[en] The cytotoxicity caused by snake venoms is a serious medical problem that greatly contributes to the morbidity observed in snakebite patients. The cytotoxic components found in snake venoms belong to a variety of toxin classes and may cause cytotoxic effects by targeting a range of molecular structures, including cellular membranes, the extracellular matrix (ECM) and the cytoskeleton. Here, we present a high-throughput assay (384-well plate) that monitors ECM degradation by snake venom toxins via the application of fluorescent versions of model ECM substrates, specifically gelatin and collagen type I. Both crude venoms and fractionated toxins of a selection of medically relevant viperid and elapid species, separated via size-exclusion chromatography, were studied using the self-quenching, fluorescently labelled ECM-polymer substrates. The viperid venoms showed significantly higher proteolytic degradation when compared to elapid venoms, although the venoms with higher snake venom metalloproteinase content did not necessarily exhibit stronger substrate degradation than those with a lower one. Gelatin was generally more readily cleaved than collagen type I. In the viperid venoms, which were subjected to fractionation by SEC, two (B. jararaca and C. rhodostoma, respectively) or three (E. ocellatus) active proteases were identified. Therefore, the assay allows the study of proteolytic activity towards the ECM in vitro for crude and fractionated venoms.
Disciplines :
Chemistry
Author, co-author :
Wachtel, Eric ; AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
Bittenbinder, Matyas A; AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands ; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands ; Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands
van de Velde, Bas; AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands ; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
Slagboom, Julien; AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands ; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
de Monts de Savasse, Axel ; Université de Liège - ULiège > Faculté de Médecine > Master sc. pharma., à fin. ; AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
Alonso, Luis L ; AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands ; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
Casewell, Nicholas R ; Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK ; Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
Vonk, Freek J; AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands ; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands ; Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands
Kool, Jeroen ; AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands ; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
Language :
English
Title :
Application of an Extracellular Matrix-Mimicking Fluorescent Polymer for the Detection of Proteolytic Venom Toxins.
COST - European Cooperation in Science and Technology Wellcome Trust
Funding number :
[221712/Z/20/Z] and [221710/Z/20/Z]
Funding text :
This research is in line with work from the COST Action European Venom Network CA19144, supported by COST (European Cooperation in Science and Technology) and was partly funded by the Wellcome Trust [221712/Z/20/Z] and [221710/Z/20/Z]. For the purpose of open access, the author has applied a CC BY public copyright license to any author accepted manuscript version arising from this submission.
