This is the author version. The published version of this paper (i.e. with the layout of the publisher) is also available in the publisher website (see DOI link)
[en] Invasive species are characterized by their ability to establish and spread in a new environment. In alien populations of anurans, dispersal and fitness-related traits such as endurance, burst performance, and metabolism are keys to their success. However, few studies have investigated inter-individual variation in these traits and more specifically have attempted to understand the drivers of variation in these traits. Associations of anatomical features may be excellent predictors of variation in performance and could be targets for selection or subject to trade-offs during invasions. In this study, we used marsh frogs (Pelophylax ridibundus), a species which has been introduced in many places outside its native range and which is now colonizing large areas of Western Europe. We first measured the inter-individual variation in resting metabolism, the time and distance they were able to jump until exhaustion, and their peak jump force, and then measured the mass of specific organs and lengths of body parts suspected to play a role in locomotion and metabolism. Among the 5000 bootstraps replicates on body size corrected variables, our statistical models most often selected the stomach (75.42%), gonads (71.46%), and the kidneys (67.26%) as predictors of inter-individual variation in metabolism and the gluteus maximus muscle (97.24%) mass was the most often selected predictor of jump force. However, endurance was poorly associated with the anatomical traits (R²distance = 0.42, R²time = 0.37). These findings suggest that selection on these predictors may lead to physiological changes that may affect the colonization, establishment, and dispersal of these frogs.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Padilla, Pablo ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS) ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Laboratoire d'Écologie et de Conservation des Amphibiens (LECA) ; UMR 7179 C.N.R.S/M.N.H.N, Département Adaptations du Vivant, Paris, France
Herrel, Anthony; UMR 7179 C.N.R.S/M.N.H.N, Département Adaptations du Vivant, Paris, France ; Evolutionary Morphology of Vertebrates, Ghent University, Belgium ; Department of Biology, University of Antwerp, Wilrijk, Belgium ; Naturhistorisches Museum Bern, Switzerland
Denoël, Mathieu ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS) ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Laboratoire d'Écologie et de Conservation des Amphibiens (LECA)
Language :
English
Title :
What makes a great invader? Anatomical traits as predictors of locomotor performance and metabolic rate in an invasive frog
Publication date :
December 2023
Journal title :
Journal of Experimental Biology
ISSN :
0022-0949
eISSN :
1477-9145
Publisher :
The Company of Biologists, United Kingdom
Volume :
226
Issue :
24
Pages :
jeb246717
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Aerts, P., Van Damme, R., Vanhooydonck, B., Zaaf, A. and Herrel, A. (2000). Lizard locomotion: how morphology meets ecology. Neth. J. Zool. 50, 261-277. doi:10.1163/156854200505865
Andrews, R. M. and Pough, F. H. (1985). Metabolism of squamate reptiles: allometric and ecological relationships. Physiol. Zool. 58, 214-231. doi:10.1086/ physzool.58.2.30158569
Arnold, S. J. (1983). Morphology, performance and fitness. Integr. Comp. Biol. 23, 347-361. doi:10.1093/icb/23.2.347
Bellati, A., Chiocchio, A., Razzetti, E., Bisconti, R. and Canestrelli, D. (2023). A hotchpotch of water frogs in northern Italy. Biol. Invasions 25, 2737-2745. doi:10. 1007/s10530-023-03088-2
Bennett, A. F. (1987). Evolution of the control of body temperature: is warmer better? In Comparative Physiology: Life in Water and on Land (ed. P. Dejours, L. Bolis, C. Taylor,and E. Weibel), pp. 421-431. Padova, Italia: Fidia research Series, IX-Liviana Press.
Blaxter, K. (1989). Energy Metabolism in Animals and Man. Cambridge, UK: Cambridge University Press.
