Unpublished conference/Abstract (Scientific congresses and symposiums)
Modes of intuition in arithmetics
Leclercq, Bruno
2023Mathematical intuition. Nancy workshop
Peer reviewed
 

Files


Full Text
2023 Intuition in mathematics - A phenomenological point of view.pptx
Author postprint (394.91 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Edmund Husserl; phenomenology; intuition; symbolic presentation; manifolds; phénoménologie; représentation symbolique; multiplicités
Abstract :
[en] For Edmund Husserl, intuition is opposed to mere symbolic presentation. Knowledge is only possible when meaning intentions are “fulfiled” by some intuition that provides an object in accordance with those intentions. Now, what does that mean in the case of mathematical knowledge? Husserl himself must admit that most of mathematics - both in arithmetics and in geometry - is made of symbolic presentations. Does that mean that it does not deliver any knowledge? Husserl’s theory of “manifolds” as objectual counterparts of formal systems is an attempt to answer this question.
Research Center/Unit :
MéThéor - Métaphysique et Théorie de la Connaissance - ULiège
Phénoménologies - ULiège
Traverses - ULiège
Disciplines :
Philosophy & ethics
Author, co-author :
Leclercq, Bruno  ;  Université de Liège - ULiège > Département de philosophie > Philosophie analytique et de la logique
Language :
English
Title :
Modes of intuition in arithmetics
Alternative titles :
[fr] Modes d'intuition en arithmétique
Publication date :
30 May 2023
Event name :
Mathematical intuition. Nancy workshop
Event organizer :
Archivés Poincaré - Université de Loraine
Event place :
Nancy, France
Event date :
30-31 May 2023
By request :
Yes
Audience :
International
Peer reviewed :
Peer reviewed
Available on ORBi :
since 13 November 2023

Statistics


Number of views
18 (0 by ULiège)
Number of downloads
0 (0 by ULiège)

Bibliography


Similar publications



Contact ORBi