Trace element partitioning between clinopyroxene, magnetite, ilmenite and ferrobasaltic to dacitic magmas: an experimental study on the role of oxygen fugacity and melt composition
Shepherd, Kat; Namur, Olivier; Toplis, Michael J.et al.
2022 • In Contributions to Mineralogy and Petrology, 177 (9)
Clinopyroxene; Ilmenite; Magnetite; Oxygen fugacity; Trace element partitioning; Vanadium; Geophysics; Geochemistry and Petrology
Abstract :
[en] Ilmenite-, magnetite- and clinopyroxene−melt trace element partition coefficients were investigated experimentally as a function of oxygen fugacity and melt composition in a range of synthetic ferrobasaltic bulk compositions. The experiments were performed at a constant temperature (1080 °C) and pressure (1 atm) over a range of oxygen fugacity (fO2) conditions from ca. 2 log units below to ca. 2 log units above the FMQ buffer. The partitioning behaviour of the divalent cations Zn, Mn, Co and Ni are found to be controlled by the degree of polymerisation of the coexisting melt; the partitioning behaviour of rare earth elements, Y and Sc can be explained well by the lattice strain model and the partitioning of the high-field strength elements Zr, Hf, Ta and Nb is influenced by the TiO2 content of the melt. Vanadium partitioning is strongly influenced by oxygen fugacity and a series of linear regression equations are presented to express the dependence of the mineral−melt partitioning behaviour of the multivalent cation V on oxygen fugacity. Furthermore, calibration of the partitioning of vanadium between magnetite–ilmenite pairs as an oxybarometer is proposed and applied to a ferrobasaltic layered intrusion—the Skaergaard intrusion—to provide an estimate of oxygen fugacity.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Shepherd, Kat ; Department of Earth and Environmental Sciences, KU Leuven, Louvain, Belgium
Namur, Olivier; Department of Earth and Environmental Sciences, KU Leuven, Louvain, Belgium
Toplis, Michael J.; Institut de Recherche en Astrophysique Et Planétologie (IRAP/CNRS), Toulouse, France
Devidal, Jean-Luc; Laboratoire Magmas Et Volcans, Université Clermont Auvergne, CNRS, IRD, OPGC, Aubière, France
Charlier, Bernard ; Université de Liège - ULiège > Département de géologie > Pétrologie, géochimie endogènes et pétrophysique
Language :
English
Title :
Trace element partitioning between clinopyroxene, magnetite, ilmenite and ferrobasaltic to dacitic magmas: an experimental study on the role of oxygen fugacity and melt composition
Publication date :
September 2022
Journal title :
Contributions to Mineralogy and Petrology
ISSN :
0010-7999
eISSN :
1432-0967
Publisher :
Springer Science and Business Media Deutschland GmbH
We thank Jon Blundy, Raul Fonseca and an anonymous reviewer, and executive editor Othmar Müntener for their constructive reviews which significantly improved the quality of this manuscript. O. Namur and K. Shepherd acknowledge financial support from the FWO through an Odysseus grant to O. Namur. B. Charlier is a Research Associate of the Belgian Fund for Scientific Research-FNRS.
Aigner-Torres M, Blundy J, Ulmer P, Pettke T (2007) Laser ablation ICPMS study of trace element partitioning between plagioclase and basaltic melts: an experimental approach. Contrib to Mineral Petrol 153:647–667. 10.1007/s00410-006-0168-2 DOI: 10.1007/s00410-006-0168-2
Andersen DJ, Lindsley DH (1988) Internally consistent solution models for Fe-Mg-Mn-Ti oxides: Fe-Ti oxides. Am Min 73:714–726
Andersen DJ, Lindsley DH, Davidson PM (1993) QUILF: A pascal program to assess equilibria among FeMgMnTi oxides, pyroxenes, olivine, and quartz. Comput Geosci 19:1333–1350. 10.1016/0098-3004(93)90033-2 DOI: 10.1016/0098-3004(93)90033-2
