Login
EN
[EN] English
[FR] Français
Login
EN
[EN] English
[FR] Français
Give us feedback
Explore
Search
Special collections
Statistics
News
Help
Start on ORBi
Deposit
Profile
Publication List
Add your ORCID
Tutorials
Legal Information
Training sessions
About
What's ORBi ?
Impact and visibility
Around ORBi
About statistics
About metrics
OAI-PMH
ORBi team
Release Notes
Back
Home
Detailled Reference
Download
Unpublished conference/Abstract (Scientific congresses and symposiums)
Le Deep Reinforcement Learning à la rescousse des problèmes combinatoires: Une nouvelle approche pour le 3DBPP en logistique
Evers, Justine
;
Schyns, Michael
2023
•
Séminaire Data Science
Permalink
https://hdl.handle.net/2268/308858
Files (1)
Send to
Details
Statistics
Bibliography
Similar publications
Files
Full Text
just_pres_adp.pdf
Author postprint (888.03 kB)
Download
All documents in ORBi are protected by a
user license
.
Send to
RIS
BibTex
APA
Chicago
Permalink
X
Linkedin
copy to clipboard
copied
Details
Disciplines :
Production, distribution & supply chain management
Author, co-author :
Evers, Justine
;
Université de Liège - ULiège > HEC Liège : UER > UER Opérations : Informatique de gestion
Schyns, Michael
;
Université de Liège - ULiège > HEC Liège : UER > UER Opérations : Informatique de gestion
Language :
French
Title :
Le Deep Reinforcement Learning à la rescousse des problèmes combinatoires: Une nouvelle approche pour le 3DBPP en logistique
Publication date :
08 November 2023
Event name :
Séminaire Data Science
Event organizer :
Groupe ADP
Event place :
Paris, France
Event date :
8th November 2023
By request :
Yes
Audience :
International
Available on ORBi :
since 16 November 2023
Statistics
Number of views
38 (8 by ULiège)
Number of downloads
31 (5 by ULiège)
More statistics
Bibliography
Similar publications
Contact ORBi