Dichalcogenides; Field-effect; Higher integration; Property; Thermo-Electric materials; Thermoelectric material; Thermoelectric power factors; Thermoelectric properties; Two-dimensional materials; Van der Waal; Materials Science (all); Physics and Astronomy (miscellaneous); Physics - Materials Science; Physics - Mesoscopic Systems and Quantum Hall Effect
Abstract :
[en] The family of van der Waals dichalcogenides (vdWDs) includes a large number of compositions and phases, exhibiting varied properties and functionalities. They have opened up a novel electronics of two-dimensional materials, characterized by higher integration and interfaces which are atomically sharper and cleaner than conventional electronics. Among these functionalities, some vdWDs possess remarkable thermoelectric properties. SnSe2 has been identified as a promising thermoelectric material on the basis of its estimated electronic and transport properties. In this work we carry out experimental measurements of the electric and thermoelectric properties of SnSe2 flakes. For a 30-μm-thick SnSe2 flake at room temperature, we measure electron mobility of 40 cm2V-1s-1, a carrier density of 4×1018cm-3, a Seebeck coefficient S≈-400μV/K, and thermoelectric power factor S2σ≈0.35mWm-1K-2. The comparison of experimental results with theoretical calculations shows fair agreement and indicates that the dominant carrier scattering mechanisms are polar optical phonons at room temperature and ionized impurities below 50 K. In order to explore possible improvement of the thermoelectric properties, we carry out reversible electrostatic doping on a thinner flake, in a field effect setup. On this 75-nm-thick SnSe2 flake, we measure a field effect variation of the Seebeck coefficient of up to 290% at low temperature, and a corresponding variation of the thermoelectric power factor of up to 1050%. We find that the power factor increases with the depletion of n-type charge carriers. Field effect control of thermoelectric transport opens perspectives for boosting energy harvesting and novel switching technologies based on two-dimensional materials.
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège
Disciplines :
Physics
Author, co-author :
Pallecchi, Ilaria ; CNR-SPIN, University of Genoa, Genoa, Italy
Caglieris, Federico ; CNR-SPIN, University of Genoa, Genoa, Italy
Ceccardi, Michele ; CNR-SPIN, University of Genoa, Genoa, Italy
Manca, Nicola; CNR-SPIN, University of Genoa, Genoa, Italy
Marré, Daniele ; CNR-SPIN, University of Genoa, Genoa, Italy
Repetto, Luca ; CNR-SPIN, University of Genoa, Genoa, Italy
Schott, Marine ; CNR-SPIN, University of Genoa, Genoa, Italy
Bilc, Daniel ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux ; Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, Romania ; Romania
Chaitoglou, Stefanos ; Institute of Nanoscience and Nanotechnology, National Center for Scientific Research DEMOKRITOS, Athens, Greece
Dimoulas, Athanasios ; Institute of Nanoscience and Nanotechnology, National Center for Scientific Research DEMOKRITOS, Athens, Greece
Verstraete, Matthieu ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures
Language :
English
Title :
Investigation and field effect tuning of thermoelectric properties of SnSe2 flakes
Publication date :
May 2023
Journal title :
Physical Review Materials
eISSN :
2475-9953
Publisher :
American Physical Society
Volume :
7
Issue :
5
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif Tier-1 supercomputer
UEFISCDI - Unitatea Executiva pentru Finantarea Invatamantului Superior a Cercetarii Dezvoltarii si Inovarii ERDF - European Regional Development Fund BSC - Barcelona Supercomputing Center EU - European Union MIUR - Ministero dell'Istruzione, dell'Università e della Ricerca
Funding text :
This work was financially supported by the FLAG-ERA JTC2017 Project No. MELODICA “Revealing the potential of transition metal dichalcogenides for thermoelectric applications through nanostructuring and confinement.” D.I.B. acknowledges financial support from a grant of the Romanian National Authority for Scientific Research and Innovation, CCCDI–UEFISCDI, Project No. COFUND-FLAGERA II-MELoDICA, within PNCDI III. Computational resources were provided by the high-performance computational facility of Babes-Bolyai University (MADECIP, Grant No. POSCCE COD SMIS 48801/1862) cofinanced by the European Regional Development Fund. M.J.V. acknowledges funding from ULiege and the Federation Wallonie Bruxelles through ARC Grant No. DREAMS (G.A. 21/25-11), and a PRACE award granting access to MareNostrum4 at Barcelona Supercomputing Center (BSC), Spain (OptoSpin Project ID No. 2020225411). F.C. acknowledges the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 892728. I.P. acknowledges the “Network 4 Energy Sustainable Transition–NEST” project, award number PE0000021, funded under the National Recovery and Resilience Plan (NRRP), Mission 4, Component 2, Investment 1.3 - Call for tender No. 1561 of 11.10.2022 of Italian Ministero dell'Università e della Ricerca (MUR); funded by the European Union–NextGenerationEU.