Anovitz LM, Treiman AH, Essene EJ et al (1985) The heat-capacity of ilmenite and phase equilibria in the system Fe-T-O. Geochim Cosmochim Acta 49:2027–2040. 10.1016/0016-7037(85)90061-4 DOI: 10.1016/0016-7037(85)90061-4
Arató R, Audétat A (2017a) FeTiMM—a new oxybarometer for mafic to felsic magmas. Geochemical Perspect Lett 5:19–23. 10.7185/geochemlet.1740 DOI: 10.7185/geochemlet.1740
Arató R, Audétat A (2017b) Experimental calibration of a new oxybarometer for silicic magmas based on vanadium partitioning between magnetite and silicate melt. Geochim Cosmochim Acta 209:284–295. 10.1016/j.gca.2017.04.020 DOI: 10.1016/j.gca.2017.04.020
Arató R, Audétat A (2021) Titanomagnetite—silicate melt oxybarometry. Magma redox geochemistry. Wiley, Hoboken, pp 369–380 DOI: 10.1002/9781119473206.ch18
Armienti P, Tonarini S, Innocenti F, D’Orazio M (2007) Mount Etna pyroxene as tracer of petrogenetic processes and dynamics of the feeding system. Spec Pap Geol Soc Am 418:265–276. 10.1130/2007.2418(13) DOI: 10.1130/2007.2418(13)
Beattie P (1994) Systematics and energetics of trace-element partitioning between olivine and silica melts: implications for the nature of mineral/melt partitioning. Chem Geol 17:57–71 DOI: 10.1016/0009-2541(94)90121-X
Bédard JH (2006) Trace element partitioning in plagioclase feldspar. Geochim Cosmochim Acta 70:3717–3742. 10.1016/j.gca.2006.05.003 DOI: 10.1016/j.gca.2006.05.003
Bédard JH (2010) Parameterization of the Fe=Mg exchange coefficient (Kd) between clinopyroxene and silicate melts. Chem Geol 274:169–176. 10.1016/j.chemgeo.2010.04.003 DOI: 10.1016/j.chemgeo.2010.04.003
Blundy J, Wood B (1994) Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372:452–454 DOI: 10.1038/372452a0
Blundy J, Wood B (2003) Partitioning of trace elements between crystals and melts. Earth Planet Sci Lett 210:383–397. 10.1016/S0012-821X(03)00129-8 DOI: 10.1016/S0012-821X(03)00129-8
Bosi F, Hålenius U, Skogby H (2009) Crystal chemistry of the magnetite-ulvöspinel series. Am Mineral 94:181–189. 10.2138/am.2009.3002 DOI: 10.2138/am.2009.3002
Brice JC (1975) Some thermodynamic aspects of the growth of strained crystals. J Cryst Growth 28:249–253. 10.1016/0022-0248(75)90241-9 DOI: 10.1016/0022-0248(75)90241-9
Buddington AF, Lindsley DH (1964) Iron-titanium oxide minerals and synthetic equivalents. J Petrol 5:310–357. 10.1093/petrology/5.2.310 DOI: 10.1093/petrology/5.2.310
Burnham AD, O’Neill HSC (2020) Mineral–melt partition coefficients and the problem of multiple substitution mechanisms: insights from the rare earths in forsterite and protoenstatite. Contrib to Mineral Petrol 175:1–19. 10.1007/s00410-019-1636-9 DOI: 10.1007/s00410-019-1636-9
Canil D (1999) Vanadium partitioning between orthopyroxene, spinel and silicate melt and the redox states of mantle source regions for primary magmas. Geochim Cosmochim Acta 63:557–572. 10.1016/S0016-7037(98)00287-7 DOI: 10.1016/S0016-7037(98)00287-7
Canil D (2002) Vanadium in peridotites mantle redox and tectonic environments: Archean to present. Earth and Planetary Science Letters 195(1–2):75–90. 10.1016/S0012-821X(01)00582-9 DOI: 10.1016/S0012-821X(01)00582-9
Canil D, Fedortchouk Y (2000) Clinopyroxene-liquid partitioning for vanadium and the oxygen fugacity during formation of cratonic and oceanic mantle lithosphere. J Geophys Res Solid Earth 105:26003–26016. 10.1029/2000jb900221 DOI: 10.1029/2000jb900221
Cartier C, Hammouda T, Doucelance R et al (2014) Experimental study of trace element partitioning between enstatite and melt in enstatite chondrites at low oxygen fugacities and 5GPa. Geochim Cosmochim Acta 130:167–187. 10.1016/j.gca.2014.01.002 DOI: 10.1016/j.gca.2014.01.002
Charlier B, Namur O, Bolle O et al (2015) Fe-Ti-V-P ore deposits associated with Proterozoic massif-type anorthosites and related rocks. Earth-Science Rev 141:56–81. 10.1016/j.earscirev.2014.11.005 DOI: 10.1016/j.earscirev.2014.11.005
