Atmosphere; Aurorae; Infrared observations; Jupiter; Magnetosphere; Astronomy and Astrophysics; Space and Planetary Science
Abstract :
[en] We present a study of the long term variability of Jupiter's mid-infrared CH4 auroral emissions. 7.7–7.9 μm images of Jupiter recorded by NASA's Infrared Telescope Facility, Subaru and Gemini-South over the last three decades were collated in order to quantify the magnitude and timescales over which the northern auroral hotspot's CH4 emission varies. These emissions predominantly sound the 10- to 1-mbar pressure range and therefore highlight the temporal variability of lower-stratospheric auroral-related heating. We find that the ratio of the radiance of the poleward northern auroral emissions to a lower-latitude zonal-mean, henceforth ‘Relative Poleward Radiance’ or RPR, exhibits variability over a 37% range and over a range of apparent timescales. We searched for patterns of variability in order to test whether seasonally varying solar insolation, the 11-year solar cycle, or short-term solar wind variability at Jupiter's magnetopause could explain the observed evolution. The variability of the RPR exhibits a weak (r < 0.2) correlation with both the instantaneous and phase-lagged solar insolation received at Jupiter's high-northern latitudes. This rules out the hypothesis suggested in previous work (e.g. Sinclair et al. 2017a, 2018) that shortwave solar heating of aurorally produced haze particles is the dominant auroral-related heating mechanism in the lower stratosphere. We also find the variability exhibits negligible (r < 0.18) correlation with both the instantaneous and phase-lagged monthly-mean sunspot number, which therefore rules out a long-term variability associated with the solar cycle. On shorter timescales, we find moderate correlations of the RPR with solar wind conditions at Jupiter in the preceding days before images were recorded. For example, we find correlations of r = 0.45 and r = 0.51 of the RPR with the mean and standard deviation solar wind dynamical pressure in the preceding 7 days. The moderate correlation suggests that either: (1) only a subset of solar wind compressions lead to brighter, poleward CH4 emissions and/or (2) a subset of CH4 emission brightening events are driven by internal magnetospheric processes (e.g. Io activity) and independent of solar wind enhancements.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Sinclair, J.A. ; Jet Propulsion Laboratory/California Institute of Technology, Pasadena, United States
West, R.; Jet Propulsion Laboratory/California Institute of Technology, Pasadena, United States
Barbara, J.M.; NASA Goddard Institute for Space Studies, New York, United States ; Autonomic Integra LLC, New York, United States
Tao, C.; National Institute of Information and Communications Technology, Tokyo, Japan
Orton, G.S.; Jet Propulsion Laboratory/California Institute of Technology, Pasadena, United States
Greathouse, T.K.; Southwest Research Institute, United States
Giles, R.S.; Southwest Research Institute, United States
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Fletcher, L.N.; School of Physics & Astronomy, University of Leicester, University Road, Leicester, United Kingdom
Irwin, P.G.J.; Atmospheric, Oceanic & Planetary Physics, University of Oxford, Oxford, United Kingdom
Language :
English
Title :
Long-term variability of Jupiter's northern auroral 8-μm CH4 emissions
H2020 - 723890 - GIANTCLIMES - Giants through Time: Towards a Comprehensive Giant Planet Climatology
Funders :
NSF - National Science Foundation ERC - European Research Council MINCYT - Ministerio de Ciencia, Tecnología e Innovación NASA - National Aeronautics and Space Administration NRC - National Research Council Canada KASI - Korea Astronomy and Space Science Institute W. M. Keck Foundation University of Leicester MCTI - Ministério da Ciência, Tecnologia e Inovações UCB - University of California Berkeley ERC - European Research Council ANID - Agencia Nacional de Investigación y Desarrollo JSPS - Japan Society for the Promotion of Science EU - European Union CIT - California Institute of Technology
Funding text :
