aurora; dynamics; injections; Jupiter; magnetosphere; plasma; Aurorae; Hot plasmas; Hubble space telescopes; In-situ observations; Injection; Jupiters; Magnetic field line; Magnetospheric convection; Magnetospherics; Plasma injection; Geophysics; Earth and Planetary Sciences (all); General Earth and Planetary Sciences
Abstract :
[en] We compare Hubble Space Telescope observations of Jupiter's FUV auroras with contemporaneous conjugate Juno in situ observations in the equatorial middle magnetosphere of Jupiter. We show that bright patches on and equatorward of the main emission are associated with hot plasma injections driven by ongoing active magnetospheric convection. During the interval that Juno crossed the magnetic field lines threading the complex of auroral patches, a series of energetic particle injection signatures were observed, and immediately prior, the plasma data exhibited flux tube interchange events indicating ongoing convection. This presents the first direct evidence that auroral morphology previously termed “strong injections” is indeed a manifestation of magnetospheric injections, and that this morphology indicates that Jupiter's magnetosphere is undergoing an interval of active iogenic plasma outflow.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Nichols, J.D. ; Department of Physics and Astronomy, University of Leicester, University Road, Leicester, United Kingdom
Allegrini, F. ; Southwest Research Institute, San Antonio, United States ; Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, United States
Bagenal, F. ; Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, United States
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Clark, G.B. ; The Johns Hopkins University Applied Physics Laboratory, Laurel, United States
Clarke, J.T. ; Center for Space Physics, Boston University, Boston, United States
Connerney, J.E.P. ; Goddard Space Flight Center, Greenbelt, United States
Cowley, S.W.H. ; Department of Physics and Astronomy, University of Leicester, University Road, Leicester, United Kingdom
Ebert, R.W. ; Southwest Research Institute, San Antonio, United States ; Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, United States
Gladstone, G.R. ; Southwest Research Institute, San Antonio, United States ; Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, United States
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Haggerty, D.K. ; The Johns Hopkins University Applied Physics Laboratory, Laurel, United States
Mauk, B. ; The Johns Hopkins University Applied Physics Laboratory, Laurel, United States
Orton, G.S. ; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, United States
Provan, G. ; Department of Physics and Astronomy, University of Leicester, University Road, Leicester, United Kingdom
Wilson, R.J. ; Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, United States
STFC - Science and Technology Facilities Council NASA - National Aeronautics and Space Administration Jet Propulsion Laboratory STSCI - Space Telescope Science Institute
Funding text :
This work is based on observations made with the NASA/ESA Hubble Space Telescope, obtained at STScI, which is operated by AURA, Inc. for NASA. Work at the University of Leicester was supported by STFC Grant ST/W00089X/1. Work at the University of Colorado was supported by NASA through contract 699050X with SwRI. Some of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). BB is a Research Associate of the FNRS. JTC was supported by NASA Grant GO 16193 from STScI to Boston University. Work at SwRI was supported through NASA New Frontiers Program for Juno contract NNM06AA75C.This work is based on observations made with the NASA/ESA Hubble Space Telescope, obtained at STScI, which is operated by AURA, Inc. for NASA. Work at the University of Leicester was supported by STFC Grant ST/W00089X/1. Work at the University of Colorado was supported by NASA through contract 699050X with SwRI. Some of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). BB is a Research Associate of the FNRS. JTC was supported by NASA Grant GO 16193 from STScI to Boston University. Work at SwRI was supported through NASA New Frontiers Program for Juno contract NNM06AA75C.