Boldsen, M. M., Norin, T. and Malte, H. (2013). Temporal repeatability of metabolic rate and the effect of organ mass and enzyme activity on metabolism in European eel (Anguilla anguilla). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 165, 22-29. doi:10.1016/j.cbpa.2013.01.027
Brokordt, K., Defranchi, Y., Espósito, I., Cárcamo, C., Schmitt, P., Mercado, L., De La Fuente-Ortega, E. and Rivera-Ingraham, G. A. (2019). Reproduction immunity trade-off in a mollusk: hemocyte energy metabolism underlies cellular and molecular immune responses. Front. Physiol. 10, 1-16. doi:10.3389/fphys. 2019.00077
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. and West, G. B. (2004). Toward a metabolic theory of ecology. Ecology 85, 1771-1789. doi:10.1890/03-9000
Brown, G. P., Kelehear, C. and Shine, R. (2013). The early toad gets the worm: cane toads at an invasion front benefit from higher prey availability. J. Anim. Ecol. 82, 854-862. doi:10.1111/1365-2656.12048
Burton, T., Killen, S. S., Armstrong, J. D. and Metcalfe, N. B. (2011). What causes intraspecific variation in resting metabolic rate and what are its ecological consequences? Proc. R. Soc. B Biol. Sci. 278, 3465-3473. doi:10.1098/rspb. 2011.1778
Careau, V., Thomas, D., Humphries, M. M. and Réale, D. (2008). Energy metabolism and animal personality. Oikos 117, 641-653. doi:10.1111/j.0030-1299.2008.16513.x
Close, B., Banister, K., Baumans, V., Bernoth, E.-M., Bromage, N., Bunyan, J., Erhardt, W., Flecknell, P., Gregory, N., Hackbarth, H. et al. (1996). Recommendations for euthanasia of experimental animals: part 1. Lab. Anim. 30, 293-316. doi:10.1258/002367796780739871
Compton, T. J., Leathwick, J. R. and Inglis, G. J. (2010). Thermogeography predicts the potential global range of the invasive European green crab (Carcinus maenas). Divers. Distrib. 16, 243-255. doi:10.1111/j.1472-4642.2010.00644.x
Courant, J., Secondi, J., Guillemet, L., Vollette, E. and Herrel, A. (2019). Rapid changes in dispersal on a small spatial scale at the range edge of an expanding population. Evol. Ecol. 33, 599-612. doi:10.1007/s10682-019-09996-x
Daan, S., Masman, D. and Groenewold, A. (1990). Avian basal metabolic rates: their association with body composition and energy expenditure in nature. Am. J. Physiol. Integr. Comp. Physiol. 259, R333-R340. doi:10.1152/ajpregu. 1990.259.2.R333
Dallas, J. W., Deutsch, M. and Warne, R. W. (2021). Eurythermic sprint and immune thermal performance and ecology of an exotic lizard at its northern invasion front. Physiol. Biochem. Zool. 94, 12-21. doi:10.1086/712059
Denoël, M. and Lehmann, A. (2006). Multi-scale effect of landscape processes and habitat quality on newt abundance: implications for conservation. Biol. Conserv. 130, 495-504. doi:10.1016/j.biocon.2006.01.009
Denoël, M., Duret, C., Lorrain-Soligon, L., Padilla, P., Pavis, J., Pille, F., Tendron, P., Ficetola, G. F. and Falaschi, M. (2022). High habitat invasibility unveils the invasiveness potential of water frogs. Biol. Invasions 24, 3447-3459. doi:10.1007/s10530-022-02849-9
Dufresnes, C., Denoël, M., Di Santo, L. and Dubey, S. (2017). Multiple uprising invasions of Pelophylax water frogs, potentially inducing a new hybridogenetic complex. Sci. Rep. 7, 6506. doi:10.1038/s41598-017-06655-5
Dufresnes, C., Leuenberger, J., Amrhein, V., Bühler, C., Thiébaud, J., Bohnenstengel, T. and Dubey, S. (2018). Invasion genetics of marsh frogs (Pelophylax ridibundus sensu lato) in Switzerland. Biol. J. Linn. Soc. 123, 402-410. doi:10.1093/biolinnean/blx140
Durand-Tullou, A. (1959). Un milieu de civilisation traditionnelle. Le causse de blandas. PhD thesis, Faculté des Lettres et Sciences Humaines de Montpellier, France.