Costa F, Morgan D (2010) Time constraints from chemical equilibration in magmatic crystals. Wiley, Hoboken DOI: 10.1002/9781444328509.ch7
Di Flavio S, Mollo S, Ubide T et al (2020) Mush cannibalism and disruption recorded by clinopyroxene phenocrysts at Stromboli volcano: New insights from recent 2003–2017 activity. Lithos. 10.1016/j.lithos.2020.105440 DOI: 10.1016/j.lithos.2020.105440
Duffy JA (1993) A review of optical basicity and its applications to oxidic systems. Geochim Cosmochim Acta 57:3961–3970. 10.1016/0016-7037(93)90346-X DOI: 10.1016/0016-7037(93)90346-X
Dygert N, Liang Y, Hess P (2013) The importance of melt TiO2 in affecting major and trace element partitioning between Fe-Ti oxides and lunar picritic glass melts. Geochim Cosmochim Acta 106:134–151. 10.1016/j.gca.2012.12.005 DOI: 10.1016/j.gca.2012.12.005
Dygert N, Liang Y, Sun C, Hess P (2014) An experimental study of trace element partitioning between augite and Fe-rich basalts. Geochim Cosmochim Acta 132:170–186. 10.1016/j.gca.2014.01.042 DOI: 10.1016/j.gca.2014.01.042
Dygert N, Draper DS, Rapp JF et al (2020) Experimental determinations of trace element partitioning between plagioclase, pigeonite, olivine, and lunar basaltic melts and an fO2 dependent model for plagioclase-melt Eu partitioning. Geochim Cosmochim Acta 279:258–280. 10.1016/j.gca.2020.03.037 DOI: 10.1016/j.gca.2020.03.037
Fabbrizio A, Schmidt MW, Petrelli M (2021) Effect of fO2 on Eu partitioning between clinopyroxene, orthopyroxene and basaltic melt: Development of a Eu3+/Eu2+ oxybarometer. Chem Geol 559:119967. 10.1016/j.chemgeo.2020.119967 DOI: 10.1016/j.chemgeo.2020.119967
Ghiorso MS, Evans BW (2008) Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe-Ti two-oxide geothermometer and oxygen-barometer. Am J Sci 308:957–1039. 10.2475/09.2008.01 DOI: 10.2475/09.2008.01
Ghiorso MS, Sack RO (1991) Mineralogy and Fe - Ti oxide geothermometry: thermodynamic formulation and the estimation of intensive variables in silicic magmas. Contrib Miner Pet 108:485–510 DOI: 10.1007/BF00303452
Greber ND, Pettke T, Vilela N et al (2021) Titanium isotopic compositions of bulk rocks and mineral separates from the Kos magmatic suite: Insights into fractional crystallization and magma mixing processes. Chem Geol 578:120303. 10.1016/j.chemgeo.2021.120303 DOI: 10.1016/j.chemgeo.2021.120303
Green TH, Pearson NJ (1987) An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature. Geochim Cosmochim Acta 51:55–62. 10.1016/0016-7037(87)90006-8 DOI: 10.1016/0016-7037(87)90006-8
Grove TL, Bryan WB (1983) Fractionation of pyroxene-phyric MORB at low pressure: an experimental study. Contrib to Mineral Petrol 84:293–309. 10.1007/BF01160283 DOI: 10.1007/BF01160283
Hess PC, Parmentier EM (1995) A model for the thermal and chemical evolution of the Moon’s interior: implications for the onset of mare volcanism. Earth Planet Sci Lett 134:501–514. 10.1016/0012-821X(95)00138-3 DOI: 10.1016/0012-821X(95)00138-3
Hess P, Rutherford M, Campbell H (1978) Ilmenite crystallization in nonmare basalt - Genesis of KREEP and high-Ti mare basalt. Proc Lunar Sci Conf 9:705–724
Hill E, Wood BJ, Blundy JD (2000) The effect of Ca-Tschermaks component on trace element partitioning between clinopyroxene and silicate melt. Lithos 53:203–215 DOI: 10.1016/S0024-4937(00)00025-6
Hill E, Blundy JD, Wood BJ (2011) Clinopyroxene-melt trace element partitioning and the development of a predictive model for HFSE and Sc. Contrib to Mineral Petrol 161:423–438. 10.1007/s00410-010-0540-0 DOI: 10.1007/s00410-010-0540-0
Horng W-S, Hess P, Gan H (1999) The interactions between M+5 cations (Nb+5, Ta+5, or P+5) and anhydrous haplogranite melts. Geochim Cosmochim Acta 63:2419–2428 DOI: 10.1016/S0016-7037(99)00132-5