Allegrini, F., Wilson, R. J., Ebert, R. W., & Loeffler, C. (2022). Juno J/SW Jovian auroral distribution calibrated V1.0, JNO-J/SW-JAD-3-calibrated-V1.0 [Dataset]. NASA Planetary Data System. https://doi.org/10.17189/1519715
Bonfond, B., Yao, Z. H., Gladstone, G. R., Grodent, D., Gérard, J.-C., Matar, J., et al. (2021). Are dawn storms Jupiter's auroral substorms? AGU Advances, 2(1), e2020AV000275. https://doi.org/10.1029/2020AV000275
Clarke, J. T., Nichols, J. D., Gérard, J.-C., Grodent, D., Hansen, K. C., Kurth, W. S., et al. (2009). Response of Jupiter's and Saturn's auroral activity to the solar wind. Journal of Geophysical Research, 114(A), A05210. https://doi.org/10.1029/2008ja013694
Connerney, J. E. P. (2022). Juno MAG calibrated data J V1.0, JNO-J-3-FGM-CAL-V1.0 [Dataset]. NASA Planetary Data System. https://doi.org/10.17189/1519711
Connerney, J. E. P., Acuña, M. H., & Ness, N. F. (1981). Modeling the Jovian current sheet and inner magnetosphere. Journal of Geophysical Research, 86(A10), 8370–8384. https://doi.org/10.1029/ja086ia10p08370
Connerney, J. E. P., Benn, M., Bjarno, J. B., Denver, T., Espley, J., Jorgensen, J. L., et al. (2017). The Juno magnetic field investigation. Space Science Reviews, 73(11), 1–100. https://doi.org/10.1007/s11214-017-0334-z
Connerney, J. E. P., Timmins, S., Herceg, M., & Joergensen, J. L. (2020). A Jovian magnetodisc model for the Juno Era. Journal of Geophysical Research: Space Physics, 125(10), e2020JA028138. https://doi.org/10.1029/2020JA028138
Connerney, J. E. P., Timmins, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Kotsiaros, S., et al. (2022). A new model of Jupiter's magnetic field at the completion of Juno's prime mission. Journal of Geophysical Research: Planets, 127(2), e2021JE007055. https://doi.org/10.1029/2021JE007055
Cowley, S., Provan, G., Bunce, E., & Nichols, J. (2017). Magnetosphere-ionosphere coupling at Jupiter: Expectations for Juno Perijove 1 from a steady state axisymmetric physical model. Geophysical Research Letters, 44(10), 4497–4505. https://doi.org/10.1002/2017GL073129
Dumont, M., Grodent, D., Radioti, A., Bonfond, B., & Gérard, J.-C. (2014). Jupiter's equatorward auroral features: Possible signatures of magnetospheric injections. Journal of Geophysical Research: Space Physics, 119(12), 10068–10077. https://doi.org/10.1002/2014JA020527
Dumont, M., Grodent, D., Radioti, A., Bonfond, B., Roussos, E., & Paranicas, C. (2018). Evolution of the auroral signatures of Jupiter's magnetospheric injections. Journal of Geophysical Research: Space Physics, 123(10), 8489–8501. https://doi.org/10.1029/2018JA025708
Ebert, R. W., Greathouse, T. K., Clark, G., Hue, V., Allegrini, F., Bagenal, F., et al. (2021). Simultaneous UV images and high-latitude particle and field measurements during an auroral dawn storm at Jupiter. Journal of Geophysical Research: Space Physics, 126(12), e2021JA029679. https://doi.org/10.1029/2021JA029679
Gérard, J. C., & Singh, V. (1982). A model of energy deposition of energetic electrons and EUV emission in the Jovian and Saturnian atmospheres and implications. Journal of Geophysical Research, 87(A6), 4525–4532. https://doi.org/10.1029/ja087ia06p04525
Gladstone, G. R., Persyn, S. C., Eterno, J. S., Walther, B. C., Slater, D. C., Davis, M. W., et al. (2017). The ultraviolet spectrograph on NASA's Juno Mission. Space Science Reviews, 213(1), 447–473. https://doi.org/10.1007/s11214-014-0040-z
Gray, R. L., Badman, S. V., Bonfond, B., Kimura, T., Misawa, H., Nichols, J. D., et al. (2016). Auroral evidence of radial transport at Jupiter during January 2014. Journal of Geophysical Research: Space Physics, 121(10), 9972–9984. https://doi.org/10.1002/2016JA023007
Grodent, D., Bonfond, B., Yao, Z., Gérard, J.-C., Radioti, A., Dumont, M., et al. (2018). Jupiter's aurora observed with HST during Juno Orbits 3 to 7. Journal of Geophysical Research: Space Physics, 123(5), 3299–3319. https://doi.org/10.1002/2017JA025046
Grodent, D., Waite, J. H., & Gérard, J.-C. (2001). A self-consistent model of the Jovian auroral thermal structure. Journal of Geophysical Research, 106(A7), 12933–12952. https://doi.org/10.1029/2000JA900129
Haggerty, D. K., Mauk, B. H., Paranicas, C. P., Clark, G., Kollmann, P., Rymer, A. M., et al. (2019). Jovian injections observed at high latitude. Geophysical Research Letters, 46(16), 9397–9404. https://doi.org/10.1029/2019GL083442
Khurana, K. K., & Schwarzl, H. K. (2005). Global structure of Jupiter's magnetospheric current sheet. Journal of Geophysical Research, 110(A7), 8385.
