[en] This paper presents a cross-sector analysis of a 100 kWp vertical agrivoltaic (AV) case study in Chanco, Maule, Chile. Maule is an agricultural region facing recurring droughts, which put pressure on irrigated lands. The study investigates the potential of vertical AV in two ways: comparing the energy yield prediction of the photovoltaic component with a typical north-tilted PV plant and comparing the water demand of a reference crop in vertical AV with open field conditions. A PVLib and PVFactors python tools were used to evaluate energy production, while spatial evapotranspiration prediction incorporates wind speed and solar irradiation heterogeneities. Results for the climatic year 2021 indicate that a north-tilted power plant produced more energy than a bi-facial vertical AV plant, but the latter represents a significantly less impact on agricultural activities. The analyzed vertical AV presents a lower impact to the grid due to the two peaks in daily power production that spread the generation over the day and does not contribute to the overproduction in the midday that is currently being curtailed when high solar irradiance is present in Chile. Water savings of up to 1410 m3/ha were found in the study with the vertical AV installation mainly due to the reduced irradiation combined with windbreak effects.
Disciplines :
Agriculture & agronomy Energy
Author, co-author :
Bruhwyler, Roxane ; Université de Liège - ULiège > TERRA Research Centre
Sánchez, Hugo ; Hochschule Anhalt University of Applied Sciences, Köthen, Germany ; Costa Rica Institute of Technology, Cartago, Costa Rica
Meza, Carlos ; Hochschule Anhalt University of Applied Sciences, Köthen, Germany ; Costa Rica Institute of Technology, Cartago, Costa Rica
Lebeau, Frédéric ; Université de Liège - ULiège > Département GxABT > Biosystems Dynamics and Exchanges (BIODYNE)
Brunet, Pascal; Naldeo Technologies Industries, Tarnos, France
Dabadie, Gabriel; Naldeo Technologies Industries, Tarnos, France
Dittmann, Sebastian; Hochschule Anhalt University of Applied Sciences, Köthen, Germany ; Fraunhofer-Center for Silicon Photovoltaics CSP, Halle, Germany
Gottschalg, Ralph; Hochschule Anhalt University of Applied Sciences, Köthen, Germany ; Fraunhofer-Center for Silicon Photovoltaics CSP, Halle, Germany
Negroni, Juan Jose; Universidad de Santo Tomás, Santiago, Chile
Language :
English
Title :
Vertical agrivoltaics and its potential for electricity production and agricultural water demand: A case study in the area of Chanco, Chile
The research and writing effort for the authors from Anhalt University of Applied Sciences is supported by the German Federal Ministry of Education and Research under the project “Biodiversity in solar parks - Innovative concepts and construction of demonstrators for a better compatibility of photovoltaic systems, nature conservation and agriculture (BIODIV-SOLAR)”. Funding code: 13FH133KX0The research effort for the authors from University of Liège in Belgium is based upon work that is supported by the FRIA grant 40015573 from FNRS .
O'Shaughnessy, E., Cruce, J.R., Xu, K., Too much of a good thing? Global trends in the curtailment of solar PV. Sol Energy 208 (2020), 1068–1077.
Laje, D., Faiola, A., Herrero, A.V., Dying crops, spiking energy bills, showers once a week. In south America, the climate future has arrived (the Washington post). 2021 URL https://www.cr2.cl/eng/category/water-extremes/.
Maddocks, A., Samuel, R., Reig, P., Ranking the world's most water-stressed countries in 2040. 2015 URL https://www.wri.org/insights/ranking-worlds-most-water-stressed-countries-2040.
Duffie, J.A., Beckman, W.A., Water Resources of Chile. 2013, Wiley.
Henriquez, E.M.M., González, P.S.N., Análisis del déficit hídrico de la región del maule, Chile. RIAT: Rev. Interam. Medioambient. Tur. 7:1 (2011), 25–32.
MINIAGRI, E.M.M., Región del maule. 2022 URL https://www.minagri.gob.cl/region/region-del-maule/.
