[en] The aim of this study was to detect the genomic region or regions associated with metabolic clusters in early-lactation Holstein cows. This study was carried out in 2 experiments. In experiment I, which was carried out on 105 multiparous Holstein cows, animals were classified through k-means clustering on log-transformed and standardized concentrations of blood glucose, insulin-like growth factor I, free fatty acids, and β-hydroxybutyrate at 14 and 35 d in milk (DIM), into metabolic clusters, either balanced (BAL) or other (OTR). Forty percent of the animals were categorized in the BAL group, and the remainder were categorized as OTR. The cows were genotyped for a total of 777,962 SNP. A genome-wide association study was performed, using a case-control approach through the GEMMA software, accounting for population structure. We found 8 SNP (BTA11, BTA23, and BTAX) associated with the predicted metabolic clusters. In experiment II, carried out on 4,267 second-parity Holstein cows, milk samples collected starting from the first week until 50 DIM were used to determine Fourier-transform mid-infrared (FT-MIR) spectra and subsequently to classify the animals into the same metabolic clusters (BAL vs. OTR). Twenty-eight percent of the animals were categorized in the BAL group, and the remainder were classified in the OTR category. Although daily milk yield was lower in BAL cows, we found no difference in daily fat- and protein-corrected milk yield in cows from the BAL metabolic cluster compared with those in the OTR metabolic cluster. In the next step, a single-step genomic BLUP was used to identify the genomic region(s) associated with the predicted metabolic clusters. The results revealed that prediction of metabolic clusters is a highly polygenic trait regulated by many small-sized effects. The region of 36,258 to 36,295 kb on BTA27 was the highly associated region for the predicted metabolic clusters, with the closest genes to this region (ANK1 and miR-486) being related to hematopoiesis, erythropoiesis, and mammary gland development. The heritability for metabolic clustering was 0.17 (SD 0.03), indicating that the use of FT-MIR spectra in milk to predict metabolic clusters in early-lactation across a large number of cows has satisfactory potential to be included in genetic selection programs for modern dairy cows.
Disciplines :
Animal production & animal husbandry
Author, co-author :
Atashi, Hadi ; Université de Liège - ULiège > Département GxABT > Animal Sciences (AS) ; Department of Reproduction, Obstetrics and Herd Health, Ghent University, Merelbeke 9820, Belgium, Department of Animal Science, Shiraz University, Shiraz 71441-65186, Iran
Salavati, M; The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
De Koster, J; Department of Reproduction, Obstetrics and Herd Health, Ghent University, Merelbeke 9820, Belgium
Crowe, M A; University College Dublin, 4 Dublin, Ireland
Opsomer, G; Department of Reproduction, Obstetrics and Herd Health, Ghent University, Merelbeke 9820, Belgium
GplusE consortium
Hostens, M; Department of Reproduction, Obstetrics and Herd Health, Ghent University, Merelbeke 9820, Belgium. Electronic address: miel.hostens@ugent.be
Language :
English
Title :
Genome-wide association for metabolic clusters in early-lactation Holstein dairy cows.
