Bolivia; Carbon neutrality; Dispa-SET; Energy modelling; Energy policy; Energy systems; Energy transition; GHG emissions; OSeMOSYS; Renewable Energy, Sustainability and the Environment
Abstract :
[en] The global imperative of achieving carbon neutrality by 2050 to mitigate climate change has intensified the focus on the energy sector, given its significant contribution to GHG emissions. Like many other countries, Bolivia has set official goals for transitioning its energy sector. However, these still require robust planning and technical documentation to become a reality. To better understand the effects of the transition process, a long-term optimization model (OSeMOSYS) was developed for the period 2020–2050. This model analyses the evolution of energy consumption, emissions, and required investments under alternative conditions. Additionally, a dispatch optimization model (Dispa-SET) was used to validate the technical feasibility of these scenarios periodically. Linking results from both models helps address limitations in the long-term model and determine a margin of error in its simulations. This study explores three scenarios: Business as Usual (BAU), Mixed Policies (MP), incorporating policy-based measures, and Carbon Neutrality (CN), assuming a 95 % reduction of carbon emissions. Results suggest that adopting energy transition measures could reduce the system's overall cost in the long term. However, achieving this would require major investments, especially at the power generation level. Relative to BAU conditions, the MP scenario expects an 80 % reduction in emissions by 2050, but requiring discounted investments 3.5 times higher. The CN scenario would require even larger investments, with an average yearly undiscounted cost of 2700 million USD between 2020 and 2050, similar to 7 % of the current national GDP of Bolivia. These results highlight the significant challenge of transitioning Bolivia's energy sector.
Disciplines :
Energy
Author, co-author :
Fernandez Vazquez, Carlos Ariel Alejandro ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M) ; Centro Universitario de Investigaciones en Energías, Universidad Mayor de San Simón, Cochabamba, Bolivia
Vansighen, Thomas; Faculty of Applied Sciences, University of Liège, Liege, Belgium
Fernandez Fuentes, Miguel H.; ENERGETICA, Cochabamba, Bolivia
Quoilin, Sylvain ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes énergétiques ; Faculty of Engineering Technology, KU Leuven, Leuven, Belgium
Language :
English
Title :
Energy transition implications for Bolivia. Long-term modelling with short-term assessment of future scenarios
The Belgian cooperation ARES is acknowledged for the financial support for this work in the framework of the PRD Project: Tailored energy system models for energy planning in Bolivia.
Intergovernmental Panel on Climate Change. Climate change 2007: synthesis report. Fourth assessment report of the intergovernmental Panel on climate change, cambridge, 2007.
United Nations. Framework convention on climate change, "the Paris agreement,". Paris climate change conference, Paris, 2015.
Intergovernmental Panel on climate change. Global warming of 1.5°C, 2018, IPCC, Suiza.
Chen, J., Carbon neutrality: toward a sustainable future. 2021, The Innovation.
Wang, F., Harindintwali, J., Yuan, Z., Wang, M., Wang, F., Li, S., Technologies and perspectives for achieving carbon neutrality. Innovation, 2, 2021, 100180.
Smil, V., Energy transitions: global and national perspectives. second ed., 2016 Retrieved from http://publisher.abc-clio.com/9781440853258.
Resch, G., Held, A., Faber, T., Panzer, C., Toro, F., Haas, R., Potentials and prospects for renewable energies at global scale. Energy Pol, 2008, 4048–4056.
Venegas, M., Of renewable energy, energy democracy, and sustainable development: a roadmap to accelerate the energy transition in developing countries. 2020, Energy Research & Social Science, 101716.
Rojas, R., Araoz, A., Balderrama, S., Peña, J., Senosiain, V., Quolin, S., Techno-economic assessment of high renewable energy source penetration in the Bolivian interconnected electric system. Proceedings of the 31st ECOS conference, 2018.
Stringer, T., Joanis, M., Assessing energy transition costs: sub-national challenges in Canada. 2022, Energy Policy.
Carvalho, A., Rquito, M., Ferreira, V., Sociotechnical imaginaries of energy transition: the case of the Portuguese Roadmap for Carbon Neutrality 2050. Energy Rep 8 (2022), 2413–2423.
