[en] Self-induced cognitive trance (SICT) is a voluntary non-ordinary state of consciousness characterized by a lucid yet narrowed awareness of the external surroundings. It involves a hyper-focused immersive experience of flow, expanded inner imagery, modified somatosensory processing, and an altered perception of self and time. SICT is gaining attention due to its potential clinical applications. Similar states of non-ordinary state of consciousness, such as meditation, hypnosis, and psychedelic experiences, have been reported to induce changes in the autonomic nervous system. However, the functioning of the autonomic nervous system during SICT remains poorly understood. In this study, we aimed to investigate the impact of SICT on the cardiac and respiratory signals of 25 participants proficient in SICT. To accomplish this, we measured various metrics of heart rate variability (HRV) and respiration rate variability (RRV) in three conditions: resting state, SICT, and a mental imagery task. Subsequently, we employed a machine learning framework utilizing a linear discriminant analysis classifier and a cross-validation scheme to identify the features that exhibited the best discrimination between these three conditions. The results revealed that during SICT, participants experienced an increased heart rate and a decreased level of high-frequency (HF) HRV compared to the control conditions. Additionally, specific increases in respiratory amplitude, phase ratio, and RRV were observed during SICT in comparison to the other conditions. These findings suggest that SICT is associated with a reduction in parasympathetic activity, indicative of a hyperarousal state of the autonomic nervous system during SICT.
Disciplines :
Neurosciences & behavior
Author, co-author :
Oswald, Victor ✱; Université de Liège - ULiège > GIGA > GIGA Consciousness - Sensation & Perception Research Group ; Cognitive and Computational Neuroscience Lab, Psychology Département, University of Montréal, Montreal, Canada. victor.oswald@umontreal.ca
Vanhaudenhuyse, Audrey ✱; Centre Hospitalier Universitaire de Liège - CHU > > Service d'algologie - soins palliatifs
Annen, Jitka ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Martial, Charlotte ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
The study was supported by the University and University Hospital of Liege, the Belgian National Funds for Scientific Research (FRS-FNRS), the BIAL Foundation, the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 945539 (Human Brain Project SGA3), the MIS FNRS (F.4521.23), the fund Generet, the King Baudouin Foundation, the Télévie Foundation, the Belgium Foundation Against Cancer (Grants Number 2017064 and C/2020/1357), the Benoit Foundation (Bruxelles), the ERA-Net FLAG-ERA JTC2021 project ModelDXConsciousness (Human Brain Project Partnering Project), the European Space Agency (ESA) and the Belgian Federal Science Policy Office (BELSPO) in the framework of the PRODEX Programme, the Public Utility Foundation ‘Université Européenne du Travail’, “Fondazione Europea di Ricerca Biomedica”, the Mind Science Foundation, the European Commission, the Fondation Leon Fredericq, the Mind-Care foundation, Wallonia as part of a program of the BioWin Health 619 Cluster framework. We are also thankful to all participants for agreeing to take part in this study. KJ is supported by funding from the Canada Research Chairs program (950-232368) and a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (2021-03426), a Strategic Research Clusters Program (2023-RS6-309472) from the Fonds de recherche du Quebec-Nature et technologies. OG is research associate and SL research director at FRS-FNRS.
Flor-Henry, P., Shapiro, Y. & Sombrun, C. Brain changes during a shamanic trance: Altered modes of consciousness, hemispheric laterality, and systemic psychobiology. Cogent. Psychol. 4, 1313 (2017).
Lutz, A., Jha, A. P., Dunne, J. D. & Saron, C. D. Investigating the phenomenological matrix of mindfulness-related practices from a neurocognitive perspective. Am. Psychol. 70, 632–658 (2015).
Dorjee, D. Defining contemplative science: The metacognitive self-regulatory capacity of the mind, context of meditation practice and modes of existential awareness. Front. Psychol. 7, 1–15 (2016).
Lifshitz, M., van Elk, M. & Luhrmann, T. M. Absorption and spiritual experience: A review of evidence and potential mechanisms. Conscious. Cogn. 73, 102760 (2019).
Tellegen, A. & Atkinson, G. Openness to absorbing and self-altering experiences (“absorption”), a trait related to hypnotic susceptibility. Hypn. Theory Res. Appl. 83, 223–232 (1974).