I. Pallecchi, N. Manca, B. Patil, L. Pellegrino, and D. Marré, Review on thermoelectric properties of transition metal dichalcogenides, Nano Futures 4, 032008 (2020) 10.1088/2399-1984/ab92f4.
M. Sledzinska, R. Quey, B. Mortazavi, B. Graczykowski, M. Placidi, D. S. Reig, D. Navarro-Urrios, F. Alzina, L. Colombo, S. Roche, and C. M. Sotomayor Torres, Record low thermal conductivity of polycrystalline (Equation presented) films: Tuning the thermal conductivity by grain orientation, ACS Appl. Mater. Interfaces 9, 37905 (2017) 10.1021/acsami.7b08811.
A. Aiyiti, S. Hu, C. Wang, Q. Xi, Z. Cheng, M. Xia, Y. Ma, J. Wu, J. Guo, Q. Wang, J. Zhou, J. Chen, X. Xu, and B. Li, Thermal conductivity of suspended few-layer (Equation presented), Nanoscale 10, 2727 (2018) 10.1039/C7NR07522G.
E. Hadland, H. Jang, M. Falmbigl, R. Fischer, D. L. Medlin, D. G. Cahill, and D. C. Johnson, Synthesis, characterization, and ultralow thermal conductivity of a lattice-mismatched (Equation presented) heterostructure, Chem. Mater. 31, 5699 (2019) 10.1021/acs.chemmater.9b01637.
S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, 2D transition metal dichalcogenides, Nat. Rev. Mater. 2, 17033 (2017) 10.1038/natrevmats.2017.33.
W. Huang, X. Luo, C. K. Gan, S. Y. Quek, and G. Liang, Theoretical study of thermoelectric properties of few-layer (Equation presented) and (Equation presented), Phys. Chem. Chem. Phys. 16, 10866 (2014) 10.1039/c4cp00487f.
P. Xiao, E. Chavez-Angel, S. Chaitoglou, M. Sledzinska, A. Dimoulas, C. M. Sotomayor Torres, and A. El Sachat, Anisotropic thermal conductivity of crystalline layered (Equation presented), Nano Lett. 21, 9172 (2021) 10.1021/acs.nanolett.1c03018.
D. S. Reig, S. Varghese, R. Farris, A. Block, J. D. Mehew, O. Hellman, P. Woźniak, M. Sledzinska, A. El Sachat, E. Chávez-Ángel, S. O. Valenzuela, N. F. van Hulst, P. Ordejón, Z. Zanolli, C. M. Sotomayor Torres, M. J. Verstraete, and K.-J. Tielrooij, Unraveling heat transport and dissipation in suspended (Equation presented) from bulk to monolayer, Adv. Mater. 34, 2108352 (2022) 10.1002/adma.202108352.
K. Hippalgaonkar, Y. Wang, Y. Ye, D. Y. Qiu, H. Zhu, Y. Wang, J. Moore, S. G. Louie, and X. Zhang, High thermoelectric power factor in two-dimensional crystals of (Equation presented) Phys Rev. B 95, 115407 (2017) 10.1103/PhysRevB.95.115407.
M. Kayyalha, J. Maassen, M. Lundstrom, L. Shi, and Y. P. Chen, Gate-tunable and thickness-dependent electronic and thermoelectric transport in few-layer (Equation presented), J. Appl. Phys. 120, 134305 (2016) 10.1063/1.4963364.
M. Yoshida, T. Iizuka, Y. Saito, M. Onga, R. Suzuki, Y. Zhang, Y. Iwasa, and S. Shimizu, Gate-optimized thermoelectric power factor in ultrathin (Equation presented) single crystals, Nano Lett. 16, 2061 (2016) 10.1021/acs.nanolett.6b00075.
