Singh, V., V, V.T., Sheoran, S., T, R.K., Longmei, N., Rakshit, S., Siddique, K.H.M., Salinity stress tolerance and omics approaches: revisiting the progress and achievements in major cereal crops. Heredity 128 (2022), 497–518, 10.1038/s41437-022-00516-2.
Lakhdar, A., Rabhi, M., Ghnaya, T., Montemurro, F., Jedidi, N., Abdelly, C., Effectiveness of compost use in salt-affected soil. J. Hazard. Mater. 171 (2009), 29–37, 10.1016/j.jhazmat.2009.05.132.
Machado, R., Serralheiro, R., Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae, 3, 2017, 30, 10.3390/horticulturae3020030.
Machado, R.M.A., Serralheiro, R.P., Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae, 3, 2017, 30.
Maia, F.M., de, A., Costa, A.C., de Castro, J.N., Megguer, C.A., Soares, F.A.L., Photosynthesis and water relations of sunflower cultivars under salinity conditions. Afr. J. Agric. Res. 11 (2016), 2817–2824.
Maksimovic, I., Ilin, Z., Effects of salinity on vegetable growth and nutrients uptake. Irrig. Syst. Pract. Chall. Environ., 9, 2012.
Mamassi, A., Balaghi, R., Devkota, P.K., Bouras, H., El Gharous, M., Tychon, B., Modeling genotype x environment x management interactions for a sustainable intensification under rainfed wheat cropping system in Morocco. Agric. Food Secur., 2023, 10.1186/s40066-023-00428-2.
Mamassi, A., Lang, M., Tychon, B., Lahlou, M., Wellens, J., El Gharous, M., Marrou, M., 2023b. A comparison of empirical and mechanistic models for wheat yield prediction at field level in Moroccan rainfed areas in silico Plants. diad020. 10.1093/insilicoplants/diad020.
Mamassi, A., Marrou, H., El Gharous, M., Wellens, J., Jabbour, F.E., Zeroual, Y., Hamma, A., Tychon, B., Relevance of soil fertility spatial databases for parameterizing APSIM-wheat crop model in Moroccan rainfed areas. Agron. Sustain. Dev. 425:42 (2022), 1–16, 10.1007/S13593-022-00813-4.
Micheni, A.N., Kihanda, F.M., Warren, G.P., Probert, M.E., Testing the APSIM Model with Experimental Data from the Long-Term Manure Experiment at Machang'a (Embu). 2004, Extern. Memo, Kenya, 56.
Moussadek, R., Laghrour, M., Mrabet, R., Van Ranst, E., Badraoui, M., Mekkaoui, M., Morocco's vertisol characterization (Tirs). J. Mater. Environ. Sci. 8 (2017), 3932–3942.
Munns, R., James, R.A., Läuchli, A., Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 57 (2006), 1025–1043, 10.1093/jxb/erj100.
Munns, R., Tester, M., Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59 (2008), 651–681, 10.1146/annurev.arplant.59.032607.092911.
Naheed, G., Shahbaz, M., Akram, N.A., 2008. Interactive Effect of Rooting Medium Application of Phosphorus and NaCl on Plant Biomass and Mineral Nutrients of Rice (Oryza sativa) 9.
Olsen, S.R., Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. 1954, Department of Agriculture, U.S.
Ouhaddach, M., El-Yacoubi, H., Douaik, A., Hmouni, D., Rochdi, A., 2016. Physiological and biochemical responses to salt stress in wheat (Triticum aestivum L.) at the elongation stage 7, 3084–3099.
Özdemir, F., Bor, M., Demiral, T., Türkan, İ., Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regul. 42 (2004), 203–211, 10.1023/B:GROW.0000026509.25995.13.
Raymond, N., Kopittke, P.M., Wang, E., Lester, D., Bell, M.J., Does the APSIM model capture soil phosphorus dynamics? A case study with Vertisols. Field Crop Res., 273, 2021, 108302.
Rose, T.J., Rengel, Z., Ma, Q., Bowden, J.W., Differential accumulation patterns of phosphorus and potassium by canola cultivars compared to wheat. J. Plant Nutr. Soil Sci. 170 (2007), 404–411, 10.1002/jpln.200625163.
Roy, S., Chowdhury, N., Salt Stress in Plants and Amelioration Strategies: A Critical Review. 2020, IntechOpen.
Ruellan, A., Contribution à la Connaissance des sols des Régions Méditerranéennes: Les sols à Profil Calcaire Différencié des Plaines de la Basse Moulouya (Maroc Oriental). 1971, Orstom, Paris France.
Ryan, J., Estefan, G., Rashid, A., Soil and Plant Analysis Laboratory Manual. 2001, ICARDA.