INIA, E.M.M., Boletín nacional de análisis de riesgos agroclimáticos para las principales especies frutales y cultivos y la ganadería. 2021.
Enel, E.M.M., Sustainable irrigation in the maule river basin. 2020 URL https://www.enel.cl/en/stories/a202006-sustainable-irrigation-in-the-maule-river-basin.html.
Varas, E.C., Varas, E.V., Surface water resources. Fernández, B., Gironás, J., (eds.) Water Resources of Chile, Vol. 8, 2021, Springer, 61–92 Ch. 4.
Vargas-Ferrer, P., Alvarez-Miranda, E., Tenreiro, C., Jalil-Vega, F., Assessing flexibility for integrating renewable energies into carbon neutral multi-regional systems: The case of the Chilean power system. Energy Sustain. Dev., 2022.
Prieto, M., Fragkou, M.C., Calderón-Seguel, M., Water policy and management in Chile. Maurice, P., (eds.) Encyclopedia of Water: Science, Technology, and Society, 2020, Wiley-Blackwell, 2589–2600 Ch. 218.
BlueberriesConsulting, M., Lack of water threatens agriculture from maule to biobío. 2016 URL https://blueberriesconsulting.com/en/falta-de-agua-amenaza-al-agro-desde-maule-al-biobio/.
Goetzberger, A., Zastrow, A., On the coexistence of solar-energy conversion and plant cultivation. Int J Sol Energy 1:1 (1982), 55–69.
Bellini, E., France defines standards for agrivoltaics. 2022 URL https://www.pv-magazine.com/2022/04/28/france-defines-standards-for-agrivoltaics/.
Campana, P.E., Stridh, B., Amaducci, S., Colauzzi, M., Optimisation of vertically mounted agrivoltaic systems. J Clean Prod, 325, 2021.
Zainali, S., Qadir, O., Parlak, S.C., Ma Lu, S., Stidh, B., Campana, P.E., Computational fluid dynamics modelling of microclimate for a vertical agrivoltaic system. Energy Nexus, 9, 2023.
Riaz, M., Imran, H., Younas, R., Alam, M., Butt, N., Module technology for agrivoltaics: Vertical bifacial versus tilted monofacial farms. IEEE J Photovolt, 11, 2021.
Sánchez, H., Dittmann, S., Tosello, S., Meza, C., Dullau, S., Meyer, M.H., Scholz, P., Tischew, S., Gottschalg, R., Novel measurement concept for AgriPVPlus systems-a triple use approach. 2022 8th World Conference on Photovoltaic Energy Conversion (WPEC), 2022, WPEC, 992–995.
Bellini, E., Cost comparison between agrivoltaics and ground-mounted PV. 2021 URL https://www.pv-magazine.com/2021/03/26/cost-comparison-between-agrivoltaics-and-ground-mounted-pv/.
Chudinzow, D., Nagel, S., Güsewell, J., Eltrop, L., Vertical bifacial photovoltaics–A complementary technology for the European electricity supply?. Appl Energy, 264, 2020, 114782.
Reker, S., Schneider, J., Gerhards, C., Integration of vertical solar power plants into a future German energy system. Smart Energy 2666-9552, 7, 2022, 100083, 10.1016/j.segy.2022.100083 URL https://www.sciencedirect.com/science/article/pii/S2666955222000211.
Tasso, F.A.L., Estimación del Potencial Eólico de la Región del Maule, Chile. (Ph.D. thesis), 2010, Universidad de Chile. Facultad de Ciencias Agronómicas. Escuela de Agronomía.
Bruhwyler, R., Brunet, P., Dabadie, G., Thiery, A., Chapon, J., Drahi, E., Boukouya, A., Delahaye, B., Jennet, C., Souquet, P., Lebeau, F., Assessing windbreak effect of vertical agrivoltaics on the reduction of evapotranspiration in different climates. 2022 Agrivoltaics2022.