Schmidt, T., Sewerin, S., Technology as a driver of climate and energy politics. Nat Energy 2, 2017, 17084 https://doi.org/10.1038/nenergy.2017.84.
Sadiqa, A., Gulagi, A., Breyer, C., Energy transition roadmap towards 100% renewable energy and role of storage technologies for Pakistan by 2050. 2018, Energy, 518–533.
Navia, M., Orellana, R., Zarate, S., Villazon, M., Balderrama, S., Quoilin, S., Energy transition planning with high penetration of variable renewable energy in developing countries: the case of the Bolivian interconnected power system. Energies, 15, 2022.
Pinto de Moura, G., Loureiro, L., Peña, G., Howells, M., South America power integration, Bolivian electricity export potential and bargaining power: an OSeMOSYS SAMBA approach. Energy Strategy Rev 17 (2017), 27–36.
Energetica, W.W.F.&, Modelamiento del sistema energetico Boliviano al 2040 segun metas del IPCC. 2020, Cochabamba.
Fernandez, C., Brecha, R., Fernandez, M., Analyzing carbon emissions policies for the Bolivian electric sector. Renew. Sustain. Energy Trans., 2, 2022.
International Renewable Energy Agency. Long-term energy scenarios and low-emission development strategies: stocktaking and alignment. 2023, International Renewable Energy Agency, Abu Dhabi.
Taseska-Gjorgievska, V., et al. An integrated approach for analysis of higher penetration of variable renewable energy: coupling of the long-term energy planning tools and power transmission network models. J. Sustain. Dev. Energy, Water and Environ. Syst. 7:4 (2019), 615–630.
Wyrwa, A., et al. A new approach for coupling the short- and long-term planning models to design a pathway to carbon neutrality in a coal-based power system. Energy, 239, 2022.
Sokhna Seck, G., et al. Embedding power system's reliability within a long-term Energy System Optimization Model: linking high renewable energy integration and future grid stability for France by 2050. Appl Energy, 257, 2020.
Pavičević, M., et al. The potential of sector coupling in future European energy systems: soft linking between the Dispa-SET and JRC-EU-TIMES models. Appl Energy, 267, 2020.
Fernandez, C., Vansighen, T., Fernandez, M., Quoilin, S., Energy transition in Bolivia. Modeling of the Bolivian energy sector to achieve carbon neutrality by 2050, 2022, LA.SDEWES2022, Sao Paulo.
Howells, M., Rogner, H., Strachan, N., Heaps, C., Huntington, H., Kypreos, S., Hughes, A., Silveira, S., DeCarolis, J., Bazilian, M., Roehrl, A., OSeMOSYS: the open source energy modeling system: an introduction to its ethos, structure and development. Energy Pol 39 (2011), 5850–5870.
Gardumi, F., Shivakumar, A., Morrison, R., Taliotis, C., Broad, O., Beltramo, A., Howells, M., From the development of an open-source energy modelling tool to its application and the creation of communities of practice: the example of OSeMOSYS. Energy Strategy Rev 20 (2018), 209–228.
Pavicevic, M., et al. Water-energy nexus in african power pools – the dispa-set africa model. Energy, 228, 2021, 120623.
Vansighen, T., Travail de fin d'études et stage - contribution to the energy transition in Bolivia. 2022, ULiege.
Ministerio de Hidrocarburos y Energia. Balance energetico nacional 2006-2020," La paz. 2022.
Chavez Rodriguez, M., et al. Can Bolivia keep its role as a major natural gas exporter in South America?. J Nat Gas Sci Eng, 2016, 717–730.
Autoridad de Electricidad, y, Tecnología nuclear. 2021, Anuario Estadistico 2020, La Paz.
Autoridad de Electricidad, y, Tecnología nuclear. 2021, Memoria Anual 2020, La Paz.
Ministerio de Medio ambiente y agua. “Inventario de emisiones de Bolivia: 2002 y 2004,” La Paz, 2004.
Ministerio de Medio ambiente y agua, 2020, Tercera Comunicacion Nacional del Estado Plurinacional de Bolivia, La Paz.
Ministerio de Hidrocarburos y Energia. Plan Optimo de Expansion del Sistema Interconectado Nacional," La Paz. 2012.