D. I. Bilc, D. Benea, V. Pop, P. Ghosez, and M. J. Verstraete, Electronic and thermoelectric properties of transition metal dichalcogenides, J. Phys. Chem. C 125, 27084 (2021) 10.1021/acs.jpcc.1c07088.
L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, Nature (London) 508, 373 (2014) 10.1038/nature13184.
L.-D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V. P. Dravid, C. Uher, G. J. Snyder, C. Wolverton, M. G. Kanatzidis, and L. D. Zhao, Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe, Science 351, 141 (2016) 10.1126/science.aad3749.
C.-C. Lin, R. Lydia, J. H. Yun, H. S. Lee, and J. S. Rhyee, Extremely low lattice thermal conductivity and point defect scattering of phonons in Ag-doped (Equation presented) compounds, Chem. Mater. 29, 5344 (2017) 10.1021/acs.chemmater.7b01612.
Q. Zhang, E. K. Chere, J. Sun, F. Cao, K. Dahal, S. Chen, G. Chen, and Z. Ren, Studies on thermoelectric properties of n-type polycrystalline (Equation presented) by Iodine doping, Adv. Energy Mater. 5, 1500360 (2015) 10.1002/aenm.201500360.
S. Liu, N. Sun, M. Liu, S. Sucharitakul, and X. P. A. Gao, Nanostructured SnSe: Synthesis, doping, and thermoelectric properties, J. Appl. Phys. 123, 115109 (2018) 10.1063/1.5018860.
H. Ju, M. Kim, D. Park, and J. Kim, A strategy for low thermal conductivity and enhanced thermoelectric performance in SnSe: Porous (Equation presented) nanosheets, Chem. Mater. 29, 3228 (2017) 10.1021/acs.chemmater.7b00423.
M. R. Burton, T. Liu, J. McGettrick, S. Mehraban, J. Baker, A. Pockett, T. Watson, O. Fenwick, and M. J. Carnie, Thin film Tin Selenide (SnSe) thermoelectric generators exhibiting ultralow thermal conductivity, Adv. Mater. 30, 1801357 (2018) 10.1002/adma.201801357.
A.-T. Pham, T. H. Vu, C. Cheng, T. L. Trinh, J.-E. Lee, H. Ryu, C. Hwang, S.-K. Mo, J. Kim, L.-d. Zhao, A.-T. Duong, and S. Cho, High-quality (Equation presented) single crystals: Electronic and thermoelectric properties, ACS Appl. Energy Mater. 3, 10787 (2020) 10.1021/acsaem.0c01846.
S. Saha, A. Banik, and Dr. K. Biswas, Few-layer nanosheets of n-type (Equation presented), Chem. Eur. J. 22, 15634 (2016) 10.1002/chem.201604161.
Y. Luo, Y. Zheng, Z. Luo, S. Hao, C. Du, Q. Liang, Z. Li, K. A. Khor, K. Hippalgaonkar, J. Xu, Q. Yan, C. Wolverton, and G. M., Kanatzidis, n-type (Equation presented) oriented-nanoplate-based pellets for high thermoelectric performance, Adv. Energy Mater. 8, 1702167 (2018) 10.1002/aenm.201702167.
C. Zhou, Y. Yu, X. Zhang, Y. Cheng, J. Xu, Y. K. Lee, B. Yoo, O. Cojocaru-Mirédin, G. Liu, S.-P. Cho, M. Wuttig, T. Hyeon, and I. Chung, Cu intercalation and Br doping to thermoelectric (Equation presented) lead to ultrahigh electron mobility and temperature-independent power factor, Adv. Funct. Mater. 30, 1908405 (2019) 10.1002/adfm.201908405.
J. Chen, D. M. Hamann, D. Choi, N. Poudel, L. Shen, L. Shi, D. C. Johnson, and S. Cronin, Enhanced cross-plane thermoelectric transport of rotationally disordered (Equation presented) via Se-vapor annealing, Nano Lett. 18, 6876 (2018) 10.1021/acs.nanolett.8b02744.
T. J. Slade, J. A. Grovogui, J. J. Kuo, S. Anand, T. P. Bailey, M. Wood, C. Uher, G. J. Snyder, V. P. Dravid, and M. G. Kanatzidis, Understanding the thermally activated charge transport in (Equation presented) (Q = S, Se, Te) thermoelectrics: Weak dielectric screening leads to grain boundary dominated charge carrier scattering, Energy Environ. Sci. 13, 1509 (2020) 10.1039/D0EE00491J.