This project received funding from the European Union's Seventh Framework Program (Brussels, Belgium) for research, technological development, and demonstration, under grant agreement no. 613689. The views expressed in this publication are the sole responsibility of the authors and do not necessarily reflect the views of the European Commission. Authors within the GplusE consortium: Alan Fahey, Elizabeth Matthews, Andreia Santoro, Colin Byrne, Pauline Rudd, Roisin O'Flaherty, Sinead Hallinan, Claire Wathes, Zhangrui Cheng, Ali Fouladi, Geoff Pollott, Dirk Werling, Beatriz Sanz Bernardo, Alistair Wylie, Matt Bell, Mieke Vaneetvelde, Kristof Hermans, Geert Opsomer, Sander Moerman, Jenne De Koster, Hannes Bogaert, Jan Vandepitte, Leila Vandevelde, Bonny Vanranst, Johanna Hoglund, Susanne Dahl, Soren Ostergaard, Janne Rothmann, Mogens Krogh, Else Meyer, Charlotte Gaillard, Jehan Ettema, Tine Rousing, Federica Signorelli, Francesco Napolitano, Bianca Moioli, Alessandra Crisà, Luca Buttazzoni, Jennifer McClure, Daragh Matthews, Francis Kearney, Andrew Cromie, Matt McClure, Shujun Zhang, Xing Chen, Huanchun Chen, Junlong Zhao, Liguo Yang, Guohua Hua, Chen Tan, Guiqiang Wang, Michel Bonneau, Andrea Pompozzi, Armin Pearn, Arnold Evertson, Linda Kosten, Anders Fogh, Thomas Andersen, Matthew Lucey, Chris Elsik, Gavin Conant, Jerry Taylor, Nicolas Gengler, Michel Georges, Frédéric Colinet, Hedi Hammami, Catherine Bastin, Haruko Takeda, Aurelie Laine, Anne-Sophie Van Laere, Martin Schulze, Sergio Palma Vera, Conrad Ferris, Cinzia Marchitelli. The authors declare no potential conflict of interest associated with this research.
Aguilar, I., Legarra, A., Cardoso, F., Masuda, Y., Lourenco, D., Misztal, I., Frequentist p-values for large-scale-single step genome-wide association, with an application to birth weight in American Angus cattle. Genet. Sel. Evol., 51, 2019, 28 https://doi.org/10.1186/s12711-019-0469-3 31221101.
Aguilar, I., Misztal, I., Johnson, D., Legarra, A., Tsuruta, S., Lawlor, T., Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J. Dairy Sci. 93 (2010), 743–752 https://doi.org/10.3168/jds.2009-2730 20105546.
Alawneh, J., Stevenson, M., Williamson, N., Lopez-Villalobos, N., Otley, T., The effect of liveweight change on reproductive performance in a seasonally calving, pasture fed dairy herd. Livest. Sci. 145 (2012), 131–139 https://doi.org/10.1016/j.livsci.2011.12.025.
Aslan, O., Hamill, R.M., Mullen, A.M., Davey, G.C., Gil, M., Gladney, C.D., Sweeney, T., Association between promoter polymorphisms in a key cytoskeletal gene (Ankyrin 1) and intramuscular fat and water-holding capacity in porcine muscle. Mol. Biol. Rep. 39 (2012), 3903–3914 https://doi.org/10.1007/s11033-011-1169-4 21769482.
Aslan, O., Sweeney, T., Mullen, A.M., Hamill, R.M., Regulatory polymorphisms in the bovine Ankyrin 1 gene promoter are associated with tenderness and intramuscular fat content. BMC Genet., 11, 2010, 111 https://doi.org/10.1186/1471-2156-11-111 21159195.
Bauman, D.E., Bruce Currie, W., Partitioning of nutrients during pregnancy and lactation—A review of mechanisms involving homeostasis and homeorhesis. J. Dairy Sci. 63 (1980), 1514–1529 https://doi.org/10.3168/jds.S0022-0302(80)83111-0 7000867.
Beerda, B., Kornalijnslijper, J., Van der Werf, J., Noordhuizen-Stassen, E., Hopster, H., Effects of milk production capacity and metabolic status on HPA function in early postpartum dairy cows. J. Dairy Sci. 87 (2004), 2094–2102 https://doi.org/10.3168/jds.S0022-0302(04)70027-2 15328221.
Beissinger, T.M., Rosa, G.J., Kaeppler, S.M., Gianola, D., De Leon, N., Defining window-boundaries for genomic analyses using smoothing spline techniques. Genet. Sel. Evol., 47, 2015, 30 https://doi.org/10.1186/s12711-015-0105-9 25928167.
Bell, A.W., Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. J. Anim. Sci. 73 (1995), 2804–2819 https://doi.org/10.2527/1995.7392804x 8582872.
Bell, A.W., Bauman, D.E., Adaptations of glucose metabolism during pregnancy and lactation. J. Mammary Gland Biol. Neoplasia 2 (1997), 265–278 https://doi.org/10.1023/A:1026336505343 10882310.