Howarth GH, Prevec SA (2013) Hydration vs. oxidation: Modelling implications for Fe-Ti oxide crystallisation in mafic intrusions, with specific reference to the Panzhihua intrusion. SW China Geosci Front 4:555–569. 10.1016/j.gsf.2013.03.002 DOI: 10.1016/j.gsf.2013.03.002
Hoover JD, Irvine TN (1978) Liquidus relations and Mg–Fe partitioning on part of the system Mg2SiO4–Fe2SiO4–CaMgSi2O6–CaFeSi2O6–KAlSi3O8–SiO2. Carnegie Institution of Washington Yearbook 77:774–784
Humphreys MCS (2009) Chemical evolution of intercumulus liquid, as recorded in plagioclase overgrowth rims from the Skaergaard intrusion. J Petrol 50:127–145. 10.1093/petrology/egn076 DOI: 10.1093/petrology/egn076
Hunter RH, Sparks RSJ (1987) The differentiation of the Skaergaard Intrusion. Contrib to Mineral Petrol 95:451–461. 10.1007/BF00402205 DOI: 10.1007/BF00402205
Jang YD, Naslund HR (2001) Major and trace element composition of Skaergaard plagioclase; geochemical evidence for changes in magma dynamics during the ® nal stage of crystallization of the Skaergaard intrusion. Contrib Miner Pet 140:441–457 DOI: 10.1007/s004100000176
Jang YD, Naslund HR, Mcbirney AR (2001) The differentiation trend of the Skaergaard intrusion and the timing of magnetite crystallization: iron enrichment revisited. Earth Planet Sci Lett 189:189–196 DOI: 10.1016/S0012-821X(01)00366-1
Jarosewich E, Nelen J, Norberg J (1980) Reference samples for electron microprobe analysis. Geostand Geoanalytical Res 4:43–47. 10.1111/j.1751-908X.1980.tb00273.x DOI: 10.1111/j.1751-908X.1980.tb00273.x
Jochum KP, Willbold M, Raczek I et al (2005) Chemical characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostand Geoanalytical Res 29:285–302. 10.1111/j.1751-908x.2005.tb00901.x DOI: 10.1111/j.1751-908x.2005.tb00901.x
Juster TC, Grove TL, Perfit MR (1989) Experimental constraints on the generation of FeTi basalts, andesites, and rhyodacites at the Galapagos Spreading Center, 85°W and 95°W. J Geophys Res 94:9251–9274. 10.1029/JB094iB07p09251 DOI: 10.1029/JB094iB07p09251
Karner JM, Sutton SR, Papike JJ et al (2006) Application of a new vanadium valence oxybarometer to basaltic glasses from the Earth, Moon, and Mars. Am Mineral 91:270–277. 10.2138/am.2006.1830 DOI: 10.2138/am.2006.1830
Klemme S, Günther D, Hametner K et al (2006) The partitioning of trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for the early differentiation of the moon. Chem Geol 234:251–263. 10.1016/j.chemgeo.2006.05.005 DOI: 10.1016/j.chemgeo.2006.05.005
Klemme Hugh S, O'Neill S (2000) The effect of Cr on the solubility of Al in orthopyroxene: experiments and thermodynamic modelling. Contrib Mineral Petrol 140(1):84–98. 10.1007/s004100000140 DOI: 10.1007/s004100000140
Kohn SC, Schofield PF (1994) The importance of melt composition in controlling trace-element behaviour: an experimental study of Mn and Zn partitioning between forsterite and silicate melts. Chem Geol 117:73–87. 10.1016/0009-2541(94)90122-8 DOI: 10.1016/0009-2541(94)90122-8
Krawczynski MJ, Grove TL (2012) Experimental investigation of the influence of oxygen fugacity on the source depths for high titanium lunar ultramafic magmas. Geochim Cosmochim Acta 79:1–19. 10.1016/j.gca.2011.10.043 DOI: 10.1016/j.gca.2011.10.043
Lattard D, Sauerzapf U, Käsemann M (2005) New calibration data for the Fe-Ti oxide thermo-oxybarometers from experiments in the Fe-Ti-O system at 1 bar, 1,000–1,300°C and a large range of oxygen fugacities. Contrib to Mineral Petrol 149:735–754. 10.1007/s00410-005-0679-2 DOI: 10.1007/s00410-005-0679-2
Leitzke FP, Fonseca ROC, Michely LT et al (2016) The effect of titanium on the partitioning behavior of high-field strength elements between silicates, oxides and lunar basaltic melts with applications to the origin of mare basalts. Chem Geol 440:219–238. 10.1016/j.chemgeo.2016.07.011 DOI: 10.1016/j.chemgeo.2016.07.011