Edwards, O. M., Edwards, D. D., Duncan, S. I., Laurencio, D. and Goessling, J. M. (2023). Range expansion and dispersal traits of green treefrogs (Hyla cinerea). J. Herpetol. 57, 151-158. doi:10.1670/21-063
Facey, D. E. and Grossman, G. D. (1990). The metabolic cost of maintaining position for four north american stream fishes: effects of season and velocity. Physiol. Zool. 63, 757-776. doi:10.1086/physzool.63.4.30158175
Forsman, A. and Wennersten, L. (2016). Inter–individual variation promotes ecological success of populations and species: evidence from experimental and comparative studies. Ecography (Cop.). 39, 630-648. doi:10.1111/ecog.01357
Friedman, J., Hastie, T. and Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1-22. doi:10. 18637/jss.v033.i01
Gabrion, J., Sentein, P. and Gabrion, C. (1978). Les populations néoténiques de Triturus helveticus Raz. des Causses et du Bas-Languedoc. II. Écologie. La Terre La Vie. 32, 577-610.
Gruber, J., Brown, G., Whiting, M. J. and Shine, R. (2017). Geographic divergence in dispersal-related behaviour in cane toads from range-front versus range-core populations in Australia. Behav. Ecol. Sociobiol. 71, 38. doi:10.1007/ s00265-017-2266-8
Herrel, A. and Bonneaud, C. (2012). Trade-offs between burst performance and maximal exertion capacity in a wild amphibian, Xenopus tropicalis. J. Exp. Biol. 215, 3106-3111. doi:10.1242/jeb.069765
Herrel, A., Vasilopoulou-Kampitsi, M. and Bonneaud, C. (2014). Jumping performance in the highly aquatic frog, Xenopus tropicalis: sex-specific relationships between morphology and performance. PeerJ 2, e661. doi:10. 7717/peerj.661
Holsbeek, G. and Jooris, R. (2010). Potential impact of genome exclusion by alien species in the hybridogenetic water frogs (Pelophylax esculentus complex). Biol. Invasions 12, 1-13. doi:10.1007/s10530-009-9427-2
Holsbeek, G., Mergeay, J., Volckaert, F. A. M. and De Meester, L. (2010). Genetic detection of multiple exotic water frog species in Belgium illustrates the need for monitoring and immediate action. Biol. Invasions 12, 1459-1463. doi:10.1007/ s10530-009-9570-9
Ihlow, F., Courant, J., Secondi, J., Herrel, A., Rebelo, R., Measey, G. J., Lillo, F., De Villiers, F. A., Vogt, S., De Busschere, C. et al. (2016). Impacts of climate change on the global invasion potential of the African clawed frog Xenopus laevis. PLoS One 11, e0154869. doi:10.1371/journal.pone.0154869
Ivanova, N. L. and Berzin, D. L. (2019). Development of specific features of marsh frog (Pelophylax ridibundus) populations in water bodies of the Middle Urals. Russ. J. Ecol. 50, 574-577. doi:10.1134/S1067413619060067
James, R. S., Wilson, R. S., De Carvalho, J. E., Kohlsdorf, T., Gomes, F. R. and Navas, C. A. (2005). Interindividual differences in leg muscle mass and pyruvate kinase activity correlate with interindividual differences in jumping performance of Hyla multilineata. Physiol. Biochem. Zool. 78, 857-867. doi:10.1086/432149
James, R. S., Navas, C. A. and Herrel, A. (2007). How important are skeletal muscle mechanics in setting limits on jumping performance? J. Exp. Biol. 210, 923-933. doi:10.1242/jeb.02731
Jobling, M. (1981). The influences of feeding on the metabolic rate of fishes: a short review. J. Fish Biol. 18, 385-400. doi:10.1111/j.1095-8649.1981.tb03780.x
Kohavi, R. (1995). A Study of cross-validation and bootstrap for accuracy estimation and model selection. Proc. 14th Int. Joint Conf. Artifi. Intel. 2, 1337-1145.