Demertzi, A., Vanhaudenhuyse, A., Noirhomme, Q., Faymonville, M. E. & Laureys, S. Hypnosis modulates behavioural measures and subjective ratings about external and internal awareness. J. Physiol. Paris 109, 173–179 (2015).
Lynn, S. J. & Green, J. P. The sociocognitive and dissociation theories of hypnosis: Toward a rapprochement. Int. J. Clin. Exp. Hypn. 59, 277–293 (2011).
Van Der Kruijs, S. J. M. et al. Neurophysiological correlates of dissociative symptoms. J. Neurol. Neurosurg. Psychiatry 85, 174–179 (2014).
Vanhaudenhuyse, A. et al. Can subjective ratings of absorption, Dissociation, and time perception during ‘neutral hypnosis” predict hypnotizability ? An exploratory study. Int. J. Clin. Exp. Hypn. 67, 28–38 (2019).
Varela, F. J. Neurophenomenology: a methodological remedy for the hard problem. J. Conscius. Stud. 3, 330 (1996).
Husserl, E. On the phenomenology of the consciousness of internal time. Trans. J. B. Brough Dordr. Kluwer 4, 117 (1917).
Papies, E. K., Pronk, T. M., Keesman, M. & Barsalou, L. W. The benefits of simply observing: Mindful attention modulates the link between motivation and behavior. J. Pers. Soc. Psychol. 108, 148–170 (2015).
Bernstein, A. et al. Decentering and related constructs: A critical review and metacognitive processes model. Perspect. Psychol. Sci. 10, 599–617 (2015).
Fletcher, L. & Hayes, S. C. Relational frame theory, acceptance and commitment therapy, and a functional analytic definition of mindfulness. J. Ration. Emotive Cogn. Behav. Ther. 23, 315–336 (2005).
Wehrwein, E. A., Orer, H. S. & Barman, S. M. Overview of the anatomy, physiology, and pharmacology of the autonomic nervous system. Compr. Physiol. 6, 1239–1278 (2016).
Quigley, K. S., Kanoski, S., Grill, W. M., Barrett, L. F. & Tsakiris, M. Functions of interoception: From energy regulation to experience of the self. Trends Neurosci. 44, 29–38 (2021).
Barrett, L. F. & Simmons, W. K. Interoceptive predictions in the brain. Nat. Rev. Neurosci. 16, 419–429 (2015).
Hutchinson, J. B. & Barrett, L. F. The power of predictions: An emerging paradigm for psychological research. Curr. Dir. Psychol. Sci. 28, 280–291 (2019).
Laborde, S., Mosley, E. & Mertgen, A. A unifying conceptual framework of factors associated to cardiac vagal control. Heliyon 4, e01002 (2018).
Laborde, S., Mosley, E. & Mertgen, A. Vagal Tank theory: The three Rs of cardiac vagal control functioning—Resting, reactivity, and recovery. Front. Neurosci. 12, 1–14 (2018).
Kim, D.-K., Lee, K.-M., Kim, J., Whang, M.-C. & Kang, S.-W. Dynamic correlations between heart and brain rhythm during autogenic meditation. Front. Hum. Neurosci. 7, 1–8 (2013).
Yüksel, R., Ozcan, O. & Dane, S. The effects of hypnosis on heart rate variability. Int. J. Clin. Exp. Hypn. 61, 162–171 (2013).
Kox, M. et al. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans. Proc. Natl. Acad. Sci. USA 111, 7379–7384 (2014).
Russo, M. A., Santarelli, D. M. & O’Rourke, D. The physiological effects of slow breathing in the healthy human. Breathe 13, 298–309 (2017).
Grossman, P. & Taylor, E. W. Toward understanding respiratory sinus arrhythmia: Relations to cardiac vagal tone, evolution and biobehavioral functions. Biol. Psychol. 74, 263–285 (2007).
Muzik, O., Reilly, K. T. & Diwadkar, V. A. “Brain over body”—A study on the willful regulation of autonomic function during cold exposure. Neuroimage 172, 632–641 (2018).
Porges, S. W. The polyvagal perspective. Biol. Psychol. 74, 116–143 (2007).
Sevoz-Couche, C. & Laborde, S. Heart rate variability and slow-paced breathing: When coherence meets resonance. Neurosci. Biobehav. Rev. 135, 104576 (2022).
Laborde, S. et al. Effects of voluntary slow breathing on heart rate and heart rate variability: A systematic review and a meta-analysis. Neurosci. Biobehav. Rev. 138, 104711 (2022).