Leitzke FP, Fonseca ROC, Sprung P et al (2017) Redox dependent behaviour of molybdenum during magmatic processes in the terrestrial and lunar mantle: Implications for the Mo / W of the bulk silicate Moon. Earth Planet Sci Lett. 10.1016/j.epsl.2017.07.009 DOI: 10.1016/j.epsl.2017.07.009
Leuthold J, Blundy JD, Holness MB, Sides R (2014) Successive episodes of reactive liquid flow through a layered intrusion (Unit 9, Rum Eastern Layered Intrusion, Scotland). Contrib Miner Pet. 10.1007/s00410-014-1021-7 DOI: 10.1007/s00410-014-1021-7
Liang Y, Sun C, Yao L (2013) A REE-in-two-pyroxene thermometer for mafic and ultramafic rocks. Geochim Cosmochim Acta 102:246–260. 10.1016/j.gca.2012.10.035 DOI: 10.1016/j.gca.2012.10.035
Lindsley DH, Frost BR (1992) Equilibria among Fe-Ti oxides, pyroxenes, olivine, and quartz: part I. Theory Am Mineral 77:987–1003
Longhi J (1992) Experimental petrology and petrogenesis of mare volcanics. Geochim Cosmochim Acta 56:2235–2251 DOI: 10.1016/0016-7037(92)90186-M
Mallmann G, O’Neill HSC (2009) The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). J Petrol 50:1765–1794. 10.1093/petrology/egp053 DOI: 10.1093/petrology/egp053
Mallmann G, O’Neill HSC (2013) Calibration of an empiricalthermometer and oxybarometer based on the partitioning of sc, Y and V between olivine and silicate melt. J Petrol 54:933–949. 10.1093/petrology/egt001 DOI: 10.1093/petrology/egt001
Masotta M, Pontesilli A, Mollo S et al (2020) The role of undercooling during clinopyroxene growth in trachybasaltic magmas: Insights on magma decompression and cooling at Mt. Etna Volcano Geochim Cosmochim Acta 268:258–276. 10.1016/j.gca.2019.10.009 DOI: 10.1016/j.gca.2019.10.009
McBirney AR (1989) The Skaergaard Layered Series: I Structure and Average Compositions. J Petrol 30:363–397 DOI: 10.1093/petrology/30.2.363
McBirney AR (1998) The skaergaard layered series. Part VI. Included Trace Elements J Petrol 39:255–276. 10.1093/petrology/43.3.535 DOI: 10.1093/petrology/43.3.535
McDade P, Blundy JD, Wood BJ (2003) Trace element partitioning on the Tinaquillo solidus at 1.5 GPa. Phys Earth Planet Inter 139:129–147. 10.1016/S0031-9201(03)00149-3 DOI: 10.1016/S0031-9201(03)00149-3
McKay G, Wagstaff J, Yang S-R (1986) Zirconium hafnium and rare earth element partition coefficients for ilmenite and other minerals in high-Ti lunar mare basalts: an experimental study. J Geophys Res: Solid Earth 91(B4):229–237. 10.1029/JB091iB04p0D229 DOI: 10.1029/JB091iB04p0D229
Michely LT, Leitzke FP, Speelmanns IM, Fonseca ROC (2017) Competing effects of crystal chemistry and silicate melt composition on trace element behavior in magmatic systems: insights from crystal/silicate melt partitioning of the REE, HFSE, Sn, In, Ga, Ba, Pt and Rh. Contrib Miner Petrol. 10.1007/s00410-017-1353-1 DOI: 10.1007/s00410-017-1353-1
Mollo S, Ubide T, Di F et al (2020) Polybaric/polythermal magma transport and trace element partitioning recorded in single crystals: a case study of a zoned clinopyroxene from Mt. Etna Lithos. 10.1016/j.lithos.2020.105382 DOI: 10.1016/j.lithos.2020.105382
Müller T, Dohmen R, Becker HW et al (2013) Fe-Mg interdiffusion rates in clinopyroxene: Experimental data and implications for Fe-Mg exchange geothermometers. Contrib to Mineral Petrol 166:1563–1576. 10.1007/s00410-013-0941-y DOI: 10.1007/s00410-013-0941-y
Mysen B (1983) The structure of silicate melts. Ann Rev Earth Planet Sci 11:75–97. 10.1090/gsm/146/03 DOI: 10.1090/gsm/146/03
Namur O, Humphreys MCS (2018) Trace element constraints on the differentiation and crystal mush solidification in the Skaergaard intrusion, Greenland. J Petrol 59:387–418. 10.1093/petrology/egy032 DOI: 10.1093/petrology/egy032