Chippaux J.P. Snake-bites: Appraisal of the global situation Bull. World Health Organ. 1998 76 515
Gutiérrez J.M. Theakston R.D.G. Warrell D.A. Confronting the neglected problem of snake bite envenoming: The need for a global partnership PLoS Med. 2006 3 e150 10.1371/journal.pmed.0030150
Slagboom J. Kool J. Harrison R.A. Casewell N.R. Haemotoxic snake venoms: Their functional activity, impact on snakebite victims and pharmaceutical promise Br. J. Haematol. 2017 177 947 959 10.1111/bjh.14591
Selistre-de-Araujo H.S. Pontes C.L. Montenegro C.F. Martin A.C. Snake venom disintegrins and cell migration Toxins 2010 2 2606 2621 10.3390/toxins2112606 22069567
Girish K. Jagadeesha D. Rajeev K. Kemparaju K. Snake venom hyaluronidase: An evidence for isoforms and extracellular matrix degradation Mol. Cell. Biochem. 2002 240 105 110 10.1023/A:1020651607164 12487377
Vonk F.J. Jackson K. Doley R. Madaras F. Mirtschin P.J. Vidal N. Snake venom: From fieldwork to the clinic: Recent insights into snake biology, together with new technology allowing high-throughput screening of venom, bring new hope for drug discovery Bioessays 2011 33 269 279 10.1002/bies.201000117
Fry B.G. Venomous Reptiles and Their Toxins: Evolution, Pathophysiology and Biodiscovery Oxford University Press Oxford UK 2015
Gopalakrishnakone P. Inagaki H. Mukherjee A.K. Rahmy T.R. Vogel C.-W. Snake Venoms Springer Berlin, Germany 2017 10.1007/978-94-007-6410-1
Gasanov S.E. Dagda R.K. Rael E.D. Snake venom cytotoxins, phospholipase A2s, and Zn2+-dependent metalloproteinases: Mechanisms of action and pharmacological relevance J. Clin. Toxicol. 2014 4 1000181 10.4172/2161-0495.1000181
Costal-Oliveira F. Stransky S. Guerra-Duarte C. Naves de Souza D.L. Vivas-Ruiz D.E. Yarlequé A. Sanchez E.F. Chávez-Olórtegui C. Braga V.M. L-amino acid oxidase from Bothrops atrox snake venom triggers autophagy, apoptosis and necrosis in normal human keratinocytes Sci. Rep. 2019 9 1 14 10.1038/s41598-018-37435-4 30692577
Guo C. Liu S. Yao Y. Zhang Q. Sun M.-Z. Past decade study of snake venom L-amino acid oxidase Toxicon 2012 60 302 311 10.1016/j.toxicon.2012.05.001 22579637
Pathan J. Mondal S. Sarkar A. Chakrabarty D. Daboialectin, a C-type lectin from Russell’s viper venom induces cytoskeletal damage and apoptosis in human lung cancer cells in vitro Toxicon 2017 127 11 21 10.1016/j.toxicon.2016.12.013 28062165
Frantz C. Stewart K.M. Weaver V.M. The extracellular matrix at a glance J. Cell Sci. 2010 123 4195 4200 10.1242/jcs.023820 21123617
Gutiérrez J.M. Escalante T. Rucavado A. Herrera C. Fox J.W. A comprehensive view of the structural and functional alterations of extracellular matrix by snake venom metalloproteinases (SVMPs): Novel perspectives on the pathophysiology of envenoming Toxins 2016 8 304 10.3390/toxins8100304 27782073
Kjeld N.G. Hua B. Karsdal M.A. Sun S. Manon-Jensen T. The endothelial specific isoform of type XVIII collagen correlates to annual bleeding rate in haemophilia patients PLoS ONE 2018 13 e0190375 10.1371/journal.pone.0190375
Gutiérrez J.M. Escalante T. Rucavado A. Herrera C. Hemorrhage caused by snake venom metalloproteinases: A journey of discovery and understanding Toxins 2016 8 93 10.3390/toxins8040093 27023608
Herrera C. Escalante T. Voisin M.-B. Rucavado A. Morazán D. Macêdo J.K.A. Calvete J.J. Sanz L. Nourshargh S. Gutiérrez J.M. Tissue localization and extracellular matrix degradation by PI, PII and PIII snake venom metalloproteinases: Clues on the mechanisms of venom-induced hemorrhage PLoS Negl. Trop. Dis. 2015 9 e0003731 10.1371/journal.pntd.0003731
