Article (Scientific journals)
Predicting species richness and abundance of tropical post-larval fish using machine learning
Jaonalison, Henitsoa; Durand, Jean-Dominique; Mahafina, Jamal et al.
2020In Marine Ecology. Progress Series, 645, p. 125 - 139
Peer Reviewed verified by ORBi
 

Files


Full Text
Jaonalison et al 2020 (MEPS).pdf
Publisher postprint (1.08 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
DNA barcoding; Fish post-larvae; Modeling; Random Forests; Remote sensing; Surface water masses; Ecology, Evolution, Behavior and Systematics; Aquatic Science; Ecology
Abstract :
[en] Post-larval prediction is important, as post-larval supply allows us to understand juvenile fish populations. No previous studies have predicted post-larval fish species richness and abundance combining molecular tools, machine learning, and past-days remotely sensed oceanic conditions (RSOCs) obtained in the days just prior to sampling at different scales. Previous studies aimed at modeling species richness and abundance of marine fishes have mainly used environmental variables recorded locally during sampling and have merely focused on juvenile and adult fishes due to the difficulty of obtaining accurate species richness estimates for post-larvae. The present work predicted post-larval species richness (identified using DNA barcoding) and abundance at 2 coastal sites in SW Madagascar using random forest (RF) models. RFs were fitted using combinations of local variables and RSOCs at a small-scale (8 d prior to fish sampling in a 50 × 120 km2 area), meso-scale (16 d prior; 100 × 200 km2), and large-scale (24 d prior; 200 × 300 km2). RF models combining local and small-scale RSOC variables predicted species richness and abundance best, with accuracy around 70 and 60%, respectively. We observed a small variation of RF model performance in predicting species richness and abundance among all sites, highlighting the consistency of the predictive RF model. Moreover, partial dependence plots showed that high species richness and abundance were predicted for sea surface temperatures <27.0°C and chlorophyll a concentrations <0.22 mg m-3. With respect to temporal changes, these thresholds were solely observed from November to December. Our results suggest that, in SW Madagascar, species richness and abundance of post-larval fish may only be predicted prior to the ecological impacts of tropical storms on larval settlement success.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Jaonalison, Henitsoa  ;  Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS) ; Institut Halieutique et des Sciences Marines, Université de Toliara, Toliara, Madagascar
Durand, Jean-Dominique;  MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
Mahafina, Jamal;  Institut Halieutique et des Sciences Marines, Université de Toliara, Toliara, Madagascar
Demarcq, Hervé;  MARBEC, IRD, Univ Montpellier, CNRS, Ifremer, Sète, France
Teichert, Nils;  Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Museúm National d'Histoire Naturelle, CNRS, IRD, SU, UCN, UA-Station Marine de Dinard-CRESCO, Dinard, France
Ponton, Dominique;  ENTROPIE, IRD-Université de la Reúnion-CNRS, Université de la Nouvelle-Calédonie-Ifremer, C/o Institut Halieutique et des Sciences Marines, Université de Toliara, Toliara, Madagascar
Language :
English
Title :
Predicting species richness and abundance of tropical post-larval fish using machine learning
Publication date :
09 July 2020
Journal title :
Marine Ecology. Progress Series
ISSN :
0171-8630
eISSN :
1616-1599
Publisher :
Inter-Research
Volume :
645
Pages :
125 - 139
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
Acknowledgements. We thank J. J. Marcellin, D. Fiandria, R. Tsipy, Tovondrainy, and Noelson for help with field collections and the staff of the GenSeq technical facilities of the LabEx ‘Centre Méditerranéen de l’Environnement et de la Biodiversité’ of the Université de Montpellier for sequencing collected samples. We also thank Camille DeSisto and Dr. Christopher Golden for help in reviewing the language accuracy. This work was financially supported by the Critical Ecosystem Partnership Fund (CEPF/IH.SM-MG 66 341), project POE 2.10 POCT FED − FEDER ‘Biodiversité de l’Océan Indien’, the French National Research Institute for Sustainable Development (JEAI-ACOM project), and Insti-tut Halieutique et des Sciences Marines (materials support). This a contribution from ‘Laboratoire Mixte International MIKAROKA’, Institut Halieutique et des Sciences Marines - Centre National de Recherche Océanographique − IRD - University of La Réunion − CNRS - Ifremer.
Available on ORBi :
since 19 November 2023

Statistics


Number of views
6 (1 by ULiège)
Number of downloads
0 (0 by ULiège)

Scopus citations®
 
8
Scopus citations®
without self-citations
6
OpenCitations
 
1
OpenAlex citations
 
9

Bibliography


Similar publications



Contact ORBi