The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration, United States ( 80NM0018D0004 ). The material is based upon work supported by NASA, United States under Grant NNH19ZDA001N issued through the Cassini Data Analysis (CDAP) program. The High Performance Computing resources used in this investigation were provided by funding from the JPL Information and Technology Solutions Directorate, United States . The IRTF is operated by the University of Hawaii, United States under contract NNH14CK55B with NASA. Co-author Tao acknowledges the support by MEXT/JSPS KAKENHI, Japan Grant 19H01948 . Co-author Fletcher was supported by a European Research Council Consolidator Grant (under the European Union’s Horizon 2020 research and innovation program, grant agreement No 723890 ) at the University of Leicester. A subset of observations were recorded at the international Gemini Observatory, a program of NSF’s NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation on behalf of the Gemini Observatory partnership: the National Science Foundation (United States), National Research Council (Canada), Agencia Nacional de Investigación Desarrollo (Chile), Ministerio de Ciencia, Tecnología e Innovación (Argentina), Ministério da Ciência, Tecnologia, Inovações e Comunicações (Brazil), and Korea Astronomy and Space Science Institute (Republic of Korea). Some data were also recorded at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. A subset of Subaru data were recorded through the Keck-Subaru time exchange program. We acknowledge the W. M. Keck Observatory, which is operated as a scientific partnership between California Institute of Technology, the University of California and NASA and supported financially by the W. M. Keck Foundation. We recognize and acknowledge the very important cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration, United States (80NM0018D0004). The material is based upon work supported by NASA, United States under Grant NNH19ZDA001N issued through the Cassini Data Analysis (CDAP) program. The High Performance Computing resources used in this investigation were provided by funding from the JPL Information and Technology Solutions Directorate, United States. The IRTF is operated by the University of Hawaii, United States under contract NNH14CK55B with NASA. Co-author Tao acknowledges the support by MEXT/JSPS KAKENHI, Japan Grant 19H01948. Co-author Fletcher was supported by a European Research Council Consolidator Grant (under the European Union's Horizon 2020 research and innovation program, grant agreement No 723890) at the University of Leicester. A subset of observations were recorded at the international Gemini Observatory, a program of NSF's NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation on behalf of the Gemini Observatory partnership: the National Science Foundation (United States), National Research Council (Canada), Agencia Nacional de Investigación y Desarrollo (Chile), Ministerio de Ciencia, Tecnología e Innovación (Argentina), Ministério da Ciência, Tecnologia, Inovações e Comunicações (Brazil), and Korea Astronomy and Space Science Institute (Republic of Korea). Some data were also recorded at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. A subset of Subaru data were recorded through the Keck-Subaru time exchange program. We acknowledge the W. M. Keck Observatory, which is operated as a scientific partnership between California Institute of Technology, the University of California and NASA and supported financially by the W. M. Keck Foundation. We recognize and acknowledge the very important cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.
Achilleos, N., Miller, S., Prangé, R., Millward, G., Dougherty, M., A dynamical model of Jupiter's auroral electrojet. New J. Phys. 13672630, 3(1), 2001, 3.1–3.20, 10.1088/1367-2630/3/1/303.
Appleby, J.F., CH4 nonlocal thermodynamic equilibrium in the atmospheres of the giant planets. Icarus 85 (1990), 355–379, 10.1016/0019-1035(90)90123-Q.
Badman, S.V., Branduardi-Raymont, G., Galand, M., Hess, S.L.G., Krupp, N., Lamy, L., Melin, H., Tao, C., Auroral processes at the giant planets: Energy deposition, emission mechanisms, morphology and spectra. Space Sci. Rev. 1572-9672, 187(1), 2015, 10.1007/s11214-014-0042-x.
Bonfond, B., Saur, J., Grodent, D., Badman, S.V., Bisikalo, D., Shematovich, V., Gérard, J.-C., Radioti, A., The tails of the satellite auroral footprints at Jupiter. J. Geophys. Res. (Space Phys.) 122 (2017), 7985–7996, 10.1002/2017JA024370.
Bougher, S.W., Waite, J.H., Majeed, T., Gladstone, G.R., Jupiter thermospheric general circulation model (JTGCM): Global structure and dynamics driven by auroral and Joule heating. J. Geophys. Res. (Planets), 110, 2005, E04008, 10.1029/2003JE002230.
Caldwell, J., Gillett, F.C., Tokunaga, A.T., Possible infrared aurorae on Jupiter. Icarus 44 (1980), 667–675, 10.1016/0019-1035(80)90135-9.
Cavalié, T., Benmahi, B., Hue, V., Moreno, R., Lellouch, E., Fouchet, T., Hartogh, P., Rezac, L., Greathouse, T.K., Gladstone, G.R., Sinclair, J.A., Dobrijevic, M., Billebaud, F., Jarchow, C., First direct measurement of auroral and equatorial jets in the stratosphere of Jupiter. Astron. Astrophys., 647, 2021, L8, 10.1051/0004-6361/202140330 arXiv:2103.12208.