Damm M. Hempel B.-F. Süssmuth R.D. Old World vipers—A review about snake venom proteomics of viperinae and their variations Toxins 2021 13 427 10.3390/toxins13060427
Nguyen G.T.T. O’Brien C. Wouters Y. Seneci L. Gallissà-Calzado A. Campos-Pinto I. Ahmadi S. Laustsen A.H. Ljungars A. High-throughput proteomics and in vitro functional characterization of the 26 medically most important elapids and vipers from sub-Saharan Africa GigaScience 2022 11 giac121 10.1093/gigascience/giac121
Tasoulis T. Isbister G.K. A review and database of snake venom proteomes Toxins 2017 9 290 10.3390/toxins9090290
Tasoulis T. Pukala T.L. Isbister G.K. Investigating Toxin Diversity and Abundance in Snake Venom Proteomes Front. Pharmacol. 2022 12 3869 10.3389/fphar.2021.768015 35095489
Pukrittayakamee S. Warrell D.A. Desakorn V. McMichael A.J. White N.J. Bunnag D. The hyaluronidase activities of some Southeast Asian snake venoms Toxicon 1988 26 629 637 10.1016/0041-0101(88)90245-0 3176052
Kang T.S. Georgieva D. Genov N. Murakami M.T. Sinha M. Kumar R.P. Kaur P. Kumar S. Dey S. Sharma S. Enzymatic toxins from snake venom: Structural characterization and mechanism of catalysis FEBS J. 2011 278 4544 4576 10.1111/j.1742-4658.2011.08115.x 21470368
Biardi J. Nguyen K. Lander S. Whitley M. Nambiar K. A rapid and sensitive fluorometric method for the quantitative analysis of snake venom metalloproteases and their inhibitors Toxicon 2011 57 342 347 10.1016/j.toxicon.2010.12.014 21187109
Conlon J.M. Attoub S. Arafat H. Mechkarska M. Casewell N.R. Harrison R.A. Calvete J.J. Cytotoxic activities of [Ser49] phospholipase A2 from the venom of the saw-scaled vipers Echis ocellatus, Echis pyramidum leakeyi, Echis carinatus sochureki, and Echis coloratus Toxicon 2013 71 96 104 10.1016/j.toxicon.2013.05.017
Escalante T. Rucavado A. Pinto A.F. Terra R.M. Gutiérrez J.M. Fox J.W. Wound exudate as a proteomic window to reveal different mechanisms of tissue damage by snake venom toxins J. Proteome Res. 2009 8 5120 5131 10.1021/pr900489m
Hayashi M.A. Nascimento F.D. Kerkis A. Oliveira V. Oliveira E.B. Pereira A. Radis-Baptista G. Nader H.B. Yamane T. Kerkis I. Cytotoxic effects of crotamine are mediated through lysosomal membrane permeabilization Toxicon 2008 52 508 517 10.1016/j.toxicon.2008.06.029
Jamunaa A. Vejayan J. Halijah I. Sharifah S. Ambu S. Cytotoxicity of Southeast Asian snake venoms J. Venom. Anim. Toxins Incl. Trop. Dis. 2012 18 150 156 10.1590/S1678-91992012000200004
Kalogeropoulos K. Treschow A.F. Escalante T. Rucavado A. Gutiérrez J.M. Laustsen A.H. Workman C.T. Protease activity profiling of snake venoms using high-throughput peptide screening Toxins 2019 11 170 10.3390/toxins11030170
Maruyama M. Sugiki M. Yoshida E. Shimaya K. Mihara H. Broad substrate specificity of snake venom fibrinolytic enzymes: Possible role in haemorrhage Toxicon 1992 30 1387 1397 10.1016/0041-0101(92)90514-6 1336630
Neumann C. Slagboom J. Somsen G.W. Vonk F. Casewell N.R. Cardoso C.L. Kool J. Development of a generic high-throughput screening assay for profiling snake venom protease activity after high-resolution chromatographic fractionation Toxicon 2020 178 61 68 10.1016/j.toxicon.2020.02.015 32112787