Namur O, Charlier B, Toplis MJ et al (2010) Crystallization sequence and magma chamber processes in the ferrobasaltic sept Iles layered intrusion, Canada. J Petrol 51:1203–1236. 10.1093/petrology/egq016 DOI: 10.1093/petrology/egq016
Namur O, Charlier B, Toplis MJ et al (2011) Differentiation of tholeiitic basalt to a—type granite in the sept Iles layered intrusion, Canada. J Petrol 52:487–539. 10.1093/petrology/egq088 DOI: 10.1093/petrology/egq088
Namur O, Humphreys MCS, Holness MB (2013) Lateral reactive infiltration in avertical gabbroic crystal mush, skaergaard intrusion, east greenland. J Petrol 54:985–1016. 10.1093/petrology/egt003 DOI: 10.1093/petrology/egt003
Naslund HR (1984) Petrology of the upper border series of the Skaergaard Intrusion. J Petrol 25:185–212 DOI: 10.1093/petrology/25.1.185
Neave DA, Putirka KD (2017) A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic rift zones. Am Mineral 102:777–794. 10.2138/am-2017-5968 DOI: 10.2138/am-2017-5968
Nielsen RL, Gallahan WE, Newberger F (1992) Experimentally determined mineral-melt partition coefficients for Sc, Y and REE for olivine, orthopyroxene, pigeonite, magnetite and ilmenite. Contrib to Mineral Petrol 110:488–499 DOI: 10.1007/BF00344083
Nielsen TFD, Andersen JCØ, Holness MB et al (2014) The Skaergaard PGE and gold deposit: the result of in situ fractionation, sulphide saturation, and magma chamber-scale precious metal redistribution by immiscible Fe-rich melt. J Petrol 56:1643–1676. 10.1093/petrology/egv049 DOI: 10.1093/petrology/egv049
Norris CA, Wood BJ (2017) Earth’s volatile contents established by melting and vaporization. Nature 549:507–510. 10.1038/nature23645 DOI: 10.1038/nature23645
O’Neill HSC, Navrotsky A (1984) Cation distributions and thermodynamic properties of binary spinel solid solutions. Am Mineral 69:733–753
O’Neill HSC, Pownceby MI, Wall VJ (1988) Ilmenite-rutile-iron and ulvospinel-ilmenite-iron equilibria and the thermochemistry of ilmenite (FeTiO3) and ulvospinel (Fe2TiO4). Geochim Cosmochim Acta 52:2065–2072. 10.1016/0016-7037(88)90185-8 DOI: 10.1016/0016-7037(88)90185-8
Pang KN, Zhou MF, Lindsley D et al (2008) Origin of Fe-Ti oxide ores in mafic intrusions: evidence from the Panzhihua intrusion, SW China. J Petrol 49:295–313. 10.1093/petrology/egm082 DOI: 10.1093/petrology/egm082
Papike JJ, Karner JM, Shearer CK (2005) Comparative planetary mineralogy: valence state partitioning of Cr, Fe, Ti, and V among crystallographic sites in olivine, pyroxene, and spinel from planetary basalts. Am Mineral 90:277–290. 10.2138/am.2005.1779 DOI: 10.2138/am.2005.1779
Pownceby MI, Fisher-white MJ (1999) Phase equilibria in the systems Fe2O3-MgO-TiO2 and FeO-MgO-TiO2 between 1173 and 1473 K, and Fe2+-Mg mixing properties of ilmenite, ferrous-pseudobrookite and ulvoÈspinel solid solutions. Contrib Miner Pet 135:198–211 DOI: 10.1007/s004100050506
Prowatke S, Klemme S (2006) Rare earth element partitioning between titanite and silicate melts: Henry’s law revisited. Geochim Cosmochim Acta 70:4997–5012. 10.1016/j.gca.2006.07.016 DOI: 10.1016/j.gca.2006.07.016
Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochemistry 69:61–120. 10.2138/rmg.2008.69.3 DOI: 10.2138/rmg.2008.69.3
Putirka K, Johnson M, Kinzler R et al (1996) Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kbar. Contrib to Mineral Petrol 123:92–108. 10.1007/s004100050145 DOI: 10.1007/s004100050145
Raymond KN, Wenk HR (1971) Lunar ilmenite (Refinement of the crystal structure). Contrib to Mineral Petrol 30:135–140. 10.1007/BF00372254 DOI: 10.1007/BF00372254
Reynolds IM (1985) The nature and origin of titaniferous magnetite-rich layers in the upper zone of the Bushveld complex: a review and synthesis. Econ Geol 80:1089–1108. 10.2113/gsecongeo.80.4.1089 DOI: 10.2113/gsecongeo.80.4.1089