Clark, G., Mauk, B.H., Paranicas, C., Haggerty, D., Kollmann, P., Rymer, A., Brown, L., Jaskulek, S., Schlemm, C., Kim, C., Peachey, J., LaVallee, D., Allegrini, F., Bagenal, F., Bolton, S., Connerney, J., Ebert, R.W., Hospodarsky, G., Levin, S., Kurth, W.S., McComas, D.J., Mitchell, D.G., Ranquist, D., Valek, P., Observation and interpretation of energetic ion conics in Jupiter's polar magnetosphere. Geophys. Res. Lett. 44:10 (2017), 4419–4425, 10.1002/2016GL072325.
De Buizer, J., Fisher, R., T-ReCS and Michelle: The mid-infrared spectroscopic capabilities of the gemini observatory. High Resolution Infrared Spectroscopy in Astronomy, 2005, 84–87, 10.1007/10995082_12 arXiv:astro-ph/0402572.
Deutsch, L.K., Hora, J.L., Adams, J.D., Kassis, M., MIRSI: a mid-InfraRed spectrometer and imager. Iye, M., Moorwood, A.F.M., (eds.) Instrument Design and Performance for Optical/Infrared Ground-Based Telescopes Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 4841, 2003, 106–116, 10.1117/12.461436.
Drossart, P., Bezard, B., Atreya, S.K., Bishop, J., Waite, J.H. Jr., Boice, D., Thermal profiles in the auroral regions of Jupiter. J. Geophys. Res., 98, 1993, 18803, 10.1029/93JE01801.
Flasar, F.M., Kunde, V.G., Achterberg, R.K., Conrath, B.J., Simon-Miller, A.A., Nixon, C.A., Gierasch, P.J., Romani, P.N., Bézard, B., Irwin, P., Bjoraker, G.L., Brasunas, J.C., Jennings, D.E., Pearl, J.C., Smith, M.D., Orton, G.S., Spilker, L.J., Carlson, R., Calcutt, S.B., Read, P.L., Taylor, F.W., Parrish, P., Barucci, A., Courtin, R., Coustenis, A., Gautier, D., Lellouch, E., Marten, A., Prangé, R., Biraud, Y., Fouchet, T., Ferrari, C., Owen, T.C., Abbas, M.M., Samuelson, R.E., Raulin, F., Ade, P., Césarsky, C.J., Grossman, K.U., Coradini, A., An intense stratospheric jet on Jupiter. Nature 427 (2004), 132–135.
Fletcher, L.N., Orton, G.S., Sinclair, J.A., Donnelly, P., Melin, H., Rogers, J.H., Greathouse, T.K., Kasaba, Y., Fujiyoshi, T., Sato, T.M., Fernandes, J., Irwin, P.G.J., Giles, R.S., Simon, A.A., Wong, M.H., Vedovato, M., Jupiter's North Equatorial Belt expansion and thermal wave activity ahead of Juno's arrival. Geophys. Res. Lett. 44:14 (2017), 7140–7148, 10.1002/2017GL073383 arXiv:1708.05179.
Fletcher, L.N., Orton, G.S., Sinclair, J.A., Guerlet, S., Read, P.L., Antuñano, A., Achterberg, R.K., Flasar, F.M., Irwin, P.G.J., Bjoraker, G.L., Hurley, J., Hesman, B.E., Segura, M., Gorius, N., Mamoutkine, A., Calcutt, S.B., A hexagon in Saturn's northern stratosphere surrounding the emerging summertime polar vortex. Nature Commun., 9, 2018, 3564, 10.1038/s41467-018-06017-3 arXiv:1809.00572.
Fletcher, L.N., Orton, G.S., Yanamandra-Fisher, P., Fisher, B.M., Parrish, P.D., Irwin, P.G.J., Retrievals of atmospheric variables on the gas giants from ground-based mid-infrared imaging. Icarus 200 (2009), 154–175, 10.1016/j.icarus.2008.11.019.
Friedson, A.J., Wong, A.-S., Yung, Y.L., Models for polar haze formation in Jupiter's stratosphere. Icarus 158 (2002), 389–400, 10.1006/icar.2002.6885.