Prezotto-Neto J.P. Kimura L.F. Alves A.F. Gutiérrez J.M. Otero R. Suarez A.M. Santoro M.L. Barbaro K.C. Biochemical and biological characterization of Bothriechis schlegelii snake venoms from Colombia and Costa Rica Exp. Biol. Med. 2016 241 2075 2085 10.1177/1535370216660214 27439537
Roldán-Padrón O. Castro-Guillén J.L. García-Arredondo J.A. Cruz-Pérez M.S. Díaz-Peña L.F. Saldaña C. Blanco-Labra A. García-Gasca T. Snake venom hemotoxic enzymes: Biochemical comparison between Crotalus species from central Mexico Molecules 2019 24 1489 10.3390/molecules24081489
Fisher G.J. Quan T. Purohit T. Shao Y. Cho M.K. He T. Varani J. Kang S. Voorhees J.J. Collagen fragmentation promotes oxidative stress and elevates matrix metalloproteinase-1 in fibroblasts in aged human skin Am. J. Pathol. 2009 174 101 114 10.2353/ajpath.2009.080599
Naqvi T. Duong T.T. Hashem G. Shiga M. Zhang Q. Kapila S. Relaxin’s induction of metalloproteinases is associated with the loss of collagen and glycosaminoglycans in synovial joint fibrocartilaginous explants Arthritis Res 2004 7 1 11 10.1186/ar1451
Saito S. Katoh M. Masumoto M. Matsumoto S.-i. Masuho Y. Involvement of MMP-1 and MMP-3 in collagen degradation induced by IL-1 in rabbit cartilage explant culture Life Sci. 1998 62 PL359 PL365 10.1016/S0024-3205(98)00181-7
Ugarte-Berzal E. Vandooren J. Bailón E. Opdenakker G. García-Pardo A. Inhibition of MMP-9-dependent degradation of gelatin, but not other MMP-9 substrates, by the MMP-9 hemopexin domain blades 1 and 4 J. Biol. Chem. 2016 291 11751 11760 10.1074/jbc.M115.708438
Vandooren J. Geurts N. Martens E. Van den Steen P.E. De Jonghe S. Herdewijn P. Opdenakker G. Gelatin degradation assay reveals MMP-9 inhibitors and function of O-glycosylated domain World J. Biol. Chem. 2011 2 14 10.4331/wjbc.v2.i1.14
Wang F.q. So J. Reierstad S. Fishman D.A. Vascular endothelial growth factor–regulated ovarian cancer invasion and migration involves expression and activation of matrix metalloproteinases Int. J. Cancer 2006 118 879 888 10.1002/ijc.21421
Slagboom J. Derks R.J.E. Sadighi R. Somsen G. Ulens C. Casewell N.R. Kool J. High throughput venomics J. Proteome Res. 2023 Article ASAP 10.1021/acs.jproteome.2c00780
Sjöback R. Nygren J. Kubista M. Absorption and fluorescence properties of fluorescein Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1995 51 L7 L21 10.1016/0584-8539(95)01421-P
Gorgieva S. Kokol V. Collagen-vs. gelatine-based biomaterials and their biocompatibility: Review and perspectives Biomater. Appl. Nanomed. 2011 2 17 52
Tang E.L.H. Tan C.H. Fung S.Y. Tan N.H. Venomics of Calloselasma rhodostoma, the Malayan pit viper: A complex toxin arsenal unraveled J. Proteom. 2016 148 44 56 10.1016/j.jprot.2016.07.006
Wagstaff S.C. Sanz L. Juarez P. Harrison R.A. Calvete J.J. Combined snake venomics and venom gland transcriptomic analysis of the ocellated carpet viper, Echis ocellatus J. Proteom. 2009 71 609 623 10.1016/j.jprot.2008.10.003 19026773
Antunes T.C. Yamashita K.M. Barbaro K.C. Saiki M. Santoro M.L. Comparative analysis of newborn and adult Bothrops jararaca snake venoms Toxicon 2010 56 1443 1458 10.1016/j.toxicon.2010.08.011 20816886
Dingwoke E.J. Adamude F.A. Mohamed G. Klein A. Salihu A. Abubakar M.S. Sallau A.B. Venom proteomic analysis of medically important Nigerian viper Echis ocellatus and Bitis arietans snake species Biochem. Biophys. Rep. 2021 28 101164 10.1016/j.bbrep.2021.101164 34765747