Righter K, Leeman WP, Hervig RL (2006a) Partitioning of Ni, Co and V between spinel-structured oxides and silicate melts: Importance of spinel composition. Chem Geol 227:1–25. 10.1016/j.chemgeo.2005.05.011 DOI: 10.1016/j.chemgeo.2005.05.011
Righter K, Sutton SR, Newville M et al (2006b) An experimental study of the oxidation state of vanadium in spinel and basaltic melt with implications for the origin of planetary basalt. Am Mineral 91:1643–1656. 10.2138/am.2006.2111 DOI: 10.2138/am.2006.2111
Sauerzapf U, Lattard D, Burchard M, Engelmann R (2008) The titanomagnetite-ilmenite equilibrium: new experimental data and thermo-oxybarometric application to the crystallization of basic to intermediate rocks. J Petrol 49:1161–1185. 10.1093/petrology/egn021 DOI: 10.1093/petrology/egn021
Schmidt MW, Connolly JAD, Günther D, Bogaerts M (2006) Element partitioning: the role of melt structure and composition. Science 312:1646–1650. 10.1126/science.1126690 DOI: 10.1126/science.1126690
Schreiber H, Balzas G (1982) Vanadium as an oxygen geobarometer in basaltic magmas: The further development of a geochemical electromotive force series. In: Proceedings of the 13th Lunar and Planetary Science Conference. pp 692–693
Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767. 10.1107/S0567739476001551 DOI: 10.1107/S0567739476001551
Sievwright RH, Wilkinson JJ, O’Neill HSC, Berry AJ (2017) Thermodynamic controls on element partitioning between titanomagnetite and andesitic–dacitic silicate melts. Contrib Mineral Petrol 172:1–33. 10.1007/s00410-017-1385-6 DOI: 10.1007/s00410-017-1385-6
Sievwright RH, O’Neill HSC, Tolley J et al (2020) Diffusion and partition coefficients of minor and trace elements in magnetite as a function of oxygen fugacity at 1150 °C. Contrib to Mineral Petrol. 10.1007/s00410-020-01679-z DOI: 10.1007/s00410-020-01679-z
Snyder GA, Taylor A, Neal CR (1992) A chemical model for generating the sources of mare basalts: combined equilibrium and fractional crystallization of the lunar magmasphere. Geochim Cosmochim Acta 56:3809–3823 DOI: 10.1016/0016-7037(92)90172-F
Snyder D, Carmichael ISE, Wiebe RA (1993) Experimental study of liquid evolution in an Fe-rich, layered mafic intrusion: constraints of Fe-Ti oxide precipitation on the T-fO2 and T-ϱ paths of tholeiitic magmas. Contrib Mineral Petrol 113:73–86. 10.1007/BF00320832 DOI: 10.1007/BF00320832
Streck MJ, Grunder AL (2012) Temporal and crustal effects on differentiation of tholeiite to calcalkaline and ferro-trachytic suites, High Lava Plains, Oregon, USA. Geochem Geophys Geosystems. 10.1029/2012GC004237 DOI: 10.1029/2012GC004237
Sun C, Liang Y (2012) Distribution of REE between clinopyroxene and basaltic melt along a mantle adiabat: effects of major element composition, water, and temperature. Contrib Mineral Petrol 163:807–823. 10.1007/s00410-011-0700-x DOI: 10.1007/s00410-011-0700-x
Sun C, Graff M, Liang Y (2017) Trace element partitioning between plagioclase and silicate melt: the importance of temperature and plagioclase composition, with implications for terrestrial and lunar magmatism. Geochim Cosmochim Acta 206:273–295. 10.1016/j.gca.2017.03.003 DOI: 10.1016/j.gca.2017.03.003
Sutton SR, Karner J, Papike J et al (2005) Vanadium K edge XANES of synthetic and natural basaltic glasses and application to microscale oxygen barometry. Geochim Cosmochim Acta 69:2333–2348. 10.1016/j.gca.2004.10.013 DOI: 10.1016/j.gca.2004.10.013
Tegner C, Thy P, Holness MB et al (2009) Differentiation and compaction in the Skaergaard Intrusion. J Petrol 50:813–840. 10.1093/petrology/egp020 DOI: 10.1093/petrology/egp020
