Feed/food competition; Food production; Human-edible protein; Land use; Multivariate analysis; Redundancy analysis; Environmental Engineering; Agronomy and Crop Science
Abstract :
[en] The increasing human population and demand for animal food products raise the issue of impacts of animal systems on food security caused by their use of human-edible feed and/or tillable land. The utility of replacing animal systems with potential food-crop systems needs to be assessed but is associated with many uncertainties. Some metrics analyse the contribution of current animal systems to food security, especially the dimension of food availability. These methods address feed conversion efficiency (i.e. total (‘gross’) or human-edible (‘net’)) or the efficiency of agricultural land use (i.e. total, permanent grassland, and tillable land) but never both simultaneously. The purpose of this study was to develop a new metric—‘net productivity’—to represent the performances of current animal systems more accurately by considering both the use of human-edible feed and agricultural land. Through a protein assessment, we analysed the ability of the existing and the new metrics to assess the performances of 111 dairy farms in Wallonia (Belgium). We found that net productivity was positively correlated with both metrics of feed conversion efficiency and negatively correlated with the three metrics of land use. To analyse the influence of farm characteristics, we grouped the farms into four clusters using k-means clustering based on these metrics of contribution to food security and then performed redundancy analysis to select the most influential farm characteristics aiming to highlight contrasted farm strategies. The highest net productivity was reached by an ‘intensive and net efficient’ farm strategy, which had intensive grass-based management, high milk production per cow, appropriate use of concentrates, and well-managed dairy followers (i.e. replacement heifers and calves). The newly developed metric of net productivity can be useful to quantify the contribution of dairy systems to food security by considering both the use of human-edible protein and agricultural land simultaneously.
Disciplines :
Animal production & animal husbandry
Author, co-author :
Battheu-Noirfalise, Caroline ; Université de Liège - ULiège > TERRA Research Centre ; Department Sustainability, Systems and Prospectives, Centre Wallon de Recherches Agronomiques, Libramont, Belgium
Mertens, Alexandre; Department Sustainability, Systems and Prospectives, Centre Wallon de Recherches Agronomiques, Libramont, Belgium
Froidmont, Eric; Department Sustainability, Systems and Prospectives, Centre Wallon de Recherches Agronomiques, Libramont, Belgium
Mathot, Michaël; Department Sustainability, Systems and Prospectives, Centre Wallon de Recherches Agronomiques, Libramont, Belgium
Rouillé, Benoit; IDELE, Service Productions Laitières, Paris, France
Stilmant, Didier; Department Sustainability, Systems and Prospectives, Centre Wallon de Recherches Agronomiques, Libramont, Belgium
Language :
English
Title :
Net productivity, a new metric to evaluate the contribution to food security of livestock systems: the case of specialised dairy farms
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture ERDF - European Regional Development Fund Ministère de l'Agriculture et de la Souveraineté alimentaire
Funding text :
The first author is a recipient of a Ph.D. grant financed by the Belgian ‘Fonds pour la formation à la Recherche dans l’Industrie et dans l’Agriculture’ (FRIA). Data came partly from the Interreg V project AUTOPROT, which is financed by the European Regional Development Fund (ERDF) and the Walloon region. The authors also thank the French Ministry of Agriculture and Food for funding the ERADAL project (#5710, CASDAR grant for Rural and Agricultural Development).The authors thank the Agricultural Economic Analysis Department (DAEA), the Walloon Breeders Association (AWE), and the Provincial Service for Information, Management, and Agricultural Vulgarisation (SPIGVA) for making their data available; anonymous reviewers for useful comments on an earlier version of the manuscript; and Marc Dufrène for statistical insight into multivariate analysis.
Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. In: AgEcon Search. https://ageconsearch.umn.edu/record/288998. Accessed 25 Jun 2021
Arata L, Fabrizi E, Sckokai P (2020) A worldwide analysis of trend in crop yields and yield variability: Evidence from FAO data. Econ Model 90:190–208. 10.1016/j.econmod.2020.05.006 DOI: 10.1016/j.econmod.2020.05.006
Baumont R, Aufrere J, Meschy F (2009) La valeur alimentaire des fourrages: rôle des pratiques de culture, de récolte et de conservation. Fourrages 198:153–173
Borcard D, Gillet F, Legendre P (2011) Numerical Ecology with R. Springer-Verlag, New York. ISBN 978-1-4419-7976-6. https://www.springer.com/gp/book/9781441979766
Charrad M, Ghazzali N, Boiteau V, Niknafs A (2014) NbClust: an R package for determining the relevant number of clusters in a data set. J Stat Softw 61:1–36. 10.18637/jss.v061.i06 DOI: 10.18637/jss.v061.i06
Colomb V, Amar SA, Mens CB et al (2015) AGRIBALYSE®, the French LCI database for agricultural products: high quality data for producers and environmental labelling. OCL 22:D104. 10.1051/ocl/20140047 DOI: 10.1051/ocl/20140047
CVB (2016) Tabellenboek Veevoeding 2016 : voedernormen Rundvee, Schapen, Geiten en voederwaarden voedermiddelen voor Herkauwers. https://edepot.wur.nl/379631
de Vries M, de Boer IJM (2010) Comparing environmental impacts for livestock products: a review of life cycle assessments. Livest Sci 128:1–11. 10.1016/j.livsci.2009.11.007 DOI: 10.1016/j.livsci.2009.11.007
de Wit A, Duveiller G, Defourny P (2012) Estimating regional winter wheat yield with WOFOST through the assimilation of green area index retrieved from MODIS observations. Agric for Meteorol 164:39–52. 10.1016/j.agrformet.2012.04.011 DOI: 10.1016/j.agrformet.2012.04.011
Ertl P, Klocker H, Hörtenhuber S et al (2015) The net contribution of dairy production to human food supply: the case of Austrian dairy farms. Agric Syst 137:119–125. 10.1016/j.agsy.2015.04.004 DOI: 10.1016/j.agsy.2015.04.004
Ertl P, Knaus W, Zollitsch W (2016a) An approach to including protein quality when assessing the net contribution of livestock to human food supply. Animal 10:1883–1889. 10.1017/S1751731116000902 DOI: 10.1017/S1751731116000902
Ertl P, Zebeli Q, Zollitsch W, Knaus W (2016b) Feeding of wheat bran and sugar beet pulp as sole supplements in high-forage diets emphasizes the potential of dairy cattle for human food supply. J Dairy Sci 99:1228–1236. 10.3168/jds.2015-10285 DOI: 10.3168/jds.2015-10285
FAO (2013) Dietary protein quality evaluation in human nutrition: report of an FAO expert consultation, 31 March - 2 April 2011, Auckland, New Zealand. FAO, Rome, Italy. ISBN 978-92-5-107417-6. http://www.fao.org/documents/card/fr/c/ab5c9fca-dd15-58e0-93a8-d71e028c8282/
FAO (2015) Meeting the 2015 international hunger targets: taking stock of uneven progress. FAO, Rome. ISBN 978-92-5-108785-5. https://www.fao.org/3/i4646e/i4646e.pdf
Faux A-M, Decruyenaere V, Guillaume M, Stilmant D (2021) Feed autonomy in organic cattle farming systems: a necessary but not sufficient lever to be activated for economic efficiency. Org Agric 12:335–352. 10.1007/s13165-021-00372-0 DOI: 10.1007/s13165-021-00372-0
Godfray HCJ, Garnett T (2014) Food security and sustainable intensification. Philos Trans R Soc B Biol Sci 369:20120273. 10.1098/rstb.2012.0273 DOI: 10.1098/rstb.2012.0273
Haas G, Wetterich F, Köpke U (2001) Comparing intensive, extensified and organic grassland farming in southern Germany by process life cycle assessment. Agric Ecosyst Environ 83:43–53. 10.1016/S0167-8809(00)00160-2 DOI: 10.1016/S0167-8809(00)00160-2
Hache E (2015) Géopolitique Des Protéines. Rev Int Strat 97:36–46. 10.3917/ris.097.0036 DOI: 10.3917/ris.097.0036
Hennart S, Lebacq T, Rabier F et al (2010) Typologie des exploitations agricoles wallonnes. Renc Rech Rumin 17:241–244
Hennessy DP, Shalloo L, van Zanten HHE et al (2021) The net contribution of livestock to the supply of human edible protein: the case of Ireland. J Agric Sci 159:463–471. 10.1017/S0021859621000642 DOI: 10.1017/S0021859621000642
Hoeffner K, Beylich A, Chabbi A et al (2021) Legacy effects of temporary grassland in annual crop rotation on soil ecosystem services. Sci Total Environ 780:146140. 10.1016/j.scitotenv.2021.146140 DOI: 10.1016/j.scitotenv.2021.146140