Gonçalves-Machado L. Pla D. Sanz L. Jorge R.J.B. Leitão-De-Araújo M. Alves M.L.M. Alvares D.J. De Miranda J. Nowatzki J. de Morais-Zani K. Combined venomics, venom gland transcriptomics, bioactivities, and antivenomics of two Bothrops jararaca populations from geographic isolated regions within the Brazilian Atlantic rainforest J. Proteom. 2016 135 73 89 10.1016/j.jprot.2015.04.029 25968638
Nicolau C.A. Carvalho P.C. Junqueira-de-Azevedo I.L. Teixeira-Ferreira A. Junqueira M. Perales J. Neves-Ferreira A.G.C. Valente R.H. An in-depth snake venom proteopeptidome characterization: Benchmarking Bothrops jararaca J. Proteom. 2017 151 214 231 10.1016/j.jprot.2016.06.029
Sousa L.F. Nicolau C.A. Peixoto P.S. Bernardoni J.L. Oliveira S.S. Portes-Junior J.A. Mourão R.H.V. Lima-dos-Santos I. Sano-Martins I.S. Chalkidis H.M. Comparison of phylogeny, venom composition and neutralization by antivenom in diverse species of Bothrops complex PLoS Negl. Trop. Dis. 2013 7 e2442 10.1371/journal.pntd.0002442
Tang E.L.H. Tan N.H. Fung S.Y. Tan C.H. Comparative proteomes, immunoreactivities and neutralization of procoagulant activities of Calloselasma rhodostoma (Malayan pit viper) venoms from four regions in Southeast Asia Toxicon 2019 169 91 102 10.1016/j.toxicon.2019.08.004
Ainsworth S. Petras D. Engmark M. Süssmuth R.D. Whiteley G. Albulescu L.-O. Kazandjian T.D. Wagstaff S.C. Rowley P. Wüster W. The medical threat of mamba envenoming in sub-Saharan Africa revealed by genus-wide analysis of venom composition, toxicity and antivenomics profiling of available antivenoms J. Proteom. 2018 172 173 189 10.1016/j.jprot.2017.08.016 28843532
Chanda A. Kalita B. Patra A. Senevirathne W.D.S.T. Mukherjee A.K. Proteomic analysis and antivenomics study of Western India Naja naja venom: Correlation between venom composition and clinical manifestations of cobra bite in this region Expert Rev. Proteom. 2019 16 171 184 10.1080/14789450.2019.1559735 30556786
Chanda A. Mukherjee A.K. Quantitative proteomics to reveal the composition of Southern India spectacled cobra (Naja naja) venom and its immunological cross-reactivity towards commercial antivenom Int. J. Biol. Macromol. 2020 160 224 232 10.1016/j.ijbiomac.2020.05.106 32439440
Dutta S. Chanda A. Kalita B. Islam T. Patra A. Mukherjee A.K. Proteomic analysis to unravel the complex venom proteome of eastern India Naja naja: Correlation of venom composition with its biochemical and pharmacological properties J. Proteom. 2017 156 29 39 10.1016/j.jprot.2016.12.018 28062377
Laustsen A.H. Lomonte B. Lohse B. Fernández J. Gutiérrez J.M. Unveiling the nature of black mamba (Dendroaspis polylepis) venom through venomics and antivenom immunoprofiling: Identification of key toxin targets for antivenom development J. Proteom. 2015 119 126 142 10.1016/j.jprot.2015.02.002
Petras D. Sanz L. Segura A. Herrera M. Villalta M. Solano D. Vargas M. León G. Warrell D.A. Theakston R.D.G. Snake venomics of African spitting cobras: Toxin composition and assessment of congeneric cross-reactivity of the pan-African EchiTAb-Plus-ICP antivenom by antivenomics and neutralization approaches J. Proteome Res. 2011 10 1266 1280 10.1021/pr101040f
Senji Laxme R. Attarde S. Khochare S. Suranse V. Martin G. Casewell N.R. Whitaker R. Sunagar K. Biogeographical venom variation in the Indian spectacled cobra (Naja naja) underscores the pressing need for pan-India efficacious snakebite therapy PLoS Negl. Trop. Dis. 2021 15 e0009150 10.1371/journal.pntd.0009150