Bennett, V., Baines, A.J., Spectrin and ankyrin-based pathways: Metazoan inventions for integrating cells into tissues. Physiol. Rev. 81 (2001), 1353–1392 https://doi.org/10.1152/physrev.2001.81.3.1353 11427698.
Bouwman, A.C., Bovenhuis, H., Visker, M.H., van Arendonk, J.A., Genome-wide association of milk fatty acids in Dutch dairy cattle. BMC Genet., 12, 2011, 43 https://doi.org/10.1186/1471-2156-12-43 21569316.
Bouwman, A.C., Visker, M.H., van Arendonk, J.A., Bovenhuis, H., Genomic regions associated with bovine milk fatty acids in both summer and winter milk samples. BMC Genet., 13, 2012, 93 https://doi.org/10.1186/1471-2156-13-93 23107417.
Cai, Z., Guldbrandtsen, B., Lund, M.S., Sahana, G., Dissecting closely linked association signals in combination with the mammalian phenotype database can identify candidate genes in dairy cattle. BMC Genet., 20, 2019, 15 https://doi.org/10.1186/s12863-019-0717-0 29751743.
Collard, B.L., Boettcher, P.J., Dekkers, J.C., Petitclerc, D., Schaeffer, L.R., Relationships between energy balance and health traits of dairy cattle in early lactation. J. Dairy Sci. 83 (2000), 2683–2690 https://doi.org/10.3168/jds.S0022-0302(00)75162-9 11104289.
Contreras, G.A., Strieder-Barboza, C., De Koster, J., Symposium review: Modulating adipose tissue lipolysis and remodeling to improve immune function during the transition period and early lactation of dairy cows. J. Dairy Sci. 101 (2018), 2737–2752 https://doi.org/10.3168/jds.2017-13340 29102145.
De Koster, J., Salavati, M., Grelet, C., Crowe, M.A., Matthews, E., O'Flaherty, R., Opsomer, G., Foldager, L., Hostens, M., Prediction of metabolic clusters in early-lactation dairy cows using models based on milk biomarkers. J. Dairy Sci. 102 (2019), 2631–2644 https://doi.org/10.3168/jds.2018-15533 30692010.
De Oliveira, P.S., Coutinho, L.L., Tizioto, P.C., Cesar, A.S., de Oliveira, G.B., Diniz, W.J.S., De Lima, A.O., Reecy, J.M., Mourão, G.B., Zerlotini, A., Regitano, L.C.A., An integrative transcriptome analysis indicates regulatory mRNA-miRNA networks for residual feed intake in Nelore cattle. Sci. Rep., 8, 2018, 17072 https://doi.org/10.1038/s41598-018-35315-5 30459456.
DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 44 (2012), 981–990 https://doi.org/10.1038/ng.2383.
Drackley, J.K., Biology of dairy cows during the transition period: The final frontier?. J. Dairy Sci. 82 (1999), 2259–2273 https://doi.org/10.3168/jds.S0022-0302(99)75474-3 10575597.
Drackley, J.K., Dann, H.M., Douglas, G.N., Guretzky, N.A.J., Litherland, N.B., Underwood, J.P., Loor, J.J., Physiological and pathological adaptations in dairy cows that may increase susceptibility to periparturient diseases and disorders. Ital. J. Anim. Sci. 4 (2005), 323–344 https://doi.org/10.4081/ijas.2005.323.
Esposito, G., Irons, P.C., Webb, E.C., Chapwanya, A., Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Anim. Reprod. Sci. 144 (2014), 60–71 https://doi.org/10.1016/j.anireprosci.2013.11.007 24378117.
Fragomeni, B.O., Misztal, I., Lourenco, D.L., Aguilar, I., Okimoto, R., Muir, W.M., Changes in variance explained by top SNP windows over generations for three traits in broiler chicken. Front. Genet., 5, 2014, 332 https://doi.org/10.3389/fgene.2014.00332 25324857.
