[en] [en] BACKGROUND & AIMS: The class I- phosphatidylinositol-3 kinases (PI3Ks) signalling is dysregulated in almost all human cancers whereas the isoform-specific roles remain poorly investigated. We reported that the isoform δ (PI3Kδ) regulated epithelial cell polarity and plasticity and recent developments have heightened its role in hepatocellular carcinoma (HCC) and solid tumour progression. However, its role in cholangiocarcinoma (CCA) still lacks investigation.
APPROACH & RESULTS: Immunohistochemical analyses of CCA samples reveal a high expression of PI3Kδ in the less differentiated CCA. The RT-qPCR and immunoblot analyses performed on CCA cells stably overexpressing PI3Kδ using lentiviral construction reveal an increase of mesenchymal and stem cell markers and the pluripotency transcription factors. CCA cells stably overexpressing PI3Kδ cultured in 3D culture display a thick layer of ECM at the basement membrane and a wide single lumen compared to control cells. Similar data are observed in vivo, in xenografted tumours established with PI3Kδ-overexpressing CCA cells in immunodeficient mice. The expression of mesenchymal and stemness genes also increases and tumour tissue displays necrosis and fibrosis, along with a prominent angiogenesis and lymphangiogenesis, as in mice liver of AAV8-based-PI3Kδ overexpression. These PI3Kδ-mediated cell morphogenesis and stroma remodelling were dependent on TGFβ/Src/Notch signalling. Whole transcriptome analysis of PI3Kδ using the cancer cell line encyclopedia allows the classification of CCA cells according to cancer progression.
CONCLUSIONS: Overall, our results support the critical role of PI3Kδ in the progression and aggressiveness of CCA via TGFβ/src/Notch-dependent mechanisms and open new directions for the classification and treatment of CCA patients.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Bou Malham, Vanessa ; INSERM, Unité 1193, Villejuif, France ; Université Paris-Saclay, UMR-S 1193, Villejuif, France
Benzoubir, Nassima; INSERM, Unité 1193, Villejuif, France ; Université Paris-Saclay, UMR-S 1193, Villejuif, France
Vaquero, Javier; Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, INSERM, Paris, France ; Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
Desterke, Christophe; Université Paris-Saclay, UFR Médecine-INSERMS1310, Villejuif, France
Agnetti, Jean; INSERM, Unité 1193, Villejuif, France ; Université Paris-Saclay, UMR-S 1193, Villejuif, France
Song, Pei Xuan; INSERM, Unité 1193, Villejuif, France ; Université Paris-Saclay, UMR-S 1193, Villejuif, France
Gonzalez-Sanchez, Ester ; Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, INSERM, Paris, France ; TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain ; Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Madrid, Spain ; Inovarion, Paris, France
Arbelaiz, Ander; Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, INSERM, Paris, France
Jacques, Sophie ; Université de Liège - ULiège > GIGA > GIGA Medical Genomics - Unit of Animal Genomics
Di Valentin, Emmanuel ; Université de Liège - ULiège > GIGA > GIGA Platform Viral vectors ; Université de Liège - ULiège > Département des sciences de la vie > Virologie - Immunologie
Rahmouni, Souad ; Université de Liège - ULiège > GIGA > GIGA Medical Genomics - Unit of Animal Genomics
Tan, Tuan Zea; Genomics and Data Analytics Core (GeDaC), Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
Samuel, Didier ; INSERM, Unité 1193, Villejuif, France ; Université Paris-Saclay, UMR-S 1193, Villejuif, France ; Centre Hepato-Biliaire, AP-HP Hôpital Paul Brousse, Villejuif, France
Thiery, Jean Paul; Guangzhou Laboratory, International Biological Island Guangzhou, Guangzhou, China
Sebagh, Mylène ; INSERM, Unité 1193, Villejuif, France ; Université Paris-Saclay, UMR-S 1193, Villejuif, France ; Laboratoire d'Anatomopathologie, AP-HP Hôpital Paul-Brousse, Villejuif, France
Fouassier, Laura ; Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, INSERM, Paris, France
Gassama-Diagne, Ama ; INSERM, Unité 1193, Villejuif, France ; Université Paris-Saclay, UMR-S 1193, Villejuif, France
INSERM - Institut National de la Santé et de la Recherche Médicale FRM - Fondation pour la Recherche Médicale AEEH - Asociación Española para el Estudio del Hígado
Seehawer M, D'Artista L, Zender L. The worst from both worlds: cHCC-ICC. Cancer Cell. 2019;35(6):823-824.
Banales JM, Marin JJG, Lamarca A, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol. 2020;17(9):557-588.
Müsch A. From a common progenitor to distinct liver epithelial phenotypes. Curr Opin Cell Biol. 2018;54:18-23.
Raven A, Lu WY, Man TY, et al. Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature. 2017;547(7663):350-354.
Sia D, Villanueva A, Friedman SL, Llovet JM. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology. 2017;152(4):745-761.
Pei D, Shu X, Gassama-Diagne A, Thiery JP. Mesenchymal–epithelial transition in development and reprogramming. Nat Cell Biol. 2019;21(1):44-53.
Hepburn AC, Steele RE, Veeratterapillay R, et al. Correction: the induction of core pluripotency master regulators in cancers defines poor clinical outcomes and treatment resistance. Oncogene. 2019;38(22):4425.
Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017;14(10):611-629.
Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K pathway in human disease. Cell. 2017;170(4):605-635.
Bilanges B, Posor Y, Vanhaesebroeck B. PI3K isoforms in cell signalling and vesicle trafficking. Nat Rev Mol Cell Biol. 2019;20(9):515-534.