S.H.N.P., DSTakahashi, T., Okada, K., Evaluation of APSIM-wheat to simulate the response of yield and grain protein content to nitrogen application on an Andosol in Japan. Plant Prod. Sci. 24 (2021), 454–465, 10.1080/1343943X.2021.1883989.
Sadji-Ait Kaci, H., Chaker-Haddadj, A., Aid, F., Interactive effects of salinity and two phosphorus fertilizers on growth and grain yield of Cicer arietinum L. Acta Agric. Scand. Sect. B Soil Plant Sci. 67 (2017), 208–216, 10.1080/09064710.2016.1245774.
Sahin, U., Ekinci, M., Ors, S., Turan, M., Yildiz, S., Yildirim, E., Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Sci. Hortic. 240 (2018), 196–204.
Sairam, R.K., Rao, K.V., Srivastava, G.C., Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 163 (2002), 1037–1046, 10.1016/S0168-9452(02)00278-9.
Shahid, S.A., Zaman, M., Heng, L., Soil salinity: historical perspectives and a world overview of the problem. Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques, 2018, Springer, 43–53.
Shahriaripour, R., Tajabadi Pour, A., Mozaffari, V., Effects of salinity and soil phosphorus application on growth and chemical composition of pistachio seedlings. Commun. Soil Sci. Plant Anal. 42 (2011), 144–158, 10.1080/00103624.2011.535065.
Shibli, R.A., Sawwan, J., Swaidat, I., Tahat, M., Increased phosphorus mitigates the adverse effects of salinity in tissue culture. Commun. Soil Sci. Plant Anal. 32 (2001), 429–440, 10.1081/CSS-100103019.
Tang, H., Niu, L., Wei, J., Chen, X., Chen, Y., Phosphorus limitation improved salt tolerance in maize through tissue mass density increase, osmolytes accumulation, and Na+ uptake inhibition. Front. Plant Sci., 10, 2019, 856, 10.3389/fpls.2019.00856.
von Tucher, S., Hörndl, D., Schmidhalter, U., Interaction of soil pH and phosphorus efficacy: long-term effects of P fertilizer and lime applications on wheat, barley, and sugar beet. Ambio 47 (2018), 41–49, 10.1007/s13280-017-0970-2.
Wagdi, E.M., Metwally, S.M., Matar, M.K., Yousef, N.N., Effect of phosphorus in alleviation of adverse impacts of salinity on wheat grown on different soils. Commun. Soil Sci. Plant Anal. 44 (2013), 1921–1936, 10.1080/00103624.2013.795227.
Wang, E., Bell, M., Luo, Z., Moody, P., Probert, M.E., Modelling crop response to phosphorus inputs and phosphorus use efficiency in a crop rotation. Field Crop Res. 155 (2014), 120–132, 10.1016/j.fcr.2013.09.015.
Wang, L., Zheng, J., You, J., Li, J., Qian, C., Leng, S., Yang, G., Zuo, Q., Effects of phosphorus supply on the leaf photosynthesis, and biomass and phosphorus accumulation and partitioning of canola (Brassica napus L.) in saline environment. Agronomy, 11, 2021, 1918, 10.3390/agronomy11101918.
Wang, M., Wang, Y., Zhang, Y., Li, C., Gong, S., Yan, S., Li, G., Hu, G., Ren, H., Yang, J., Yu, T., Yang, K., Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance. Genes Genom. 41 (2019), 781–801, 10.1007/s13258-019-00793-y.
Wani, A.S., Ahmad, A., Hayat, S., Tahir, I., Epibrassinolide and proline alleviate the photosynthetic and yield inhibition under salt stress by acting on antioxidant system in mustard. Plant Physiol. Biochem. 135 (2019), 385–394, 10.1016/j.plaphy.2019.01.002.
Yuan, C., Feng, S., Wang, J., Huo, Z., Ji, Q., Effects of irrigation water salinity on soil salt content distribution, soil physical properties and water use efficiency of maize for seed production in arid Northwest China. Int. J. Agric. Biol. Eng. 11 (2018), 137–145, 10.25165/j.ijabe.20181103.3146.
Zarco-Tejada, P.J., Pushnik, J.C., Dobrowski, S., Ustin, S.L., Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects. Remote Sens. Environ. 84 (2003), 283–294, 10.1016/S0034-4257(02)00113-X.
Zhang, X., Liu, P., Qing, C., Yang, C., Shen, Y., Ma, L., Comparative transcriptome analyses of maize seedling root responses to salt stress. PeerJ, 9, 2021, e10765, 10.7717/peerj.10765.
Zhu, X., Cao, Q., Sun, L., Yang, X., Yang, W., Zhang, H., Stomatal conductance and morphology of arbuscular mycorrhizal wheat plants response to elevated CO2 and NaCl stress. Front. Plant Sci., 9, 2018, 10.3389/fpls.2018.01363.