Kivelson, M. G., Khurana, K. K., Russell, C. T., & Walker, R. J. (1997). Intermittent short-duration magnetic field anomalies in the Io torus: Evidence for plasma interchange? Geophysical Research Letters, 24(17), 2127–2130. https://doi.org/10.1029/97gl02202
Mauk, B. H. (2022). JEDI calibrated (CDR) data JNO J JED 3 CDR V1.0 [Dataset]. NASA Planetary Data System. https://doi.org/10.17189/1519713
Mauk, B. H., Clarke, J. T., Grodent, D., Waite, J. H., Paranicas, C. P., & Williams, D. J. (2002). Transient aurora on Jupiter from injections of magnetospheric electrons. Nature, 415(6875), 1003–1005. https://doi.org/10.1038/4151003a
Mauk, B. H., Haggerty, D. K., Jaskulek, S. E., Schlemm, C. E., Brown, L. E., Cooper, S. A., et al. (2017). The Jupiter energetic particle detector instrument (JEDI) Investigation for the Juno mission. Space Science Reviews, 213(1), 289–346. https://doi.org/10.1007/s11214-013-0025-3
Mauk, B. H., Williams, D. J., McEntire, R. W., Khurana, K. K., & Roederer, J. G. (1999). Storm-like dynamics of Jupiter's inner and middle magnetosphere. Journal of Geophysical Research, 104(A10), 22759–22778. https://doi.org/10.1029/1999JA900097
McComas, D. J., Alexander, N., Allegrini, F., Bagenal, F., Beebe, C., Clark, G., et al. (2017). The Jovian auroral distributions experiment (JADE) on the Juno mission to Jupiter. Space Science Reviews, 213(1), 547–643. https://doi.org/10.1007/s11214-013-9990-9
Morgenthaler, J. P., Rathbun, J. A., Schmidt, C. A., Baumgardner, J., & Schneider, N. M. (2019). Large volcanic event on Io Inferred from Jovian sodium nebula brightening. The Astrophysical Journal Letters, 871(2), L23. https://doi.org/10.3847/2041-8213/aafdb7
Nichols, J. D. (2023). Jupiter's FUV auroras during the Juno EM [Dataset]. Mikulski Archive for Space Telescopes. https://doi.org/10.17909/zdfp-m905
Nichols, J. D., Allegrini, F., Bagenal, F., Bunce, E. J., Cowley, S. W. H., Ebert, R. W., et al. (2020). An enhancement of Jupiter's main auroral emission and magnetospheric currents. Journal of Geophysical Research: Space Physics, 125(8), e2020JA027904. https://doi.org/10.1029/2020JA027904
Nichols, J. D., Badman, S. V., Bagenal, F., Bolton, S. J., Bonfond, B., Bunce, E. J., et al. (2017). Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 44(15), 7643–7652. https://doi.org/10.1002/2017GL073029
Nichols, J. D., Badman, S. V., Baines, K. H., Brown, R. H., Bunce, E. J., Clarke, J. T., et al. (2014). Dynamic auroral storms on Saturn as observed by the Hubble Space Telescope. Geophysical Research Letters, 41(10), 3323–3330. https://doi.org/10.1002/2014gl060186
Nichols, J. D., Clarke, J. T., Gérard, J.-C., Grodent, D., & Hansen, K. C. (2009). Variation of different components of Jupiter's auroral emission. Journal of Geophysical Research, 114(A6), A06210. https://doi.org/10.1029/2009ja014051