Ministerio de Hidrocarburos y Energia. Plan Eléctrico del Estado Plurinacional de Bolivia 2025. 2014, Viceministerio de Electricidad y Energías Alternativas, La Paz.
Bolivia. Contribución Prevista Determinada Nacionalmente del Estado Plurinacional de Bolivia. 2016 [Online]. Available: https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Bolivia%20(Plurinational%20State%20of)%20First/ESTADO%20PLURINACIONAL%20DE%20BOLIVIA1.pdf.
United Nations. Framework convention on climate change. NDC registry, 2016 [Online]. Available: https://www4.unfccc.int/sites/NDCStaging/pages/Party.aspx?party=BOL.
Ministerio de Planificacion y Desarrollo. Plan de Desarrollo Economico y social 2021-2025," La paz. 2021.
Ministerio de Medio ambiente y agua. “Nationally determined contribution (NDC) of the Plurinational State of Bolivia,” La paz, 2022.
Ministerio de Energias. Ley de Electricidad, N1604, 1994.
Comité Nacional de Despacho de Carga, Memoria anual 2020. 2021, Cochabamba.
Empresa nacional de Electricidad. Proyectos ejecutados, 2022 https://www.ende.bo/proyectos/ejecutados.
Empresa nacional de Electricidad. Proyectos en ejecucion, 2022 https://www.ende.bo/proyectos/ejecucion.
Empresa nacional de Electricidad. Proyectos en estudio, 2022 https://www.ende.bo/proyectos/estudio.
International Renewable Energy Agency. World energy transitions outlook 2022: 1.5°C pathway. 2022, International Renewable Energy Agency, Abu Dhabi.
Intergovernmental Panel on Climate Change. IPCC guide lines for national greenhouse gas inventories. 2006, Institute for Global Environmental Strategies (IGES) 2006.
Rosa, L.P., Schaeffer, R., Greenhouse gas emissions from hydroelectric reservoirs. Ambio 23 (1994), 164–165.
Gagnon, L., van der Vate, J., "Greenhouse gas emissions from hydropower: the state of research in. Energy Pol 25 (1996), 7–13 1997.
Almeida, R., et al. Reducing greenhouse gas emissions of Amazon hydropower with strategic dam planning. Nat Commun 10, 2019, 4281 https://doi.org/10.1038/s41467-019-12179-5.
Rudd, J., Hecky, R., Harris, R., Are hydroelectric reservoirs significant sources of greenhouse gases?. Ambio 22 (1993), 246–248.
Steinhurst, W., Knight, P., Schultz, M., Hydropower greenhouse gas emissions. 2012, Synapse, Cambridge.
Fridriksson, T., et al. Greenhouse gas emissions from geothermal power production. PROCEEDINGS, 42nd workshop on geothermal reservoir engineering, California, 2017.
O'Sullivan, M., et al. Carbon dioxide emissions from geothermal power plants. Renew Energy 175 (2021), 990–1000.
Ministerio de Hidrocarburos y Energia. Balance energetico nacional 2000-2014," La paz. 2015.
Organización latinoamericana de Energía. Sistema de Información energética de Latinoamérica y el Caribe, 2019 [Online]. Available: http://sielac.olade.org/default.aspx.
Organización Latinoamericana de Energía. "Prospectiva energética de América Latina y el Caribe,". Panorama energético de América latina y el Caribe 2019, quito, 2019, OLADE.
Landaveri, R., Modelización y Prospectiva del Sistema Energético Boliviano 2007 – 2025. Escenarios tendencial y de mitigación. 2009, Fundación Bariloche.
Manzaneda, L., Bolivia pierde casi $us 500 millones anuales por los precios bajos de gas y electricidad. Los Tiempos, 9 Septiembre 2018.
Statista. Prices of implemented carbon taxes worldwide 2021, by select country, 2021 [Online]. Available: https://www.statista.com/statistics/483590/prices-of-implemented-carbon-pricing-instruments-worldwide-by-select-country/#:∼:text=As%20of%20April%202021%2C%20Sweden,carbon%20tax%20back%20in%201990.
Peña, J., Broad, O., Sevillano, C., Alejo, L., Howells, M., Techno-economic demand projections and scenarios for the Bolivian energy system. Energy Strategy Rev 16 (2017), 96–109.