Gallagher, P.G., Romana, M., Tse, W.T., Lux, S.E., Forget, B.G., The human ankyrin-1 gene is selectively transcribed in erythroid cell lines despite the presence of a housekeeping-like promoter. Blood 96 (2000), 1136–1143 https://doi.org/10.1182/blood.V96.3.1136 10910934.
Goff, J.P., Horst, R., Physiological changes at parturition and their relationship to metabolic disorders. J. Dairy Sci. 80 (1997), 1260–1268 https://doi.org/10.3168/jds.S0022-0302(97)76055-7 9241588.
Han, Y., Peñagaricano, F., Unravelling the genomic architecture of bull fertility in Holstein cattle. BMC Genet., 17, 2016, 143 https://doi.org/10.1186/s12863-016-0454-6 27842509.
Herr, M., Bostedt, H., Failing, K., IgG and IgM levels in dairy cows during the periparturient period. Theriogenology 75 (2011), 377–385 https://doi.org/10.1016/j.theriogenology.2010.09.009 21040961.
Horodyska, J., Sweeney, T., Ryan, M., Hamill, R., Novel SNPs in the Ankyrin 1 gene and their association with beef quality traits. Meat Sci. 108 (2015), 88–96 https://doi.org/10.1016/j.meatsci.2015.04.019 26051041.
Imamura, M., Maeda, S., Yamauchi, T., Hara, K., Yasuda, K., Morizono, T., Takahashi, A., Horikoshi, M., Nakamura, M., Fujita, H., Tsunoda, T., Kubo, M., Watada, H., Maegawa, H., Okada-Iwabu, M., Iwabu, M., Shojima, N., Ohshige, T., Omori, S., Iwata, M., Hirose, H., Kaku, K., Ito, C., Tanaka, Y., Tobe, K., Kashiwagi, A., Kawamori, R., Kasuga, M., Kamatani, N., Nakamura, Y., Kadowaki, T., A single-nucleotide polymorphism in ANK1 is associated with susceptibility to type 2 diabetes in Japanese populations. Hum. Mol. Genet. 21 (2012), 3042–3049 https://doi.org/10.1093/hmg/dds113 22456796.
Ingvartsen, K.L., Feeding- and management-related diseases in the transition cow: Physiological adaptations around calving and strategies to reduce feeding-related diseases. Anim. Feed Sci. Technol. 126 (2006), 175–213 https://doi.org/10.1016/j.anifeedsci.2005.08.003.
Ingvartsen, K.L., Andersen, J.B., Integration of metabolism and intake regulation: A review focusing on periparturient animals. J. Dairy Sci. 83 (2000), 1573–1597 https://doi.org/10.3168/jds.S0022-0302(00)75029-6 10908064.
Ingvartsen, K.L., Dewhurst, R.J., Friggens, N.C., On the relationship between lactational performance and health: Is it yield or metabolic imbalance that cause production diseases in dairy cattle? A position paper. Livest. Prod. Sci. 83 (2003), 277–308 https://doi.org/10.1016/S0301-6226(03)00110-6.
Jing, L., Hou, Y., Wu, H., Miao, Y., Li, X., Cao, J., Michael Brameld, J., Parr, T., Zhao, S., Transcriptome analysis of mRNA and miRNA in skeletal muscle indicates an important network for differential Residual Feed Intake in pigs. Sci. Rep., 5, 2015, 11953 https://doi.org/10.1038/srep11953 26150313.
Kessel, S., Stroehl, M., Meyer, H.H.D., Hiss, S., Sauerwein, H., Schwarz, F.J., Bruckmaier, R.M., Individual variability in physiological adaptation to metabolic stress during early lactation in dairy cows kept under equal conditions. J. Anim. Sci. 86 (2008), 2903–2912 https://doi.org/10.2527/jas.2008-1016 18599666.
Kolbehdari, D., Wang, Z., Grant, J., Murdoch, B., Prasad, A., Xiu, Z., Marques, E., Stothard, P., Moore, S., A whole-genome scan to map quantitative trait loci for conformation and functional traits in Canadian Holstein bulls. J. Dairy Sci. 91 (2008), 2844–2856 https://doi.org/10.3168/jds.2007-0585 18565942.