Nichols, J. D., & Cowley, S. W. H. (2022). Relation of Jupiter's dawnside main emission intensity to magnetospheric currents during the Juno Mission. Journal of Geophysical Research: Space Physics, 127(1), e2021JA030040. https://doi.org/10.1029/2021JA030040
Nichols, J. D., Yeoman, T. K., Bunce, E. J., Chowdhury, M. N., Cowley, S. W. H., & Robinson, T. R. (2017). Periodic emission within Jupiter's main auroral oval. Geophysical Research Letters, 44(18), 9192–9198. https://doi.org/10.1002/2017GL074824
Swithenbank-Harris, B., Nichols, J., Allegrini, F., Bagenal, F., Bonfond, B., Bunce, E., et al. (2021). Simultaneous observation of an auroral dawn storm with the Hubble Space Telescope and Juno. Journal of Geophysical Research: Space Physics, 126(4), e2020JA028717. https://doi.org/10.1029/2020ja028717
Waite, J. H., Cravens, T. E., Kozyra, J., Nagy, A. F., Atreya, S. K., & Chen, R. H. (1983). Electron precipitation and related aeronomy of the Jovian thermosphere and ionosphere. Journal of Geophysical Research, 88(A8), 6143–6163. https://doi.org/10.1029/JA088iA08p06143
Yao, Z. H., Bonfond, B., Clark, G., Grodent, D., Dunn, W. R., Vogt, M. F., et al. (2020). Reconnection- and dipolarization-driven auroral dawn storms and injections. Journal of Geophysical Research: Space Physics, 125(8), e2019JA027663. https://doi.org/10.1029/2019JA027663
Cowley, S., Nichols, J., & Bunce, E. (2002). Distributions of current and auroral precipitation in Jupiter's middle magnetosphere computed from steady-state Hill-Pontius angular velocity profiles: Solutions for current sheet and dipole magnetic field models. Planetary and Space Science, 50(7–8), 717–734. https://doi.org/10.1016/s0032-0633(02)00046-6
Guio, P., Staniland, N. R., Achilleos, N., & Arridge, C. S. (2020). Trapped particle motion in magnetodisk fields. Journal of Geophysical Research: Space Physics, 125(7), e2020JA027827. https://doi.org/10.1029/2020JA027827
Hamlin, D. A., Karplus, R., Vik, R. C., & Watson, K. M. (1961). Mirror and azimuthal drift frequencies for geomagnetically trapped particles. Journal of Geophysical Research, 66(1), 1–4. https://doi.org/10.1029/JZ066i001p00001
Khurana, K. K. (1997). Euler potential models of Jupiter's magnetospheric field. Journal of Geophysical Research, 102(A6), 11295–11306. https://doi.org/10.1029/97JA00563
Lew, J. S. (1961). Drift rate in a dipole field. Journal of Geophysical Research, 66(9), 2681–2685. https://doi.org/10.1029/JZ066i009p02681
Mauk, B. H., Williams, D. J., & McEntire, R. W. (1997). Energy-time dispersed charged particle signatures of dynamic injections in Jupiter's inner magnetosphere. Geophysical Research Letters, 24(23), 2949–2952. https://doi.org/10.1029/97GL03026