Gekko K. Ohmae E. Kameyama K. Takagi T. Acetonitrile-protein interactions: Amino acid solubility and preferential solvation Biochim. Et Biophys. Acta (BBA)-Protein Struct. Mol. Enzymol. 1998 1387 195 205 10.1016/S0167-4838(98)00121-6
Kony D.B. Hünenberger P.H. Van Gunsteren W.F. Molecular dynamics simulations of the native and partially folded states of ubiquitin: Influence of methanol cosolvent, pH, and temperature on the protein structure and dynamics Protein Sci. 2007 16 1101 1118 10.1110/ps.062323407
Lau S.Y. Taneja A.K. Hodges R.S. Effects of high-performance liquid chromatographic solvents and hydrophobic matrices on the secondary and quarternary structure of a model protein: Reversed-phase and size-exclusion high-performance liquid chromatography J. Chromatogr. A 1984 317 129 140 10.1016/S0021-9673(01)91653-X
Ferreira I.G. Pucca M.B. de Oliveira I.S. Cerni F.A. da Silva Jacob B.d.C. Arantes E.C. Snake venom vascular endothelial growth factors (svVEGFs): Unravelling their molecular structure, functions, and research potential Cytokine Growth Factor Rev. 2021 60 133 143 10.1016/j.cytogfr.2021.05.003 34090786
UniProt. O93523 VM3BP_BOTJA Zinc Metalloproteinase-Disintegrin-Like Bothropasin Available online: https://www.uniprot.org/uniprotkb/O93523/entry (accessed on 23 October 2022)
Escalante T. Núñez J. da Silva A.M.M. Rucavado A. Theakston R.D.G. Gutiérrez J.M. Pulmonary hemorrhage induced by jararhagin, a metalloproteinase from Bothrops jararaca snake venom Toxicol. Appl. Pharmacol. 2003 193 17 28 10.1016/S0041-008X(03)00337-5 14613713
Moura-da-Silva A.M. Baldo C. Jararhagin, a hemorrhagic snake venom metalloproteinase from Bothrops jararaca Toxicon 2012 60 280 289 10.1016/j.toxicon.2012.03.026 22534074
Tan N.-H. Ponnudurai G. Chung M.C. Proteolytic specificity of rhodostoxin, the major hemorrhagin of Calloselasma rhodostoma (Malayan pit viper) venom Toxicon 1997 35 979 984 10.1016/S0041-0101(96)00186-9
Matsui T. Fujimura Y. Titani K. Snake venom proteases affecting hemostasis and thrombosis Biochim. Et Biophys. Acta (BBA)-Protein Struct. Mol. Enzymol. 2000 1477 146 156 10.1016/S0167-4838(99)00268-X
UniProt. Q2UXR0 VM3E1_ECHOC Zinc Metalloproteinase-Disintegrin-Like Eoc1 Available online: https://www.uniprot.org/uniprotkb/Q2UXR0/entry (accessed on 28 October 2022)
Howes J.-M. Wilkinson M. Theakston R.D.G. Laing G. The purification and partial characterisation of two novel metalloproteinases from the venom of the West African carpet viper, Echis ocellatus Toxicon 2003 42 21 27 10.1016/S0041-0101(03)00096-5
UniProt. Q14FJ4 VM2OC_ECHOC Zinc Metalloproteinase Eoc6/Disintegrin Ocellatusin Available online: https://www.uniprot.org/uniprotkb/Q14FJ4/entry (accessed on 28 October 2022)
Ricci S. D’Esposito V. Formisano P. Di Carlo A. Substrate-zymography: A still worthwhile method for gelatinases analysis in biological samples Clin. Chem. Lab. Med. (CCLM) 2016 54 1281 1290 10.1515/cclm-2015-0668
Secretariat C. Text And Annex of the Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from Their Utilization to the Convention on Biological Diversity 1st ed. Nations U. United Nations Montreal, QC, Canada 2011 Available online: https://www.cbd.int/abs/text/default.shtml (accessed on 21 February 2015)
Arrahman A. Kazandjian T.D. Still K.B. Slagboom J. Somsen G.W. Vonk F.J. Casewell N.R. Kool J. A Combined Bioassay and Nanofractionation Approach to Investigate the Anticoagulant Toxins of Mamba and Cobra Venoms and Their Inhibition by Varespladib Toxins 2022 14 736 10.3390/toxins14110736