Jara, N., Isaza, C., Programas de Eficiencia Energética y Etiquetado en el Ecuador – revisión del Estado Actual. Ii encuentro de tecnología E ingenieria & X simposio internacional en energias, medellin, 2014.
United Nations Economic Commission for Europe. Best policy practices for promoting energy efficiency. 2015, United Nations, Ginebra.
Asia Pacific Energy research Centre. Compendium of energy efficiency policies of APEC economies", Tokyo. 2016.
Sweeting, W., Hutchinson, A., Savage, S., Factors affecting electric vehicle energy consumption. Int J Sustain Eng 3 (2011), 192–201, 10.1080/19397038.2011.592956.
Brenn, J., Bach, C., Comparison of natural gas driven heat pumps and electrically driven heat pumps with conventional systems for building heating purposes. Energy Build, 2010, 904–908.
Mundi, Index, Gas natural Precio Mensual - Dólares americanos por millón de BTU. 2019 Available [Online] https://www.indexmundi.com/es/precios-de-mercado/?mercancia=gas-natural&meses=120.
International Energy Agency. World energy outlook 2021," Paris. 2021.
Carbon Tax Center. Where carbon is taxed. 2018 Available [Online]: https://www.carbontax.org/where-carbon-is-taxed/.
Bento, N., Gianfrate, G., Determinants of internal carbon pricing. Energy Pol, 143, 2020.
Zhou, J., Wu, D., Chen, W., Cap and trade versus carbon tax: an analysis based on a CGE model. Comput Econ 59 (2021), 853–885.
Conway, D., et al. Carbon tax guide: a handbook for policy makers. 2017, World Bank Group, Washington D.C.
Mai, T., et al. Getting to 100%: six strategies for the challenging last 10. Joule 6:9 (2022), 1981–1994.
Nueva Constitucion Politica del Estado, Bolivia, 2009.
Bogdanov, D., et al. Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy, 227, 2021.
Stringer, T., Joanis, M., Assessing energy transition costs: sub-national challenges in Canada. Energy Pol, 164, 2022.
Way, R., et al. Empirically grounded technology forecasts and the energy transition. Joule 6:9 (2022), 2057–2082.
Finkelstein, J., Frankel, D., Noffsinger, J., McKinsey & Company, 19 May 2020 https://www.mckinsey.com/industries/electric-power-and-natural-gas/our-insights/how-to-decarbonize-global-power-systems. (Accessed 1 February 2023)
IEA. Net zero by 2050. A roadmap for the global energy sector. 2021, International Energy Agency.
Gorbach, O., Kost, C., Pickett, C., Review of internal carbon pricing and the development of a decision process for the identification of promising Internal Pricing Methods for an Organisation. Renew Sustain Energy Rev, 154, 2022.
The World Bank, “GDP (Current US$) - Bolivia” Available [Online]: https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?locations=BO. [Accessed 5 February 2022].
Cachaga, P., Romero, J., Acho, J., Evaluación de la inversión pública en Bolivia: un análisis mediante fronteras de eficiencia. Revista de Análisis 32 (2020), 169–200.
Hamilton, J., Time series analysis. 1994, Princeton University Press.
Gujarati, D., Porter, D., Econometría, 2010 chapter 14.
Foster, E., Contestabile, M., Blazquez, J., Manzano, B., Workman, M., Shah, N., The unstudied barriers to widespread renewable energy deployment: fossil fuel price responses. Energy Pol 103 (2017), 258–264.
Nnaemeka, V., Taha, C., Rabiul, A., Are emission reduction policies effective under climate change conditions? A backcasting and exploratory scenario approach using the LEAP-OSeMOSYS Model. Appl Energy 236 (2019), 1183–1217.
Osorio, J., et al. The impact of renewable energy and sector coupling on the pathway towards a sustainable energy system in Chile. Renew Sustain Energy Rev, 151, 2021.
Espinoza, V., et al. Energy efficiency plan benefits in Ecuador: long-range energy alternative planning model. Int J Energy Econ Pol 8:4 (2018), 42–54.
Lopez, G., Aghahosseini, A., Bogdanov, D., Pathway to a fully sustainable energy system for Bolivia across power, heat, and transport sectors by 2050. J Clean Prod, 293, 2021.