Kolbe, J. J., Kearney, M. and Shine, R. (2010). Modeling the consequences of thermal trait variation for the cane toad invasion of Australia. Ecol. Appl. 20, 2273-2285. doi:10.1890/09-1973.1
Konarzewski, M. and Diamond, J. (1995). Evolution of basal metabolic rate and organ masses in laboratory mice. Evolution (N. Y). 49, 1239-1248.
Lighton, J. R. (2019). Measuring Metabolic rates A Manual for Scientists. Oxford, UK: Oxford University Press.
Llewelyn, J., Phillips, B. L., Alford, R. A., Schwarzkopf, L. and Shine, R. (2010). Locomotor performance in an invasive species: cane toads from the invasion front have greater endurance, but not speed, compared to conspecifics from a longcolonised area. Oecologia 162, 343-348. doi:10.1007/s00442-009-1471-1
Lombaert, E., Estoup, A., Facon, B., Joubard, B., Grégoire, J.-C., Jannin, A., Blin, A. and Guillemaud, T. (2014). Rapid increase in dispersal during range expansion in the invasive ladybird Harmonia axyridis. J. Evol. Biol. 27, 508-517. doi:10.1111/jeb.12316
Louppe, V., Courant, J. and Herrel, A. (2017). Differences in mobility at the range edge of an expanding invasive population of Xenopus laevis in the west of France. J. Exp. Biol. 220, 278-283. doi:10.1242/jeb.146589
Louppe, V., Courant, J., Videlier, M. and Herrel, A. (2018). Differences in standard metabolic rate at the range edge versus the center of an expanding invasive population of Xenopus laevis in the West of France. J. Zool. 305, 163-172. doi:10. 1111/jzo.12548
Mendoza, E., Azizi, E. and Moen, D. S. (2020). What explains vast differences in jumping power within a clade? Diversity, ecology and evolution of anuran jumping power. Funct. Ecol. 34, 1053-1063.
Metcalfe, N. B., Van Leeuwen, T. E. and Killen, S. S. (2016). Does individual variation in metabolic phenotype predict fish behaviour and performance? J. Fish Biol. 88, 298-321. doi:10.1111/jfb.12699
Nauwelaerts, S., Ramsay, J. and Aerts, P. (2007). Morphological correlates of aquatic and terrestrial locomotion in a semi–aquatic frog, Rana esculenta: no evidence for a design conflict. J. Anat. 210, 304-317. doi:10.1111/j.1469-7580. 2007.00691.x
Ogobuiro, I. and Tuma, F. (2023). Physiology, Renal. Treasure Island (FL): StatPearls Publishing.
Padilla, P., Tallis, J., Hurst, J., Courant, J., James, R. S. and Herrel, A. (2020). Do muscle contractile properties drive differences in locomotor performance in invasive populations of Xenopus laevis in France? J. Comp. Physiol. B 190, 771-778. doi:10.1007/s00360-020-01310-4
Padilla, P., Herrel, A. and Denoël, M. (2023). May future climate change promote the invasion of the marsh frog? An integrative thermo-physiological study. Oecologia 202, 227-238.