Aysin, B. & Aysin, E. Effect of respiration in heart rate variability (HRV) analysis. Annu Int. Conf. IEEE Eng. Med. Biol. Proc. 10.1109/IEMBS.2006.260773 (2006). DOI: 10.1109/IEMBS.2006.260773
Soni, R. & Muniyandi, M. Breath rate variability: A novel measure to study the meditation effects. Int. J. Yoga 12, 45 (2019).
Tyagi, A. & Cohen, M. Yoga and heart rate variability: A comprehensive review of the literature. Int. J. Yoga 9, 97 (2016).
Aubert, A. E., Verheyden, B., Beckers, F., Tack, J. & Vandenberghe, J. Cardiac autonomic regulation under hypnosis assessed by heart rate variability: Spectral analysis and fractal complexity. Neuropsychobiology 60, 104–112 (2009).
Huhle, R. et al. Effects of awareness and nociception on heart rate variability during general anaesthesia. Physiol. Meas. 33, 207–217 (2012).
Arya, N. K., Singh, K., Malik, A. & Mehrotra, R. Effect of heartfulness cleaning and meditation on heart rate variability. Indian Heart J. 70, S50–S55 (2018).
Santarcangelo, E. L. et al. Hypnotizability modulates the cardiovascular correlates of subjective relaxation. Int. J. Clin. Exp. Hypn. 60, 383–396 (2012).
Diamond, S. G., Davis, O. C. & Howe, R. D. Heart-rate variability as a quantitative measure of hypnotic depth. Int. J. Clin. Exp. Hypn. 56, 1–18 (2008).
Lane, J. D., Seskevich, J. E. & Pieper, C. F. Brief meditation training can improve perceived stress and negative mood. Altern. Ther. Health Med. 13, 38–44 (2007).
Toneatto, T. & Nguyen, L. Does mindfulness meditation improve anxiety and mood symptoms? A review of the controlled research. Can. J. Psychiatry 52, 260–266 (2007).
Rouget, G. La Musique et la Transe. (1990).
Lafon, Y. et al. De la transe chamanique à la transe cognitive : Revue de la littérature et approche biopsychosociale. In Yannick. 98–116 (2018).
Grégoire, C., Sombrun, C., Gosseries, O. & Vanhaudenhuyse, A. La Transe Cognitive Auto-Induite: Caracteristiques et Applications Thérapeutique Potentielles. (2021).
Peters, L. Shamanism: Phenomenology of a spiritual discipline. J. Transpers. Psychol. 21, 115 (1989).
Rock, A. J. Shamanic Journeying to the Lower World. Vol. 25. 45–55 (2006).
Hove, M. J. et al. Brain network reconfiguration and perceptual decoupling during an absorptive state of consciousness. Cereb. Cortex 26, 3116–3124 (2016).
Gosseries, O. et al. Behavioural and brain responses in cognitive trance: A TMS-EEG case study. Clin. Neurophysiol. Lett. Ed. 48, 550–554 (2020).
Huels, E. R. et al. Neural correlates of the shamanic state of consciousness. Front. Hum. Neurosci. 15, 1–16 (2021).
Makowski, D. et al. NeuroKit2: A Python toolbox for neurophysiological signal processing. Behav. Res. Methods 53, 1689–1696 (2021).
Sacha, J. et al. How to strengthen or weaken the HRV dependence on heart rate—Description of the method and its perspectives. Int. J. Cardiol. 168, 1660–1663 (2013).
Gasior, J. S., Sacha, J., Jelen, P. J., Zielinski, J. & Przybylski, J. Heart rate and respiratory rate influence on heart rate variability repeatability: Effects of the correction for the prevailing heart rate. Front. Physiol. 7, 1–11 (2016).
Gasior, J. S. et al. Interaction between heart rate variability and heart rate in pediatric population. Front. Physiol. 6, 1–10 (2015).
Sacha, J. Interaction between heart rate and heart rate variability. Ann. Noninvasive Electrocardiol. 19, 207–216 (2014).
Combrisson, E. & Jerbi, K. Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy. J. Neurosci. Methods 250, 126–136 (2015).
Nichols, T. E. & Holmes, A. P. Nichols-2001.pdf. Vol. 25. 1–25 (2001).