Thacker C, Liang Y, Peng Q, Hess P (2009) The stability and major element partitioning of ilmenite and armalcolite during lunar cumulate mantle overturn. Geochim Cosmochim Acta 73:820–836. 10.1016/j.gca.2008.10.038 DOI: 10.1016/j.gca.2008.10.038
Thy P, Lesher CE, Tegner C (2009) The Skaergaard liquid line of descent revisited. Contrib to Mineral Petrol 157:735–747. 10.1007/s00410-008-0361-6 DOI: 10.1007/s00410-008-0361-6
Toplis MJ, Carroll MR (1995) An experimental study of the influence of oxygen fugacity on fe-ti oxide stability, phase relations, and mineral-melt equilibria in ferro-basaltic systems. J Petrol 36:1137–1170. 10.1093/petrology/36.5.1137 DOI: 10.1093/petrology/36.5.1137
Toplis MJ, Carroll MR (1996) Differentiation of ferro-basaltic magmas under conditions open and closed to oxygen: Implications for the skaergaard intrusion and other natural systems. J Petrol 37:837–858. 10.1093/petrology/37.4.837 DOI: 10.1093/petrology/37.4.837
Toplis MJ, Corgne A (2002) An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium. Contrib Miner Pet 144:22–37. 10.1007/s00410-002-0382-5 DOI: 10.1007/s00410-002-0382-5
Toplis MJ, Dingwell DB, Libourel G (1994a) The effect of phosphorus on the iron redox ratio, viscosity, and density of an evolved ferro-basalt. Contrib Mineral Petrol 117:293–304. 10.1007/BF00310870 DOI: 10.1007/BF00310870
Toplis MJ, Libourel G, Carroll MR (1994b) The role of phosphorus in crystallisation processes of basalt: an experimental study. Geochim Cosmochim Acta 58:797–810. 10.1016/0016-7037(94)90506-1 DOI: 10.1016/0016-7037(94)90506-1
Ubide T, Kamber BS (2018) Volcanic crystals as time capsules of eruption history. Nat Commun 9:1–12. 10.1038/s41467-017-02274-w DOI: 10.1038/s41467-017-02274-w
Ubide T, Mollo S, Zhao Xin J et al (2019) Sector-zoned clinopyroxene as a recorder of magma history, eruption triggers, and ascent rates. Geochim Cosmochim Acta 251:265–283. 10.1016/j.gca.2019.02.021 DOI: 10.1016/j.gca.2019.02.021
van Kan PM, Mason PRD, van Westrenen W (2011) Trace element partitioning between ilmenite, armalcolite and anhydrous silicate melt: Implications for the formation of lunar high-Ti mare basalts. Geochim Cosmochim Acta 75:4179–4193. 10.1016/j.gca.2011.04.031 DOI: 10.1016/j.gca.2011.04.031
Van Orman JA, Grove TL, Shimizu N (2001) Rare earth element diffusion in diopside: Influence of temperature, pressure, and ionic radius, and an elastic model fordiffusion in silicates. Contrib Mineral Petrol 141:687–703. 10.1007/s004100100269 DOI: 10.1007/s004100100269
Wager LR (1960) The major element variation of the layered series of the skaergaard intrusion and a re-estimation of the average composition of the hidden layered series and of the successive residual magmas. J Petrol 1:364–398. 10.1093/petrology/1.1.364 DOI: 10.1093/petrology/1.1.364
Wager LR, Brown G (1967) Layered igneous rocks. Freeman, San Francisco
Wager LR, Deer WA (1939) Wager, L.R., Deer, W.A., 1939. Geological investigations in East Greenland: part III. The petrology of the Skaergaard Intrusion, Kangerdlugssuaq. East Greenland Medd Groenl 105:1–352
Watson EB, Liang Y (1995) A simple model for sector zoning in slowly grown crystals: implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks. Am Miner 80:1179–1187. 10.2138/am-1995-11-1209 DOI: 10.2138/am-1995-11-1209
Wood BJ, Blundy JD (1997) A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contrib to Mineral Petrol 129:166–181. 10.1007/s004100050330 DOI: 10.1007/s004100050330
Xu Y, Chung SL, Jahn BM, Wu G (2001) Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China. Lithos 58:145–168. 10.1016/S0024-4937(01)00055-X DOI: 10.1016/S0024-4937(01)00055-X
Yuan Q, Namur O, Fischer LA et al (2017) Pulses of plagioclase-laden magmas and stratigraphic evolution in the upper zone of the Bushveld Complex, South Africa. J Petrol 58:1619–1643 DOI: 10.1093/petrology/egx067