Guillermet-Guibert J, Bjorklof K, Salpekar A, et al. The p110β isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110γ. Proc Natl Acad Sci USA. 2008;105(24):8292-8297.
Chantry D, Vojtek A, Kashishian A, et al. p110delta, a novel phosphatidylinositol 3-kinase catalytic subunit that associates with p85 and is expressed predominantly in leukocytes. J Biol Chem. 1997;272(31):19236-19241.
Furman RR, Sharman JP, Coutre SE, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014;370(11):997-1007.
Gopal AK, Kahl BS, de Vos S, et al. PI3Kδ inhibition by Idelalisib in patients with relapsed indolent lymphoma. N Engl J Med. 2014;370(11):1008-1018.
Goulielmaki E, Bermudez-Brito M, Andreou M, et al. Pharmacological inactivation of the PI3K p110δ prevents breast tumour progression by targeting cancer cells and macrophages. Cell Death Dis. 2018;9(6):1-15.
Sawyer C, Sturge J, Bennett DC, et al. Regulation of breast cancer cell chemotaxis by the phosphoinositide 3-kinase p110delta. Cancer Res. 2003;63(7):1667-1675.
Park GB, Kim D. Insulin-like growth factor-1 activates different catalytic subunits p110 of PI3K in a cell-type-dependent manner to induce lipogenesis-dependent epithelial-mesenchymal transition through the regulation of ADAM10 and ADAM17. Mol Cell Biochem. 2018;439(1–2):199-211.
Yue D, Sun X. Idelalisib promotes Bim-dependent apoptosis through AKT/FoxO3a in hepatocellular carcinoma. Cell Death Dis. 2018;9(10):935.
Ko E, Seo HW, Jung ES, et al. PI3Kδ is a therapeutic target in hepatocellular carcinoma. Hepatology. 2018;68(6):2285-2300.
Sirica AE, Gores GJ. Desmoplastic stroma and cholangiocarcinoma: clinical implications and therapeutic targeting. Hepatology. 2014;59(6):2397-2402.
Peng J, Awad A, Sar S, et al. Phosphoinositide 3-kinase p110δ promotes lumen formation through the enhancement of apico-basal polarity and basal membrane organization. Nat Commun. 2015;6:5937.
Emi N, Friedmann T, Yee JK. Pseudotype formation of murine leukemia virus with the G protein of vesicular stomatitis virus. J Virol. 1991;65(3):1202-1207.
Ghandi M, Huang FW, Jané-Valbuena J, et al. Next-generation characterization of the cancer cell line encyclopedia. Nature. 2019;569(7757):503-508.
Tarazona S, Furió-Tarí P, Turrà D, et al. Data quality aware analysis of differential expression in RNA-seq with NOISeq R/bioc package. Nucleic Acids Res. 2015;43(21):e140.
Tibshirani R, Hastie T, Narasimhan B, Chu G. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci USA. 2002;99(10):6567-6572.
Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;37(Web Server issue):W305-W311.
Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25-29.
Cline MS, Smoot M, Cerami E, et al. Integration of biological networks and gene expression data using Cytoscape. Nat Protoc. 2007;2(10):2366-2382.
Agnetti J, Bou Malham V, Desterke C, et al. PI3Kδ activity controls plasticity and discriminates between EMT and stemness based on distinct TGFβ signaling. Commun Biol. 2022;5(1):740.
Dos Santos A, Court M, Thiers V, et al. Identification of cellular targets in human intrahepatic Cholangiocarcinoma using laser microdissection and accurate mass and time tag proteomics*. Mol Cell Proteomics. 2010;9(9):1991-2004.
Stacker SA, Achen MG, Jussila L, Baldwin ME, Alitalo K. Lymphangiogenesis and cancer metastasis. Nat Rev Cancer. 2002;2(8):573-583.
He Y, Rajantie I, Pajusola K, et al. Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res. 2005;65(11):4739-4746.
Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med. 2001;7(2):192-198.
Karpanen T, Egeblad M, Karkkainen MJ, et al. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res. 2001;61(5):1786-1790.
Mandriota SJ, Jussila L, Jeltsch M, et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J. 2001;20(4):672-682.
Aishima S, Nishihara Y, Iguchi T, et al. Lymphatic spread is related to VEGF-C expression and D2-40-positive myofibroblasts in intrahepatic cholangiocarcinoma. Mod Pathol. 2008;21(3):256-264.
Agnetti J, Bou Malham V, Desterke C, et al. PI3Kδ activity controls plasticity and discriminates between EMT and stemness based on distinct TGFβ signaling. Commun Biol. 2022;5(1):1-15.
Watabe T, Miyazono K. Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell Res. 2009;19(1):103-115.
Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A. Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest. 2003;112(10):1486-1494.
Huang CK, Aihara A, Iwagami Y, et al. Expression of transforming growth factor β1 promotes cholangiocarcinoma development and progression. Cancer Lett. 2016;380(1):153-162.
Sahai E, Astsaturov I, Cukierman E, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20(3):174-186.
Atanasov G, Schierle K, Hau HM, et al. Prognostic significance of tumor necrosis in hilar cholangiocarcinoma. Ann Surg Oncol. 2017;24(2):518-525.
Hirsch E, Ciraolo E, Franco I, Ghigo A, Martini M. PI3K in cancer–stroma interactions: bad in seed and ugly in soil. Oncogene. 2014;33(24):3083-3090.
Wu W, Zhou G, Han H, et al. PI3Kδ as a novel therapeutic target in pathological angiogenesis. Diabetes. 2020;69(4):736-748.