Giles, R.S., Greathouse, T.K., Cosentino, R.G., Orton, G.S., Lacy, J.H., Vertically-resolved observations of Jupiter's quasi-quadrennial oscillation from 2012 to 2019. Icarus, 350, 2020, 113905, 10.1016/j.icarus.2020.113905 arXiv:2006.15247.
Greathouse, T., Gladstone, R., Versteeg, M., Hue, V., Kammer, J., Giles, R., Davis, M., Bolton, S., Levin, S., Connerney, J., Gérard, J.-C., Grodent, D., Bonfond, B., Bunce, E., Vogt, M.F., Local time dependence of Jupiter's polar auroral emissions observed by juno UVS. J. Geophys. Res. (Planets), 126(12), 2021, e06954, 10.1029/2021JE006954.
Grodent, D., Bonfond, B., Nichols, J., Observing Jupiter's polar stratospheric haze with HST/STIS. An HST White Paper. 2015 ArXiv e-prints arXiv:1509.01412.
Grodent, D., Waite, J.H. Jr., Gérard, J.-C., A self-consistent model of the Jovian auroral thermal structure. J. Geophys. Res. 106 (2001), 12933–12952, 10.1029/2000JA900129.
Gustin, J., Grodent, D., Ray, L.C., Bonfond, B., Bunce, E.J., Nichols, J.D., Ozak, N., Characteristics of north jovian aurora from STIS FUV spectral images. Icarus 268 (2016), 215–241, 10.1016/j.icarus.2015.12.048.
Hoffmann, W.F., Fazio, G.G., Shivanandan, K., Hora, J.L., Deutsch, L.K., MIRAC: a mid-infrared array camera for astronomy. Fowler, A.M., (eds.) Infrared Detectors and Instrumentation, Vol. 1946, 1993, SPIE, International Society for Optics and Photonics, 449–460, 10.1117/12.158697.
Houston, S.J., Ozak, N., Young, J., Cravens, T.E., Schultz, D.R., Jovian auroral ion precipitation: Field-aligned currents and ultraviolet emissions. J. Geophys. Res. Space Phys. 123:3 (2018), 2257–2273, 10.1002/2017JA024872 URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JA024872.
Kataza, H., Okamoto, Y., Takubo, S., Onaka, T., Sako, S., Nakamura, K., Miyata, T., Yamashita, T., COMICS: the cooled mid-infrared camera and spectrometer for the Subaru telescope. Iye, M., Moorwood, A.F., (eds.) Optical and IR Telescope Instrumentation and Detectors Proceedings of SPIE, Vol. 4008, 2000, 1144–1152, 10.1117/12.395433.
Kim, S.J., Caldwell, J., Rivolo, A.R., Wagener, R., Orton, G.S., Infrared polar brightening on Jupiter. III - Spectrometry from the Voyager 1 IRIS experiment. Icarus 64 (1985), 233–248, 10.1016/0019-1035(85)90088-0.
Kim, S.J., Geballe, T.R., Greathouse, T.K., Yung, Y.L., Miller, S., Orton, G.S., Minh, Y.C., Temperatures and CH4 mixing ratios near the homopause of the 8 μm north polar hot spot of Jupiter. Icarus 281 (2017), 281–285, 10.1016/j.icarus.2016.09.017.
Kim, S., Park, J., Sim, C.K., Geballe, T., Yung, Y., Miller, S., Greathouse, T., Lee, S., Tao, C., Morphological variations of the 3-micron northern aurorae of Jupiter. AAS/Division for Planetary Sciences Meeting Abstracts, Vol. 54, 2022, 415.03.
Kim, S.J., Sim, C.K., Geballe, T.R., Yung, Y.L., Miller, S., Greathouse, T.K., Lee, S., Tao, C., Temporal variation of the 3-micron hydrocarbon emissions at the 8-micron north polar hot spot of Jupiter: Comparison with solar wind activity. Icarus, 348, 2020, 113852, 10.1016/j.icarus.2020.113852.
Kim, S.J., Sim, C.K., Geballe, T.R., Yung, Y.L., Miller, S., Lee, S., Tao, C., Transient energetic particles as the origin of the mid-infrared north polar hotspot of Jupiter. Icarus, 398, 2023, 115538, 10.1016/j.icarus.2023.115538.