Pantazis, D., Nichols, T. E., Baillet, S. & Leahy, R. M. A comparison of random field theory and permutation methods for the statistical analysis of MEG data. Neuroimage 25, 383–394 (2005).
Brodal, P. The Central Nervous System—Structure and Function. (2010).
Thayer, J. F., Hansen, A. L., Saus-Rose, E. & Johnsen, B. H. Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health. Ann. Behav. Med. 37, 141–153 (2009).
Thayer, J. F., Åhs, F., Fredrikson, M., Sollers, J. J. & Wager, T. D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 36, 747–756 (2012).
Thayer, J. F. & Lane, R. D. The role of vagal function in the risk for cardiovascular disease and mortality. Biol. Psychol. 74, 224–242 (2007).
Kuehl, L. K. et al. Two separable mechanisms are responsible for mental stress effects on high frequency heart rate variability: An intra-individual approach in a healthy and a diabetic sample. Int. J. Psychophysiol. 95, 299–303 (2015).
Schiweck, C., Piette, D., Berckmans, D., Claes, S. & Vrieze, E. Heart rate and high frequency heart rate variability during stress as biomarker for clinical depression. A systematic review. Psychol. Med. 49, 200–211 (2019).
Åhs, F., Sollers, J. J., Furmark, T., Fredrikson, M. & Thayer, J. F. High-frequency heart rate variability and cortico-striatal activity in men and women with social phobia. Neuroimage 47, 815–820 (2009).
Jung, W., Jang, K. I. & Lee, S. H. Heart and brain interaction of psychiatric illness: A review focused on heart rate variability, cognitive function, and quantitative electroencephalography. Clin. Psychopharmacol. Neurosci. 17, 459–474 (2019).
Beauchaine, T. P. & Thayer, J. F. Heart rate variability as a transdiagnostic biomarker of psychopathology. Int. J. Psychophysiol. 98, 338–350 (2015).
Beauchaine, T. P., Gatzke-Kopp, L. & Mead, H. K. Polyvagal Theory and developmental psychopathology: Emotion dysregulation and conduct problems from preschool to adolescence. Biol. Psychol. 74, 174–184 (2007).
Tipton, M. J., Harper, A., Paton, J. F. R. & Costello, J. T. The human ventilatory response to stress: rate or depth?. J. Physiol. 595, 5729–5752 (2017).
Pulopulos, M. M., Vanderhasselt, M. A. & De Raedt, R. Association between changes in heart rate variability during the anticipation of a stressful situation and the stress-induced cortisol response. Psychoneuroendocrinology 94, 63–71 (2018).
Platisa, M. M., Mazic, S., Nestorovic, Z. & Gal, V. Complexity of heartbeat interval series in young healthy trained and untrained men. Physiol. Meas. 29, 439–450 (2008).
Peres, J. F., Moreira-Almeida, A., Caixeta, L., Leao, F. & Newberg, A. Neuroimaging during trance state: A contribution to the study of dissociation. PLoS ONE 7, 1–9 (2012).
Frewen, P. A. & Lanius, R. A. Toward a psychobiology of posttraumatic self-dysregulation: Reexperiencing, hyperarousal, dissociation, and emotional numbing. Ann. N. Y. Acad. Sci. 1071, 110–124 (2006).
Sierra, M. et al. Autonomic response in depersonalization disorder. Arch. Gen. Psychiatry 59, 833–838 (2002).
Mula, M., Pini, S. & Cassano, G. B. The neurobiology and clinical significance of depersonalization in mood and anxiety disorders: A critical reappraisal. J. Affect. Disord. 99, 91–99 (2007).
Fernandez, A., Urwicz, L., Vuilleumier, P. & Berna, C. Impact of hypnosis on psychophysiological measures: A scoping literature review. Am. J. Clin. Hypn. 64, 36–52 (2022).
Krygier, J. R. et al. Mindfulness meditation, well-being, and heart rate variability: A preliminary investigation into the impact of intensive vipassana meditation. Int. J. Psychophysiol. 89, 305–313 (2013).
Brown, L. et al. The effects of mindfulness and meditation on vagally mediated heart rate variability: A meta-analysis. Psychosom. Med. 83, 631–640 (2021).
Amihai, I. & Kozhevnikov, M. Arousal vs. relaxation: A comparison of the neurophysiological and cognitive correlates of Vajrayana and Theravada meditative practices. PLoS ONE 9, 102990 (2014).