Phillips, B. L., Brown, G. P., Webb, J. K. and Shine, R. (2006). Invasion and the evolution of speed in toads. Nature 439, 803-803. doi:10.1038/439803a
Pille, F., Pinto, L. and Denoël, M. (2021). Predation pressure of invasive marsh frogs: a threat to native amphibians? Diversity 13, 595. doi:10.3390/d13110595
Pille, F., Pinto, L. and Denoël, M. (2023). Functional and temporal facets of predation by marsh frogs across the aquatic–terrestrial ecotone of ponds and implications in the context of biological invasions. Freshw. Biol. 68, 2184–2196. doi:10.1111/fwb.14186
Přikryl, T., Aerts, P., Havelková, P., Herrel, A. and Roček, Z. (2009). Pelvic and thigh musculature in frogs (Anura) and origin of anuran jumping locomotion. J. Anat. 214, 100-139. doi:10.1111/j.1469-7580.2008.01006.x
Rolfe, D. F. S. and Brown, G. C. (1997). Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol. Rev. 77, 731-758. doi:10. 1152/physrev.1997.77.3.731
Romero-Báez, Ó., Santos-Bibiano, R., Domıńguez-Godoy, M. A., Miles, D. B., Munõz-Nolasco, F. J. and Munõz-Nolasco, F. J. (2020). Thermal ecophysiology of a native and an invasive gecko species in a tropical dry forest of Mexico. J. Therm. Biol. 90, 102607. doi:10.1016/j.jtherbio.2020.102607
Sakai, A. K., Allendorf, F. W., Holt, J. S., Lodge, D. M., Molofsky, J., With, K. A., Baughman, S., Cabin, R. J., Cohen, J. E., Ellstrand, N. C. et al. (2001). The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305-332. doi:10. 1146/annurev.ecolsys.32.081501.114037
Sorci, G., Swallow, J. G., Garland, T. and Clobert, J. (1995). Quantitative genetics of locomotor speed and endurance in the lizard Lacerta vivipara. Physiol. Zool. 68, 698-720. doi:10.1086/physzool.68.4.30166352
Speakman, J. R. (2005). Body size, energy metabolism and lifespan. J. Exp. Biol. 208, 1717-1730. doi:10.1242/jeb.01556
Steyermark, A. C., Miamen, A. G., Feghahati, H. S. and Lewno, A. W. (2005). Physiological and morphological correlates of among-individual variation in standard metabolic rate in the leopard frog Rana pipiens. J. Exp. Biol. 208, 1201-1208. doi:10.1242/jeb.01492
Tedeschi, L., Biancolini, D., Capinha, C., Rondinini, C. and Essl, F. (2022). Introduction, spread, and impacts of invasive alien mammal species in Europe. Mamm. Rev. 52, 252-266. doi:10.1111/mam.12277
Vanhooydonck, B., Van Damme, R. and Aerts, P. (2007). Speed and stamina trade-off in lacertid lizards. Evolution (N. Y). 55, 1040-1048. doi:10.1554/0014-3820(2001)055[1040:sastoi]2.0.co;2
Vanhooydonck, B., James, R. S., Tallis, J., Aerts, P., Tadic, Z., Tolley, K. A., Measey, G. J. and Herrel, A. (2014). Is the whole more than the sum of its parts? Evolutionary trade-offs between burst and sustained locomotion in lacertid lizards. Proc. R. Soc. B Biol. Sci. 281, 20132677. doi:10.1098/rspb.2013.2677
White, C. R. and Seymour, R. S. (2004). Does basal metabolic rate contain a useful signal? Mammalian BMR allometry and correlations with a selection of physiological, ecological, and life–history variables. Physiol. Biochem. Zool. 77, 929-941.
Young, A., Anderson, R. O., Naimo, A., Alton, L. A., Goulet, C. T. and Chapple, D. G. (2022). How do the physiological traits of a lizard change during its invasion of an oceanic island? Oecologia 198, 567-578. doi:10.1007/s00442-021-05054-y
Yuan, M., Chen, Y., Huang, Y. and Lu, W. (2018). Behavioral and metabolic phenotype indicate personality in zebrafish (Danio rerio). Front. Physiol. 9, 653. doi:10.3389/fphys.2018.00653
Zhou, D.-X. (2013). On grouping effect of elastic net. Stat. Probab. Lett. 83, 2108-2112. doi:10.1016/j.spl.2013.05.014
Zhou, Y., Ge, X., Zou, Y., Guo, S., Wang, T. and Zong, S. (2021). Prediction of the potential global distribution of the Asian longhorned beetle Anoplophora glabripennis (Coleoptera: Cerambycidae) under climate change. Agric. For. Entomol. 23, 557-568. doi:10.1111/afe.12461
Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 67, 301-320. doi:10.1111/j.1467-9868. 2005.00503.x