Krogh, M.A., Hostens, M., Salavati, M., Grelet, C., Sorensen, M.T., Wathes, D.C., Ferris, C.P., Marchitelli, C., Signorelli, F., Napolitano, F., Becker, F., Larsen, T., Matthews, E., Carter, F., Vanlierde, A., Opsomer, G., Gengler, N., Dehareng, F., Crowe, M.A., Ingvartsen, K.L., Foldager, L., Between- and within-herd variation in blood and milk biomarkers in Holstein cows in early lactation. Animal 7 (2019), 1–9 https://doi.org/10.1017/S1751731119002659.
Lander, E., Kruglyak, L., Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nat. Genet. 11 (1995), 241–247 https://doi.org/10.1038/ng1195-241 7581446.
LeBlanc, S., Monitoring metabolic health of dairy cattle in the transition period. J. Reprod. Develop. 56:Suppl. (2010), S29–S35.
Li, D., Xie, X., Wang, J., Bian, Y., Li, Q., Gao, X., Wang, C., MiR-486 regulates lactation and targets the PTEN gene in cow mammary glands. PLoS One, 10, 2015, e0118284 https://doi.org/10.1371/journal.pone.0118284 25738494.
Liinamo, A.-E., Mäntysaari, P., Mäntysaari, E., Genetic parameters for feed intake, production, and extent of negative energy balance in Nordic Red dairy cattle. J. Dairy Sci. 95 (2012), 6788–6794 https://doi.org/10.3168/jds.2012-5342 22959942.
Maltecca, C., Weigel, K., Khatib, H., Cowan, M., Bagnato, A., Whole-genome scan for quantitative trait loci associated with birth weight, gestation length and passive immune transfer in a Holstein × Jersey crossbred population. Anim. Genet. 40 (2009), 27–34 https://doi.org/10.1111/j.1365-2052.2008.01793.x 19016677.
McClure, M.C., Morsci, N.S., Schnabel, R.D., Kim, J.W., Yao, P., Rolf, M.M., McKay, S.D., Gregg, S.J., Chapple, R.H., Northcutt, S.L., Taylor, J.F., A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. Anim. Genet. 41 (2010), 597–607 https://doi.org/10.1111/j.1365-2052.2010.02063.x 20477797.
Medeiros de Oliveira Silva, R., Bonvino Stafuzza, N., de Oliveira Fragomeni, B., Miguel Ferreira de Camargo, G., Matos Ceacero, T., Noely dos Santos Gonçalves Cyrillo, J., Baldi, F., Augusti Boligon, A., Zerlotti Mercadante, M.E., Lino Lourenco, D., Misztal, I., Galvão de Albuquerque, L., Genome-wide association study for carcass traits in an experimental Nelore cattle population. PLoS One, 12, 2017, e0169860 https://doi.org/10.1371/journal.pone.0169860 28118362.
Michenet, A., Barbat, M., Saintilan, R., Venot, E., Phocas, F., Detection of quantitative trait loci for maternal traits using high-density genotypes of Blonde d'Aquitaine beef cattle. BMC Genet., 17, 2016, 88 https://doi.org/10.1186/s12863-016-0397-y 27328805.
Misztal, I., Tsuruta, S., Strabel, T., Auvray, B., Druet, T., Lee, D., BLUPF90 and related programs (BGF90). Proc. 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, 2002, 743–744.
Myles, S., Tang, K., Somel, M., Green, R.E., Kelso, J., Stoneking, M., Identification and analysis of genomic regions with large between-population differentiation in humans. Ann. Hum. Genet. 72 (2008), 99–110 18184145.
Nelson, W.J., Lazarides, E., Goblin (ankyrin) in striated muscle: Identification of the potential membrane receptor for erythroid spectrin in muscle cells. Proc. Natl. Acad. Sci. USA 81 (1984), 3292–3296 https://doi.org/10.1073/pnas.81.11.3292 6233607.