Laisse S, Baumont R, Dusart L et al (2018) L’efficience nette de conversion des aliments par les animaux d’élevage: une nouvelle approche pour évaluer la contribution de l’élevage à l’alimentation humaine. INRA Prod Anim 31:269–288. 10.20870/productions-animales.2018.31.3.2355 DOI: 10.20870/productions-animales.2018.31.3.2355
Lindeman RL (1942) The trophic-dynamic aspect of ecology. Ecology 23:399–417 DOI: 10.2307/1930126
Mosnier C, Jarousse A, Madrange P et al (2021) Evaluation of the contribution of 16 European beef production systems to food security. Agric Syst 190:103088. 10.1016/j.agsy.2021.103088 DOI: 10.1016/j.agsy.2021.103088
Mottet A, de Haan C, Falcucci A et al (2017) Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Glob Food Secur 14:1–8. 10.1016/j.gfs.2017.01.001 DOI: 10.1016/j.gfs.2017.01.001
Muscat A, de Olde EM, de Boer IJM, Ripoll-Bosch R (2020) The battle for biomass: a systematic review of food-feed-fuel competition. Glob Food Secur 25:100330. 10.1016/j.gfs.2019.100330 DOI: 10.1016/j.gfs.2019.100330
Paudel S, Gomez-Casanovas N, Boughton EH et al (2023) Intensification differentially affects the delivery of multiple ecosystem services in subtropical and temperate grasslands. Agric Ecosyst Environ 348:108398. 10.1016/j.agee.2023.108398 DOI: 10.1016/j.agee.2023.108398
Peters CJ, Picardy JA, Darrouzet-Nardi A, Griffin TS (2014) Feed conversions, ration compositions, and land use efficiencies of major livestock products in U.S. agricultural systems. Agric Syst 130:35–43. 10.1016/j.agsy.2014.06.005 DOI: 10.1016/j.agsy.2014.06.005
R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/. Accessed 20 Jun 2022
Randolph TF, Schelling E, Grace D et al (2007) Invited review: Role of livestock in human nutrition and health for poverty reduction in developing countries1,2,3. J Anim Sci 85:2788–2800. 10.2527/jas.2007-0467 DOI: 10.2527/jas.2007-0467
Roseler DK, Fox DG, Chase LE et al (1997) Development and evaluation of equations for prediction of feed intake for lactating Holstein dairy cows. J Dairy Sci 80:878–893. 10.3168/jds.S0022-0302(97)76010-7 DOI: 10.3168/jds.S0022-0302(97)76010-7
Rouillé B, Jost J, Fança B et al (2023) Evaluating net energy and protein feed conversion efficiency for dairy ruminant systems in France. Livestock Science 269:105170. 10.1016/j.livsci.2023.105170
Ryschawy J, Choisis N, Choisis JP et al (2012) Mixed crop-livestock systems: an economic and environmental-friendly way of farming? Animal 6:1722–1730. 10.1017/S1751731112000675 DOI: 10.1017/S1751731112000675
United Nations (2019) World population prospects. https://population.un.org/wpp/DataQuery/. Accessed 25 Jun 2021
Urry LA, Cain ML, Wasserman SA et al (2017) Campbell biology, Eleventh. Lisa Urry, Michael Cain, Steven Wasserman, Peter Minorsky, Jane Reece. Pearson Education
van Zanten HHE, Meerburg BG, Bikker P et al (2016) Opinion paper: The role of livestock in a sustainable diet: a land-use perspective. Animal 10:547–549. 10.1017/S1751731115002694 DOI: 10.1017/S1751731115002694
van Zanten HHE, Van Ittersum MK, De Boer IJM (2019) The role of farm animals in a circular food system. Glob Food Secur 21:18–22. 10.1016/j.gfs.2019.06.003 DOI: 10.1016/j.gfs.2019.06.003
Vandehaar MJ (1998) Efficiency of nutrient use and relationship to profitability on dairy farms. J Dairy Sci 81:272–282. 10.3168/jds.S0022-0302(98)75576-6 DOI: 10.3168/jds.S0022-0302(98)75576-6
VandeHaar MJ, Armentano LE, Weigel K et al (2016) Harnessing the genetics of the modern dairy cow to continue improvements in feed efficiency. J Dairy Sci 99:4941–4954. 10.3168/jds.2015-10352 DOI: 10.3168/jds.2015-10352
Wilfart A, Espagnol S, Dauguet S et al (2016) ECOALIM: a dataset of environmental impacts of feed ingredients used in French animal production. Plos One 11:e0167343. 10.1371/journal.pone.0167343 DOI: 10.1371/journal.pone.0167343
Wilkinson JM, Lee MRF (2018) Review: Use of human-edible animal feeds by ruminant livestock. Animal 12:1735–1743. 10.1017/S175173111700218X DOI: 10.1017/S175173111700218X
Wilkinson JM (2011) Re-defining efficiency of feed use by livestock. Animal 5:1014–1022. 10.1017/S175173111100005X DOI: 10.1017/S175173111100005X