Kim, S.J., Sim, C.K., Sohn, M.R., Moses, J.I., CH4 mixing ratios at microbar pressure levels of Jupiter as constrained by 3-micron ISO data. Icarus 237 (2014), 42–51, 10.1016/j.icarus.2014.04.023.
Kita, H., Kimura, T., Tao, C., Tsuchiya, F., Misawa, H., Sakanoi, T., Kasaba, Y., Murakami, G., Yoshioka, K., Yamazaki, A., Yoshikawa, I., Fujimoto, M., Characteristics of solar wind control on Jovian UV auroral activity deciphered by long-term Hisaki EXCEED observations: Evidence of preconditioning of the magnetosphere?. Geophys. Res. Lett. 43 (2016), 6790–6798, 10.1002/2016GL069481.
Kostiuk, T., Livengood, T.A., T., H., Fast, K.E., Bjoraker, G.L., Schmuelling, F., Guido, S., Kolasinski, J.R., P33C-2155: Variability of Mid-Infrared Aurora on Jupiter: 1979 to 2016. American Geophysical Union Fall Meeting 2016. P33C: Juno's Exploration of Jupiter and the Earth-Based Collaborative Campaign III Posters, 2016.
Kostiuk, T., Romani, P., Espenak, F., Livengood, T.A., Temperature and abundances in the Jovian auroral stratosphere. 2: Ethylene as a probe of the microbar region. J. Geophys. Res., 98, 1993, 18823, 10.1029/93JE01332.
Lellouch, E., Bézard, B., Fouchet, T., Feuchtgruber, H., Encrenaz, T., de Graauw, T., The deuterium abundance in Jupiter and Saturn from ISO-SWS observations. Astron. Astrophys. 370 (2001), 610–622, 10.1051/0004-6361:20010259.
Livengood, T.A., Kostiuk, T., Espenak, F., Temperature and abundances in the Jovian auroral stratosphere. 1: Ethane as a probe of the millibar region. J. Geophys. Res., 98, 1993, 18813, 10.1029/93JE01043.
Lord, S., ATRANS: NASA technical memorandum 103957. 1992 https://atran.arc.nasa.gov.
Mauk, B.H., Clark, G., Gladstone, G.R., Kotsiaros, S., Adriani, A., Allegrini, F., Bagenal, F., Bolton, S.J., Bonfond, B., Connerney, J.E.P., Ebert, R.W., Haggerty, D.K., Kollmann, P., Kurth, W.S., Levin, S.M., Paranicas, C.P., Rymer, A.M., Energetic particles and acceleration regions over Jupiter's polar cap and main aurora: A broad overview. J. Geophys. Res. (Space Phys.), 125(3), 2020, e27699, 10.1029/2019JA027699.
Moses, J.I., Fouchet, T., Bézard, B., Gladstone, G.R., Lellouch, E., Feuchtgruber, H., Photochemistry and diffusion in Jupiter's stratosphere: Constraints from ISO observations and comparisons with other giant planets. J. Geophys. Res. (Planets), 110, 2005, E08001, 10.1029/2005JE002411.
Moses, J.I., Poppe, A.R., Dust ablation on the giant planets: Consequences for stratospheric photochemistry. Icarus 297 (2017), 33–58, 10.1016/j.icarus.2017.06.002 arXiv:1706.04686.
Murakami, G., Yoshioka, K., Yamazaki, A., Tsuchiya, F., Kimura, T., Tao, C., Kita, H., Kagitani, M., Sakanoi, T., Uemizu, K., Kasaba, Y., Yoshikawa, I., Fujimoto, M., Response of Jupiter's inner magnetosphere to the solar wind derived from extreme ultraviolet monitoring of the Io plasma torus. Geophys. Res. Lett. 43 (2016), 12, 308–12, 316, 10.1002/2016GL071675.
Seiff, A., Kirk, D.B., Knight, T.C.D., Young, R.E., Mihalov, J.D., Young, L.A., Milos, F.S., Schubert, G., Blanchard, R.C., Atkinson, D., Thermal structure of Jupiter's atmosphere near the edge of a 5-μm hot spot in the north equatorial belt. J. Geophys. Res. 103 (1998), 22857–22890, 10.1029/98JE01766.