Patton, J., Kenny, D.A., Mee, J.F., O'Mara, F.P., Wathes, D.C., Cook, M., Murphy, J.J., Effect of milking frequency and diet on milk production, energy balance, and reproduction in dairy cows. J. Dairy Sci. 89 (2006), 1478–1487 https://doi.org/10.3168/jds.S0022-0302(06)72215-9 16606718.
Piao, H.L., Ma, L., Non-coding RNAs as regulators of mammary development and breast cancer. J. Mammary Gland Biol. Neoplasia 17 (2012), 33–42 https://doi.org/10.1007/s10911-012-9245-5 22350981.
Pryce, J.E., Parker Gaddis, K.L., Koeck, A., Bastin, C., Abdelsayed, M., Gengler, N., Miglior, F., Heringstad, B., Egger-Danner, C., Stock, K.F., Bradley, A.J., Cole, J.B., Invited review: Opportunities for genetic improvement of metabolic diseases. J. Dairy Sci. 99 (2016), 6855–6873 https://doi.org/10.3168/jds.2016-10854 27372587.
Puppel, K., Kuczynska, B., Metabolic profiles of cow's blood: A review. J. Sci. Food Agric. 96 (2016), 4321–4328 https://doi.org/10.1002/jsfa.7779 27129620.
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D., Maller, J., Sklar, P., De Bakker, P.I., Daly, M.J., Sham, P.C., PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81 (2007), 559–575 https://doi.org/10.1086/519795 17701901.
R Core Team, R: A Language and Environment for Statistical Computing. 2017, R Foundation for Statistical Computing, Vienna, Austria.
Sargolzaei, M., Chesnais, J.P., Schenkel, F.S., A new approach for efficient genotype imputation using information from relatives. BMC Genomics, 15, 2014, 478 https://doi.org/10.1186/1471-2164-15-478 24935670.
Shaham, L., Vendramini, E., Ge, Y., Goren, Y., Birger, Y., Tijssen, M.R., McNulty, M., Geron, I., Schwartzman, O., Goldberg, L., Chou, S.T., Pitman, H., Weiss, M.J., Michaeli, S., Sredni, B., Göttgens, B., Crispino, J.D., Taub, J.W., Izraeli, S., MicroRNA-486-5p is an erythroid oncomiR of the myeloid leukemias of Down syndrome. Blood 125 (2015), 1292–1301 https://doi.org/10.1182/blood-2014-06-581892 25533034.
Sherman, E.L., Nkrumah, J.D., Li, C., Bartusiak, R., Murdoch, B., Moore, S.S., Fine mapping quantitative trait loci for feed intake and feed efficiency in beef cattle. J. Anim. Sci. 87 (2009), 37–45 https://doi.org/10.2527/jas.2008-0876 18791150.
Sordillo, L.M., Nutritional strategies to optimize dairy cattle immunity. J. Dairy Sci. 99 (2016), 4967–4982 https://doi.org/10.3168/jds.2015-10354 26830740.
Spurlock, D.M., Dekkers, J.C.M., Fernando, R., Koltes, D.A., Wolc, A., Genetic parameters for energy balance, feed efficiency, and related traits in Holstein cattle. J. Dairy Sci. 95 (2012), 5393–5402 https://doi.org/10.3168/jds.2012-5407 22916946.
Sureshchandra, S., Rais, M., Stull, C., Grant, K., Messaoudi, I., Transcriptome profiling reveals disruption of innate immunity in chronic heavy ethanol consuming female rhesus macaques. PLoS One, 11, 2016, e0159295 https://doi.org/10.1371/journal.pone.0159295 27427759.
Suwannasing, R., Duangjinda, M., Boonkum, W., Taharnklaew, R., Tuangsithtanon, K., The identification of novel regions for reproduction trait in Landrace and Large White pigs using a single step genome-wide association study. Asian-Australas. J. Anim. Sci. 31 (2018), 1852–1862 https://doi.org/10.5713/ajas.18.0072 29879826.