R. C. Neville, B. Hoeneisen, and C. A. Mead, Permittivity of strontium titanate, J. Appl. Phys. 43, 2124 (1972) 10.1063/1.1661463.
D. I. Bilc, R. Orlando, R. Shaltaf, G.-M. Rignanese, J. Iniguez, and Ph. Ghosez, Hybrid exchange-correlation functional for accurate prediction of the electronic and structural properties of ferroelectric oxides, Phys. Rev. B 77, 165107 (2008) 10.1103/PhysRevB.77.165107.
M. Goffinet, P. Hermet, D. I. Bilc, and Ph. Ghosez, Hybrid functional study of prototypical multiferroic bismuth ferrite, Phys. Rev. B 79, 014403 (2009) 10.1103/PhysRevB.79.014403.
A. Prikockyte, D. Bilc, P. Hermet, C. Dubourdieu, and Ph Ghosez, First-principles calculations of the struc-tural and dynamical properties of ferroelectric (Equation presented), Phys. Rev. B 84, 214301 (2011) 10.1103/PhysRevB.84.214301.
R. Dovesi, A. Erba, R. Orlando, C. M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rerat, S. Casassa, J. Baima, S. Salustro, Quantum-mechanical condensed matter simulations with CRYSTAL, WIREs Comput. Mol. Sci. 8, e1360 (2018) 10.1002/wcms.1360.
D. V. Oliveira, M. F. Peintinger, J. Laun, and T. Bredow, BSSE-correction scheme for consistent Gaussian basis sets of double-and triple-zeta valence with polarization quality for solid-state calculations, J. Comput. Chem. 40, 2364 (2019) 10.1002/jcc.26013.
J. Laun, D. V. Oliveira, and T. Bredow, Consistent Gaussian basis sets of double-and triple-zeta valence with polarization quality of the fifth period for solid-state calculations, J. Comput. Chem. 39, 1285 (2018) 10.1002/jcc.25195.
G. K. H. Madsen and D. J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities, Comput. Phys. Commun. 175, 67 (2006) 10.1016/j.cpc.2006.03.007.
S. D. Kang and G. J. Snyder, Charge-transport model for conducting polymers, Nat. Mater. 16, 252 (2017) 10.1038/nmat4784.
Y. Kajikawa, Analysis of high-temperature thermoelectric properties of p-type (Equation presented) within a two-valence-band and two-conduction-band model, J. Appl. Phys. 115, 203716 (2014) 10.1063/1.4880315.
D. I. Bilc, S. D. Mahanti, and M. G. Kanatzidis, Electronic transport properties of PbTe and (Equation presented) systems, Phys. Rev. B 74, 125202 (2006) 10.1103/PhysRevB.74.125202.
I. G. Austin and N. F. Mott, Polarons in crystalline and non crystalline materials, Adv. Phys. 18, 41 (1969) 10.1080/00018736900101267.
H. J. Goldsmid and J. W. Sharp, Estimation of the thermal band gap of a semiconductor from Seebeck measurements, J. Electron. Mater. 28, 869 (1999) 10.1007/s11664-999-0211-y.
Y. Mao, X. Ma, D. Wu, C. Lin, H. Shan, X. Wu, J. Zhao, A. Zhao, and B. Wang, Interfacial polarons in van der Waals heterojunction of monolayer (Equation presented) on (Equation presented) (001), Nano Lett. 20, 8067 (2020) 10.1021/acs.nanolett.0c02741.
H. Moon, J. Bang, S. Hong, G. Kim, J. Wook Roh, J. Kim, and W. Lee, Strong thermopower enhancement and tunable power factor via semimetal to semiconductor transition in a transition-metal dichalcogenide, ACS Nano 13, 13317 (2019) 10.1021/acsnano.9b06523.
W. Y. Kim, H. J. Kim, T. Hallam, N. McEvoy, R. Gatensby, H. C. Nerl, K. O'Neill, R. Siris, G.-T. Kim, and G. S. Duesberg, Field-dependent electrical and thermal transport in polycrystalline (Equation presented), Adv. Mater. Interfaces 5, 1701161 (2018) 10.1002/admi.201701161.