Béguin, J.M., Observations sur le rôle des brise-vent. Fruits 27 (1972), 745–764.
Smith, M.M., Bentrup, G., Kellerman, T., MacFarland, K., Straight, R., Ameyaw, L., Windbreaks in the United States: A systematic review of producer-reported benefits, challenges, management activities and drivers of adoption. Agric. Syst. 0308521X, 187, 2021, 10.1016/j.agsy.2020.103032.
Campi, P., Palumbo, A., Mastrorili, M., Evapotranspiration estimation of crops protected by windbreak in a Mediterranean region. Agricult Water Manag 104 (2011), 153–162.
NASA, P., NASA power. 2021 URL https://power.larc.nasa.gov/docs/.
Holmgren, W.F., Hansen, C.W., Mikofski, M.A., Pvlib python: A python package for modeling solar energy systems. J. Open Source Softw., 3(29), 2018, 884.
Abou Anoma, M., Jacob, D., Bourne, B.C., Scholl, J.A., Riley, D.M., Hansen, C.W., View factor model and validation for bifacial PV and diffuse shade on single-axis trackers. 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), 2017, IEEE, 1549–1554.
Partial list of references that cite PVLIB. 2023 https://pvpmc.sandia.gov/applications/pv_lib-toolbox/. Accessed: 2023-06-13.
Riaz, M.H., Imran, H., Alam, H., Alam, M.A., Butt, N.Z., Crop-specific optimization of bifacial PV arrays for agrivoltaic food-energy production: The light-productivity-factor approach. IEEE J Photovolt 12:2 (2022), 572–580, 10.1109/JPHOTOV.2021.3136158.
Riise HN, Øgaard M, Zhu J, You CC, Andersson F, Bønsnæs T, Young J, Foss SE. Performance analysis of a BAPV bifacial system in Norway. In: 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC). 2021, p. 1304–8. http://dx.doi.org/10.1109/PVSC43889.2021.9518963.
Reda, I., Andreas, A., Solar position algorithm for solar radiation applications. Solar Energy 76:5 (2004), 577–589.
De Soto, W., Klein, S.A., Beckman, W.A., Improvement and validation of a model for photovoltaic array performance. Solar Energy 80:1 (2006), 78–88.
Faiman, D., Assessing the outdoor operating temperature of photovoltaic modules. Prog Photovolt, Res Appl 16:4 (2008), 307–315.
Dittmann S, Sanchez H, Burnham L, Gottschalg R, Oh S, Benlarabi A, Figgis B, Abdallah A, Rodriguez C, Rüther R, et al. Comparative Analysis of Albedo Measurements (Plane-of-Array, Horizontal) at Multiple Sites Worldwide. In: 36th European Photovoltaic Solar Energy Conference and Exhibition. Marseille, France. 2019, p. 1388–93.
Sánchez, H., Dittmann, S., Meza, C., Gottschalg, R., An experimental comparison between view factor and ray tracing models for energy estimation of bifacial modules. 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC), 2022, IEEE, 1146–1150.
Allen, R.G., Pereira, L.S., Raes, D., Smith, M., Crop evapotranspiration - guidelines for computing crop water requirements. FAO Irrig. Drainage, 56, 1998.
Alexa, M., Super-fibonacci spirals: Fast, low-discrepancy sampling of SO(3). CVF Conference on Computer Vision and Pattern Recognition, 2020, IEEE, 8281–8290.
Duffie, J.A., Beckman, W.A., Solar Engineering of Thermal Processes. 2013, Wiley.
Adeh, E.H., Selker, J.S., Higgins, C.W., Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency. PLoS One, 2018.
Barron-Gafford, G.A., Pavao-Zuckerman, M.A., Minor, R.L., Sutter, L.F., Barnett-Moreno, I., Blackett, D.T., Thompson, M., Dimond, K., Gerlak, A.K., Nabhan, G.P., Macknick, J.E., Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands. Nat. Sustain., 2019.