Tessema, M., Yingling, C.M., Picchi, M.A., Wu, G., Ryba, T., Lin, Y., Bungum, A.O., Edell, E.S., Spira, A., Belinsky, S.A., ANK1 methylation regulates expression of MicroRNA-486-5p and discriminates lung tumors by histology and smoking status. Cancer Lett. 410 (2017), 191–200 https://doi.org/10.1016/j.canlet.2017.09.038 28965852.
Tetens, J., Thaller, G., Krattenmacher, N., Genetic and genomic dissection of dry matter intake at different lactation stages in primiparous Holstein cows. J. Dairy Sci. 97 (2014), 520–531 https://doi.org/10.3168/jds.2013-7301 24183684.
Valsesia, A., Wang, Q.-P., Gheldof, N., Carayol, J., Ruffieux, H., Clark, T., Shenton, V., Oyston, L.J., Lefebvre, G., Metairon, S., Chabert, C., Walter, O., Mironova, P., Lau, P., Descombes, P., Viguerie, N., Langin, D., Harper, M.-E., Astrup, A., Saris, W.H., Dent, R., Neely, G.G., Hager, J., Genome-wide gene-based analyses of weight loss interventions identify a potential role for NKX6.3 in metabolism. Nat. Commun., 10, 2019, 540 https://doi.org/10.1038/s41467-019-08492-8 30710084.
van der Drift, S.G.A., Houweling, M., Schonewille, J.T., Tielens, A.G.M., Jorritsma, R., Protein and fat mobilization and associations with serum β-hydroxybutyrate concentrations in dairy cows. J. Dairy Sci. 95 (2012), 4911–4920 https://doi.org/10.3168/jds.2011-4771 22916895.
van Hoeij, R., Kok, A., Bruckmaier, R., Haskell, M., Kemp, B., van Knegsel, A., Relationship between metabolic status and behavior in dairy cows in week 4 of lactation. Animal 13 (2019), 640–648.
VanRaden, P.M., Efficient methods to compute genomic predictions. J. Dairy Sci. 91 (2008), 4414–4423 https://doi.org/10.3168/jds.2007-0980 18946147.
Wang, H., Misztal, I., Aguilar, I., Legarra, A., Muir, W., Genome-wide association mapping including phenotypes from relatives without genotypes. Genet. Res. (Camb.) 94 (2012), 73–83 https://doi.org/10.1017/S0016672312000274 22624567.
Wang, K., Liu, D., Hernandez-Sanchez, J., Chen, J., Liu, C., Wu, Z., Fang, M., Li, N., Genome wide association analysis reveals new production trait genes in a male Duroc population. PLoS One, 10, 2015, e0139207 https://doi.org/10.1371/journal.pone.0139207 26418247.
Wang, L.-S., Li, L., Li, L., Chu, S., Shiang, K.-D., Li, M., Sun, H.-Y., Xu, J., Xiao, F.-J., Sun, G., Rossi, J.J., Ho, Y.W., Bhatia, R., MicroRNA-486 regulates normal erythropoiesis and enhances growth and modulates drug response in CML progenitors. Blood 125 (2015), 1302–1313 https://doi.org/10.1182/blood-2014-06-581926 25515961.
Zhang, H., Wang, Z., Wang, S., Li, H., Progress of genome wide association study in domestic animals. J. Anim. Sci. Biotechnol., 3, 2012, 26 https://doi.org/10.1186/2049-1891-3-26 22958308.
Zhou, C., Li, C., Cai, W., Liu, S., Yin, H.W., Shi, S., Zhang, Q., Zhang, S., Genome-wide association study for milk protein composition traits in a Chinese Holstein population using a single-step approach. Front. Genet., 10, 2019, 72 https://doi.org/10.3389/fgene.2019.00072 30838020.
Zhou, X., Stephens, M., Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44 (2012), 821–824 https://doi.org/10.1038/ng.2310 22706312.
Zwald, N.R., Weigel, K.A., Chang, Y.M., Welper, R.D., Clay, J.S., Genetic selection for health traits using producer-recorded data. II. Genetic correlations, disease probabilities, and relationships with existing traits. J. Dairy Sci. 87 (2004), 4295–4302 https://doi.org/10.3168/jds.S0022-0302(04)73574-2 15545393.