Sinclair, J.A., Greathouse, T.K., Giles, R.S., Antuñano, A., Moses, J.I., Fouchet, T., Bézard, B., Tao, C., Martín-Torres, J., Clark, G.B., Grodent, D., Orton, G.S., Hue, V., Fletcher, L.N., Irwin, P.G.J., Spatial variations in the altitude of the CH4 homopause at Jupiter's mid-to-high latitudes, as constrained from IRTF-TEXES spectra. Planetary Sci. J., 1(3), 2020, 85, 10.3847/PSJ/abc887.
Sinclair, J.A., Greathouse, T.K., Giles, R.S., Lacy, J., Moses, J., Hue, V., Grodent, D., Bonfond, B., Tao, C., Cavalié, T., Dahl, E.K., Orton, G.S., Fletcher, L.N., Irwin, P.G.J., A high spatial and spectral resolution study of Jupiter's mid-infrared auroral emissions and their response to a solar wind compression. Planetary Sci. J., 4(4), 2023, 76, 10.3847/PSJ/accb95 arXiv:2304.08390.
Sinclair, J.A., Moses, J.I., Hue, V., Greathouse, T.K., Orton, G.S., Fletcher, L.N., Irwin, P.G.J., Jupiter's auroral-related stratospheric heating and chemistry III: Abundances of C2H4, CH3C2H, C4H2 and C6H6 from Voyager-IRIS and Cassini-CIRS. Icarus 328 (2019), 176–193, 10.1016/j.icarus.2019.03.012.
Sinclair, J.A., Orton, G.S., Fernandes, J., Kasaba, Y., Sato, T.M., Fujiyoshi, T., Tao, C., Vogt, M.F., Grodent, D., Bonfond, B., Moses, J.I., Greathouse, T.K., Dunn, W., Giles, R.S., Tabataba-Vakili, F., Fletcher, L.N., Irwin, P.G.J., A brightening of Jupiter's auroral 7.8-μm CH4 emission during a solar-wind compression. Nat. Astron. 3 (2019), 607–613, 10.1038/s41550-019-0743-x.
Sinclair, J.A., Orton, G.S., Greathouse, T.K., Fletcher, M., I., J., Hue, V., Irwin, P.G.J., Jupiter's auroral-related stratospheric heating and chemistry I: analysis of Voyager-IRIS and Cassini-CIRS spectra. Icarus 292 (2017), 182–207, 10.1016/j.icarus.2016.12.033.
Sinclair, J.A., Orton, G.S., Greathouse, T.K., Fletcher, M., I., J., Hue, V., Irwin, P.G.J., Independent evolution of stratospheric temperatures in Jupiter's northern and southern auroral regions from 2014 to 2016. Geophys. Res. Lett. 44 (2017), 5345–5354, 10.1002/2017GL073529.
Sinclair, J.A., Orton, G.S., Greathouse, T.K., Fletcher, M., I., J., Hue, V., Irwin, P.G.J., Jupiter's auroral-related stratospheric heating and chemistry II: analysis of IRTF-TEXES spectra measured in December 2014. Icarus 300 (2018), 305–326.
Tao, C., Kataoka, R., Fukunishi, H., Takahashi, Y., Yokoyama, T., Magnetic field variations in the jovian magnetotail induced by solar wind dynamic pressure enhancements. J. Geophys. Res. Space Phys. 2156-2202, 110(A11), 2005, 10.1029/2004JA010959 A11208.
Thatcher, L.J., Müller, H.-R., Statistical investigation of hourly OMNI solar wind data. J. Geophys. Res. (Space Phys.), 116, 2011, A12107, 10.1029/2011JA017027.
Wong, A.-S., Lee, A.Y.T., Yung, Y.L., Ajello, J.M., Jupiter: Aerosol chemistry in the polar atmosphere. Astrophys. J. Lett. 534 (2000), L215–L217, 10.1086/312675.
Wong, A.-S., Yung, Y.L., Friedson, A.J., Benzene and haze formation in the polar atmosphere of Jupiter. Geophys. Res. Lett., 30, 2003, 1447, 10.1029/2002GL016661.
Zhang, X., West, R., Banfield, D., Yung, Y., Stratospheric aerosols on Jupiter from Cassini observations. Icarus 226:1 (2013), 159–171, 10.1016/j.icarus.2013.05.020.
Zieger, B., Hansen, K.C., Statistical validation of a solar wind propagation model from 1 to 10 AU. J. Geophys. Res. (Space Phys.), 113, 2008, A08107, 10.1029/2008JA013046.